/*****************************************************************************/ /* * audio.c -- USB Audio Class driver * * Copyright (C) 1999, 2000, 2001, 2003, 2004 * Alan Cox (alan@lxorguk.ukuu.org.uk) * Thomas Sailer (sailer@ife.ee.ethz.ch) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * Debugging: * Use the 'lsusb' utility to dump the descriptors. * * 1999-09-07: Alan Cox * Parsing Audio descriptor patch * 1999-09-08: Thomas Sailer * Added OSS compatible data io functions; both parts of the * driver remain to be glued together * 1999-09-10: Thomas Sailer * Beautified the driver. Added sample format conversions. * Still not properly glued with the parsing code. * The parsing code seems to have its problems btw, * Since it parses all available configs but doesn't * store which iface/altsetting belongs to which config. * 1999-09-20: Thomas Sailer * Threw out Alan's parsing code and implemented my own one. * You cannot reasonnably linearly parse audio descriptors, * especially the AudioClass descriptors have to be considered * pointer lists. Mixer parsing untested, due to lack of device. * First stab at synch pipe implementation, the Dallas USB DAC * wants to use an Asynch out pipe. usb_audio_state now basically * only contains lists of mixer and wave devices. We can therefore * now have multiple mixer/wave devices per USB device. * 1999-10-28: Thomas Sailer * Converted to URB API. Fixed a taskstate/wakeup semantics mistake * that made the driver consume all available CPU cycles. * Now runs stable on UHCI-Acher/Fliegl/Sailer. * 1999-10-31: Thomas Sailer * Audio can now be unloaded if it is not in use by any mixer * or dsp client (formerly you had to disconnect the audio devices * from the USB port) * Finally, about three months after ordering, my "Maxxtro SPK222" * speakers arrived, isn't disdata a great mail order company 8-) * Parse class specific endpoint descriptor of the audiostreaming * interfaces and take the endpoint attributes from there. * Unbelievably, the Philips USB DAC has a sampling rate range * of over a decade, yet does not support the sampling rate control! * No wonder it sounds so bad, has very audible sampling rate * conversion distortion. Don't try to listen to it using * decent headphones! * "Let's make things better" -> but please Philips start with your * own stuff!!!! * 1999-11-02: Thomas Sailer * It takes the Philips boxes several seconds to acquire synchronisation * that means they won't play short sounds. Should probably maintain * the ISO datastream even if there's nothing to play. * Fix counting the total_bytes counter, RealPlayer G2 depends on it. * 1999-12-20: Thomas Sailer * Fix bad bug in conversion to per interface probing. * disconnect was called multiple times for the audio device, * leading to a premature freeing of the audio structures * 2000-05-13: Thomas Sailer * I don't remember who changed the find_format routine, * but the change was completely broken for the Dallas * chip. Anyway taking sampling rate into account in find_format * is bad and should not be done unless there are devices with * completely broken audio descriptors. Unless someone shows * me such a descriptor, I will not allow find_format to * take the sampling rate into account. * Also, the former find_format made: * - mpg123 play mono instead of stereo * - sox completely fail for wav's with sample rates < 44.1kHz * for the Dallas chip. * Also fix a rather long standing problem with applications that * use "small" writes producing no sound at all. * 2000-05-15: Thomas Sailer * My fears came true, the Philips camera indeed has pretty stupid * audio descriptors. * 2000-05-17: Thomas Sailer * Nemsoft spotted my stupid last minute change, thanks * 2000-05-19: Thomas Sailer * Fixed FEATURE_UNIT thinkos found thanks to the KC Technology * Xtend device. Basically the driver treated FEATURE_UNIT's sourced * by mono terminals as stereo. * 2000-05-20: Thomas Sailer * SELECTOR support (and thus selecting record channels from the mixer). * Somewhat peculiar due to OSS interface limitations. Only works * for channels where a "slider" is already in front of it (i.e. * a MIXER unit or a FEATURE unit with volume capability). * 2000-11-26: Thomas Sailer * Workaround for Dallas DS4201. The DS4201 uses PCM8 as format tag for * its 8 bit modes, but expects signed data (and should therefore have used PCM). * 2001-03-10: Thomas Sailer * provide abs function, prevent picking up a bogus kernel macro * for abs. Bug report by Andrew Morton * 2001-06-16: Bryce Nesbitt * Fix SNDCTL_DSP_STEREO API violation * 2003-04-08: Oliver Neukum (oliver@neukum.name): * Setting a configuration is done by usbcore and must not be overridden * 2004-02-27: Workaround for broken synch descriptors * 2004-03-07: Alan Stern * Add usb_ifnum_to_if() and usb_altnum_to_altsetting() support. * Use the in-memory descriptors instead of reading them from the device. * */ /* * Strategy: * * Alan Cox and Thomas Sailer are starting to dig at opposite ends and * are hoping to meet in the middle, just like tunnel diggers :) * Alan tackles the descriptor parsing, Thomas the actual data IO and the * OSS compatible interface. * * Data IO implementation issues * * A mmap'able ring buffer per direction is implemented, because * almost every OSS app expects it. It is however impractical to * transmit/receive USB data directly into and out of the ring buffer, * due to alignment and synchronisation issues. Instead, the ring buffer * feeds a constant time delay line that handles the USB issues. * * Now we first try to find an alternate setting that exactly matches * the sample format requested by the user. If we find one, we do not * need to perform any sample rate conversions. If there is no matching * altsetting, we choose the closest one and perform sample format * conversions. We never do sample rate conversion; these are too * expensive to be performed in the kernel. * * Current status: no known HCD-specific issues. * * Generally: Due to the brokenness of the Audio Class spec * it seems generally impossible to write a generic Audio Class driver, * so a reasonable driver should implement the features that are actually * used. * * Parsing implementation issues * * One cannot reasonably parse the AudioClass descriptors linearly. * Therefore the current implementation features routines to look * for a specific descriptor in the descriptor list. * * How does the parsing work? First, all interfaces are searched * for an AudioControl class interface. If found, the config descriptor * that belongs to the current configuration is searched and * the HEADER descriptor is found. It contains a list of * all AudioStreaming and MIDIStreaming devices. This list is then walked, * and all AudioStreaming interfaces are classified into input and output * interfaces (according to the endpoint0 direction in altsetting1) (MIDIStreaming * is currently not supported). The input & output list is then used * to group inputs and outputs together and issued pairwise to the * AudioStreaming class parser. Finally, all OUTPUT_TERMINAL descriptors * are walked and issued to the mixer construction routine. * * The AudioStreaming parser simply enumerates all altsettings belonging * to the specified interface. It looks for AS_GENERAL and FORMAT_TYPE * class specific descriptors to extract the sample format/sample rate * data. Only sample format types PCM and PCM8 are supported right now, and * only FORMAT_TYPE_I is handled. The isochronous data endpoint needs to * be the first endpoint of the interface, and the optional synchronisation * isochronous endpoint the second one. * * Mixer construction works as follows: The various TERMINAL and UNIT * descriptors span a tree from the root (OUTPUT_TERMINAL) through the * intermediate nodes (UNITs) to the leaves (INPUT_TERMINAL). We walk * that tree in a depth first manner. FEATURE_UNITs may contribute volume, * bass and treble sliders to the mixer, MIXER_UNITs volume sliders. * The terminal type encoded in the INPUT_TERMINALs feeds a heuristic * to determine "meaningful" OSS slider numbers, however we will see * how well this works in practice. Other features are not used at the * moment, they seem less often used. Also, it seems difficult at least * to construct recording source switches from SELECTOR_UNITs, but * since there are not many USB ADC's available, we leave that for later. */ /*****************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "audio.h" /* * Version Information */ #define DRIVER_VERSION "v1.0.0" #define DRIVER_AUTHOR "Alan Cox , Thomas Sailer (sailer@ife.ee.ethz.ch)" #define DRIVER_DESC "USB Audio Class driver" #define AUDIO_DEBUG 1 #define SND_DEV_DSP16 5 #define dprintk(x) /* --------------------------------------------------------------------- */ /* * Linked list of all audio devices... */ static struct list_head audiodevs = LIST_HEAD_INIT(audiodevs); static DECLARE_MUTEX(open_sem); /* * wait queue for processes wanting to open an USB audio device */ static DECLARE_WAIT_QUEUE_HEAD(open_wait); #define MAXFORMATS MAX_ALT #define DMABUFSHIFT 17 /* 128k worth of DMA buffer */ #define NRSGBUF (1U<<(DMABUFSHIFT-PAGE_SHIFT)) /* * This influences: * - Latency * - Interrupt rate * - Synchronisation behaviour * Don't touch this if you don't understand all of the above. */ #define DESCFRAMES 5 #define SYNCFRAMES DESCFRAMES #define MIXFLG_STEREOIN 1 #define MIXFLG_STEREOOUT 2 struct mixerchannel { __u16 value; __u16 osschannel; /* number of the OSS channel */ __s16 minval, maxval; __u16 slctunitid; __u8 unitid; __u8 selector; __u8 chnum; __u8 flags; }; struct audioformat { unsigned int format; unsigned int sratelo; unsigned int sratehi; unsigned char altsetting; unsigned char attributes; }; struct dmabuf { /* buffer data format */ unsigned int format; unsigned int srate; /* physical buffer */ unsigned char *sgbuf[NRSGBUF]; unsigned bufsize; unsigned numfrag; unsigned fragshift; unsigned wrptr, rdptr; unsigned total_bytes; int count; unsigned error; /* over/underrun */ wait_queue_head_t wait; /* redundant, but makes calculations easier */ unsigned fragsize; unsigned dmasize; /* OSS stuff */ unsigned mapped:1; unsigned ready:1; unsigned ossfragshift; int ossmaxfrags; unsigned subdivision; }; struct usb_audio_state; #define FLG_URB0RUNNING 1 #define FLG_URB1RUNNING 2 #define FLG_SYNC0RUNNING 4 #define FLG_SYNC1RUNNING 8 #define FLG_RUNNING 16 #define FLG_CONNECTED 32 struct my_data_urb { struct urb *urb; }; struct my_sync_urb { struct urb *urb; }; struct usb_audiodev { struct list_head list; struct usb_audio_state *state; /* soundcore stuff */ int dev_audio; /* wave stuff */ mode_t open_mode; spinlock_t lock; /* DMA buffer access spinlock */ struct usbin { int interface; /* Interface number, -1 means not used */ unsigned int format; /* USB data format */ unsigned int datapipe; /* the data input pipe */ unsigned int syncpipe; /* the synchronisation pipe - 0 for anything but adaptive IN mode */ unsigned int syncinterval; /* P for adaptive IN mode, 0 otherwise */ unsigned int freqn; /* nominal sampling rate in USB format, i.e. fs/1000 in Q10.14 */ unsigned int freqmax; /* maximum sampling rate, used for buffer management */ unsigned int phase; /* phase accumulator */ unsigned int flags; /* see FLG_ defines */ struct my_data_urb durb[2]; /* ISO descriptors for the data endpoint */ struct my_sync_urb surb[2]; /* ISO sync pipe descriptor if needed */ struct dmabuf dma; } usbin; struct usbout { int interface; /* Interface number, -1 means not used */ unsigned int format; /* USB data format */ unsigned int datapipe; /* the data input pipe */ unsigned int syncpipe; /* the synchronisation pipe - 0 for anything but asynchronous OUT mode */ unsigned int syncinterval; /* P for asynchronous OUT mode, 0 otherwise */ unsigned int freqn; /* nominal sampling rate in USB format, i.e. fs/1000 in Q10.14 */ unsigned int freqm; /* momentary sampling rate in USB format, i.e. fs/1000 in Q10.14 */ unsigned int freqmax; /* maximum sampling rate, used for buffer management */ unsigned int phase; /* phase accumulator */ unsigned int flags; /* see FLG_ defines */ struct my_data_urb durb[2]; /* ISO descriptors for the data endpoint */ struct my_sync_urb surb[2]; /* ISO sync pipe descriptor if needed */ struct dmabuf dma; } usbout; unsigned int numfmtin, numfmtout; struct audioformat fmtin[MAXFORMATS]; struct audioformat fmtout[MAXFORMATS]; }; struct usb_mixerdev { struct list_head list; struct usb_audio_state *state; /* soundcore stuff */ int dev_mixer; unsigned char iface; /* interface number of the AudioControl interface */ /* USB format descriptions */ unsigned int numch, modcnt; /* mixch is last and gets allocated dynamically */ struct mixerchannel ch[0]; }; struct usb_audio_state { struct list_head audiodev; /* USB device */ struct usb_device *usbdev; struct list_head audiolist; struct list_head mixerlist; unsigned count; /* usage counter; NOTE: the usb stack is also considered a user */ }; /* private audio format extensions */ #define AFMT_STEREO 0x80000000 #define AFMT_ISSTEREO(x) ((x) & AFMT_STEREO) #define AFMT_IS16BIT(x) ((x) & (AFMT_S16_LE|AFMT_S16_BE|AFMT_U16_LE|AFMT_U16_BE)) #define AFMT_ISUNSIGNED(x) ((x) & (AFMT_U8|AFMT_U16_LE|AFMT_U16_BE)) #define AFMT_BYTESSHIFT(x) ((AFMT_ISSTEREO(x) ? 1 : 0) + (AFMT_IS16BIT(x) ? 1 : 0)) #define AFMT_BYTES(x) (1<= 0x10000) { x >>= 16; r += 16; } if (x >= 0x100) { x >>= 8; r += 8; } if (x >= 0x10) { x >>= 4; r += 4; } if (x >= 4) { x >>= 2; r += 2; } if (x >= 2) r++; return r; } /* --------------------------------------------------------------------- */ /* * OSS compatible ring buffer management. The ring buffer may be mmap'ed into * an application address space. * * I first used the rvmalloc stuff copied from bttv. Alan Cox did not like it, so * we now use an array of pointers to a single page each. This saves us the * kernel page table manipulations, but we have to do a page table alike mechanism * (though only one indirection) in software. */ static void dmabuf_release(struct dmabuf *db) { unsigned int nr; void *p; for(nr = 0; nr < NRSGBUF; nr++) { if (!(p = db->sgbuf[nr])) continue; ClearPageReserved(virt_to_page(p)); free_page((unsigned long)p); db->sgbuf[nr] = NULL; } db->mapped = db->ready = 0; } static int dmabuf_init(struct dmabuf *db) { unsigned int nr, bytepersec, bufs; void *p; /* initialize some fields */ db->rdptr = db->wrptr = db->total_bytes = db->count = db->error = 0; /* calculate required buffer size */ bytepersec = db->srate << AFMT_BYTESSHIFT(db->format); bufs = 1U << DMABUFSHIFT; if (db->ossfragshift) { if ((1000 << db->ossfragshift) < bytepersec) db->fragshift = ld2(bytepersec/1000); else db->fragshift = db->ossfragshift; } else { db->fragshift = ld2(bytepersec/100/(db->subdivision ? db->subdivision : 1)); if (db->fragshift < 3) db->fragshift = 3; } db->numfrag = bufs >> db->fragshift; while (db->numfrag < 4 && db->fragshift > 3) { db->fragshift--; db->numfrag = bufs >> db->fragshift; } db->fragsize = 1 << db->fragshift; if (db->ossmaxfrags >= 4 && db->ossmaxfrags < db->numfrag) db->numfrag = db->ossmaxfrags; db->dmasize = db->numfrag << db->fragshift; for(nr = 0; nr < NRSGBUF; nr++) { if (!db->sgbuf[nr]) { p = (void *)get_zeroed_page(GFP_KERNEL); if (!p) return -ENOMEM; db->sgbuf[nr] = p; SetPageReserved(virt_to_page(p)); } memset(db->sgbuf[nr], AFMT_ISUNSIGNED(db->format) ? 0x80 : 0, PAGE_SIZE); if ((nr << PAGE_SHIFT) >= db->dmasize) break; } db->bufsize = nr << PAGE_SHIFT; db->ready = 1; dprintk((KERN_DEBUG "usbaudio: dmabuf_init bytepersec %d bufs %d ossfragshift %d ossmaxfrags %d " "fragshift %d fragsize %d numfrag %d dmasize %d bufsize %d fmt 0x%x srate %d\n", bytepersec, bufs, db->ossfragshift, db->ossmaxfrags, db->fragshift, db->fragsize, db->numfrag, db->dmasize, db->bufsize, db->format, db->srate)); return 0; } static int dmabuf_mmap(struct vm_area_struct *vma, struct dmabuf *db, unsigned long start, unsigned long size, pgprot_t prot) { unsigned int nr; if (!db->ready || db->mapped || (start | size) & (PAGE_SIZE-1) || size > db->bufsize) return -EINVAL; size >>= PAGE_SHIFT; for(nr = 0; nr < size; nr++) if (!db->sgbuf[nr]) return -EINVAL; db->mapped = 1; for(nr = 0; nr < size; nr++) { unsigned long pfn; pfn = virt_to_phys(db->sgbuf[nr]) >> PAGE_SHIFT; if (remap_pfn_range(vma, start, pfn, PAGE_SIZE, prot)) return -EAGAIN; start += PAGE_SIZE; } return 0; } static void dmabuf_copyin(struct dmabuf *db, const void *buffer, unsigned int size) { unsigned int pgrem, rem; db->total_bytes += size; for (;;) { if (size <= 0) return; pgrem = ((~db->wrptr) & (PAGE_SIZE-1)) + 1; if (pgrem > size) pgrem = size; rem = db->dmasize - db->wrptr; if (pgrem > rem) pgrem = rem; memcpy((db->sgbuf[db->wrptr >> PAGE_SHIFT]) + (db->wrptr & (PAGE_SIZE-1)), buffer, pgrem); size -= pgrem; buffer += pgrem; db->wrptr += pgrem; if (db->wrptr >= db->dmasize) db->wrptr = 0; } } static void dmabuf_copyout(struct dmabuf *db, void *buffer, unsigned int size) { unsigned int pgrem, rem; db->total_bytes += size; for (;;) { if (size <= 0) return; pgrem = ((~db->rdptr) & (PAGE_SIZE-1)) + 1; if (pgrem > size) pgrem = size; rem = db->dmasize - db->rdptr; if (pgrem > rem) pgrem = rem; memcpy(buffer, (db->sgbuf[db->rdptr >> PAGE_SHIFT]) + (db->rdptr & (PAGE_SIZE-1)), pgrem); size -= pgrem; buffer += pgrem; db->rdptr += pgrem; if (db->rdptr >= db->dmasize) db->rdptr = 0; } } static int dmabuf_copyin_user(struct dmabuf *db, unsigned int ptr, const void __user *buffer, unsigned int size) { unsigned int pgrem, rem; if (!db->ready || db->mapped) return -EINVAL; for (;;) { if (size <= 0) return 0; pgrem = ((~ptr) & (PAGE_SIZE-1)) + 1; if (pgrem > size) pgrem = size; rem = db->dmasize - ptr; if (pgrem > rem) pgrem = rem; if (copy_from_user((db->sgbuf[ptr >> PAGE_SHIFT]) + (ptr & (PAGE_SIZE-1)), buffer, pgrem)) return -EFAULT; size -= pgrem; buffer += pgrem; ptr += pgrem; if (ptr >= db->dmasize) ptr = 0; } } static int dmabuf_copyout_user(struct dmabuf *db, unsigned int ptr, void __user *buffer, unsigned int size) { unsigned int pgrem, rem; if (!db->ready || db->mapped) return -EINVAL; for (;;) { if (size <= 0) return 0; pgrem = ((~ptr) & (PAGE_SIZE-1)) + 1; if (pgrem > size) pgrem = size; rem = db->dmasize - ptr; if (pgrem > rem) pgrem = rem; if (copy_to_user(buffer, (db->sgbuf[ptr >> PAGE_SHIFT]) + (ptr & (PAGE_SIZE-1)), pgrem)) return -EFAULT; size -= pgrem; buffer += pgrem; ptr += pgrem; if (ptr >= db->dmasize) ptr = 0; } } /* --------------------------------------------------------------------- */ /* * USB I/O code. We do sample format conversion if necessary */ static void usbin_stop(struct usb_audiodev *as) { struct usbin *u = &as->usbin; unsigned long flags; unsigned int i, notkilled = 1; spin_lock_irqsave(&as->lock, flags); u->flags &= ~FLG_RUNNING; i = u->flags; spin_unlock_irqrestore(&as->lock, flags); while (i & (FLG_URB0RUNNING|FLG_URB1RUNNING|FLG_SYNC0RUNNING|FLG_SYNC1RUNNING)) { set_current_state(notkilled ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE); schedule_timeout(1); spin_lock_irqsave(&as->lock, flags); i = u->flags; spin_unlock_irqrestore(&as->lock, flags); if (notkilled && signal_pending(current)) { if (i & FLG_URB0RUNNING) usb_kill_urb(u->durb[0].urb); if (i & FLG_URB1RUNNING) usb_kill_urb(u->durb[1].urb); if (i & FLG_SYNC0RUNNING) usb_kill_urb(u->surb[0].urb); if (i & FLG_SYNC1RUNNING) usb_kill_urb(u->surb[1].urb); notkilled = 0; } } set_current_state(TASK_RUNNING); kfree(u->durb[0].urb->transfer_buffer); kfree(u->durb[1].urb->transfer_buffer); kfree(u->surb[0].urb->transfer_buffer); kfree(u->surb[1].urb->transfer_buffer); u->durb[0].urb->transfer_buffer = u->durb[1].urb->transfer_buffer = u->surb[0].urb->transfer_buffer = u->surb[1].urb->transfer_buffer = NULL; } static inline void usbin_release(struct usb_audiodev *as) { usbin_stop(as); } static void usbin_disc(struct usb_audiodev *as) { struct usbin *u = &as->usbin; unsigned long flags; spin_lock_irqsave(&as->lock, flags); u->flags &= ~(FLG_RUNNING | FLG_CONNECTED); spin_unlock_irqrestore(&as->lock, flags); usbin_stop(as); } static void conversion(const void *ibuf, unsigned int ifmt, void *obuf, unsigned int ofmt, void *tmp, unsigned int scnt) { unsigned int cnt, i; __s16 *sp, *sp2, s; unsigned char *bp; cnt = scnt; if (AFMT_ISSTEREO(ifmt)) cnt <<= 1; sp = ((__s16 *)tmp) + cnt; switch (ifmt & ~AFMT_STEREO) { case AFMT_U8: for (bp = ((unsigned char *)ibuf)+cnt, i = 0; i < cnt; i++) { bp--; sp--; *sp = (*bp ^ 0x80) << 8; } break; case AFMT_S8: for (bp = ((unsigned char *)ibuf)+cnt, i = 0; i < cnt; i++) { bp--; sp--; *sp = *bp << 8; } break; case AFMT_U16_LE: for (bp = ((unsigned char *)ibuf)+2*cnt, i = 0; i < cnt; i++) { bp -= 2; sp--; *sp = (bp[0] | (bp[1] << 8)) ^ 0x8000; } break; case AFMT_U16_BE: for (bp = ((unsigned char *)ibuf)+2*cnt, i = 0; i < cnt; i++) { bp -= 2; sp--; *sp = (bp[1] | (bp[0] << 8)) ^ 0x8000; } break; case AFMT_S16_LE: for (bp = ((unsigned char *)ibuf)+2*cnt, i = 0; i < cnt; i++) { bp -= 2; sp--; *sp = bp[0] | (bp[1] << 8); } break; case AFMT_S16_BE: for (bp = ((unsigned char *)ibuf)+2*cnt, i = 0; i < cnt; i++) { bp -= 2; sp--; *sp = bp[1] | (bp[0] << 8); } break; } if (!AFMT_ISSTEREO(ifmt) && AFMT_ISSTEREO(ofmt)) { /* expand from mono to stereo */ for (sp = ((__s16 *)tmp)+scnt, sp2 = ((__s16 *)tmp)+2*scnt, i = 0; i < scnt; i++) { sp--; sp2 -= 2; sp2[0] = sp2[1] = sp[0]; } } if (AFMT_ISSTEREO(ifmt) && !AFMT_ISSTEREO(ofmt)) { /* contract from stereo to mono */ for (sp = sp2 = ((__s16 *)tmp), i = 0; i < scnt; i++, sp++, sp2 += 2) sp[0] = (sp2[0] + sp2[1]) >> 1; } cnt = scnt; if (AFMT_ISSTEREO(ofmt)) cnt <<= 1; sp = ((__s16 *)tmp); bp = ((unsigned char *)obuf); switch (ofmt & ~AFMT_STEREO) { case AFMT_U8: for (i = 0; i < cnt; i++, sp++, bp++) *bp = (*sp >> 8) ^ 0x80; break; case AFMT_S8: for (i = 0; i < cnt; i++, sp++, bp++) *bp = *sp >> 8; break; case AFMT_U16_LE: for (i = 0; i < cnt; i++, sp++, bp += 2) { s = *sp; bp[0] = s; bp[1] = (s >> 8) ^ 0x80; } break; case AFMT_U16_BE: for (i = 0; i < cnt; i++, sp++, bp += 2) { s = *sp; bp[1] = s; bp[0] = (s >> 8) ^ 0x80; } break; case AFMT_S16_LE: for (i = 0; i < cnt; i++, sp++, bp += 2) { s = *sp; bp[0] = s; bp[1] = s >> 8; } break; case AFMT_S16_BE: for (i = 0; i < cnt; i++, sp++, bp += 2) { s = *sp; bp[1] = s; bp[0] = s >> 8; } break; } } static void usbin_convert(struct usbin *u, unsigned char *buffer, unsigned int samples) { union { __s16 s[64]; unsigned char b[0]; } tmp; unsigned int scnt, maxs, ufmtsh, dfmtsh; ufmtsh = AFMT_BYTESSHIFT(u->format); dfmtsh = AFMT_BYTESSHIFT(u->dma.format); maxs = (AFMT_ISSTEREO(u->dma.format | u->format)) ? 32 : 64; while (samples > 0) { scnt = samples; if (scnt > maxs) scnt = maxs; conversion(buffer, u->format, tmp.b, u->dma.format, tmp.b, scnt); dmabuf_copyin(&u->dma, tmp.b, scnt << dfmtsh); buffer += scnt << ufmtsh; samples -= scnt; } } static int usbin_prepare_desc(struct usbin *u, struct urb *urb) { unsigned int i, maxsize, offs; maxsize = (u->freqmax + 0x3fff) >> (14 - AFMT_BYTESSHIFT(u->format)); //printk(KERN_DEBUG "usbin_prepare_desc: maxsize %d freq 0x%x format 0x%x\n", maxsize, u->freqn, u->format); for (i = offs = 0; i < DESCFRAMES; i++, offs += maxsize) { urb->iso_frame_desc[i].length = maxsize; urb->iso_frame_desc[i].offset = offs; } urb->interval = 1; return 0; } /* * return value: 0 if descriptor should be restarted, -1 otherwise * convert sample format on the fly if necessary */ static int usbin_retire_desc(struct usbin *u, struct urb *urb) { unsigned int i, ufmtsh, dfmtsh, err = 0, cnt, scnt, dmafree; unsigned char *cp; ufmtsh = AFMT_BYTESSHIFT(u->format); dfmtsh = AFMT_BYTESSHIFT(u->dma.format); for (i = 0; i < DESCFRAMES; i++) { cp = ((unsigned char *)urb->transfer_buffer) + urb->iso_frame_desc[i].offset; if (urb->iso_frame_desc[i].status) { dprintk((KERN_DEBUG "usbin_retire_desc: frame %u status %d\n", i, urb->iso_frame_desc[i].status)); continue; } scnt = urb->iso_frame_desc[i].actual_length >> ufmtsh; if (!scnt) continue; cnt = scnt << dfmtsh; if (!u->dma.mapped) { dmafree = u->dma.dmasize - u->dma.count; if (cnt > dmafree) { scnt = dmafree >> dfmtsh; cnt = scnt << dfmtsh; err++; } } u->dma.count += cnt; if (u->format == u->dma.format) { /* we do not need format conversion */ dprintk((KERN_DEBUG "usbaudio: no sample format conversion\n")); dmabuf_copyin(&u->dma, cp, cnt); } else { /* we need sampling format conversion */ dprintk((KERN_DEBUG "usbaudio: sample format conversion %x != %x\n", u->format, u->dma.format)); usbin_convert(u, cp, scnt); } } if (err) u->dma.error++; if (u->dma.count >= (signed)u->dma.fragsize) wake_up(&u->dma.wait); return err ? -1 : 0; } static void usbin_completed(struct urb *urb, struct pt_regs *regs) { struct usb_audiodev *as = (struct usb_audiodev *)urb->context; struct usbin *u = &as->usbin; unsigned long flags; unsigned int mask; int suret = 0; #if 0 printk(KERN_DEBUG "usbin_completed: status %d errcnt %d flags 0x%x\n", urb->status, urb->error_count, u->flags); #endif if (urb == u->durb[0].urb) mask = FLG_URB0RUNNING; else if (urb == u->durb[1].urb) mask = FLG_URB1RUNNING; else { mask = 0; printk(KERN_ERR "usbin_completed: panic: unknown URB\n"); } urb->dev = as->state->usbdev; spin_lock_irqsave(&as->lock, flags); if (!usbin_retire_desc(u, urb) && u->flags & FLG_RUNNING && !usbin_prepare_desc(u, urb) && (suret = usb_submit_urb(urb, GFP_ATOMIC)) == 0) { u->flags |= mask; } else { u->flags &= ~(mask | FLG_RUNNING); wake_up(&u->dma.wait); printk(KERN_DEBUG "usbin_completed: descriptor not restarted (usb_submit_urb: %d)\n", suret); } spin_unlock_irqrestore(&as->lock, flags); } /* * we output sync data */ static int usbin_sync_prepare_desc(struct usbin *u, struct urb *urb) { unsigned char *cp = urb->transfer_buffer; unsigned int i, offs; for (i = offs = 0; i < SYNCFRAMES; i++, offs += 3, cp += 3) { urb->iso_frame_desc[i].length = 3; urb->iso_frame_desc[i].offset = offs; cp[0] = u->freqn; cp[1] = u->freqn >> 8; cp[2] = u->freqn >> 16; } urb->interval = 1; return 0; } /* * return value: 0 if descriptor should be restarted, -1 otherwise */ static int usbin_sync_retire_desc(struct usbin *u, struct urb *urb) { unsigned int i; for (i = 0; i < SYNCFRAMES; i++) if (urb->iso_frame_desc[0].status) dprintk((KERN_DEBUG "usbin_sync_retire_desc: frame %u status %d\n", i, urb->iso_frame_desc[i].status)); return 0; } static void usbin_sync_completed(struct urb *urb, struct pt_regs *regs) { struct usb_audiodev *as = (struct usb_audiodev *)urb->context; struct usbin *u = &as->usbin; unsigned long flags; unsigned int mask; int suret = 0; #if 0 printk(KERN_DEBUG "usbin_sync_completed: status %d errcnt %d flags 0x%x\n", urb->status, urb->error_count, u->flags); #endif if (urb == u->surb[0].urb) mask = FLG_SYNC0RUNNING; else if (urb == u->surb[1].urb) mask = FLG_SYNC1RUNNING; else { mask = 0; printk(KERN_ERR "usbin_sync_completed: panic: unknown URB\n"); } urb->dev = as->state->usbdev; spin_lock_irqsave(&as->lock, flags); if (!usbin_sync_retire_desc(u, urb) && u->flags & FLG_RUNNING && !usbin_sync_prepare_desc(u, urb) && (suret = usb_submit_urb(urb, GFP_ATOMIC)) == 0) { u->flags |= mask; } else { u->flags &= ~(mask | FLG_RUNNING); wake_up(&u->dma.wait); dprintk((KERN_DEBUG "usbin_sync_completed: descriptor not restarted (usb_submit_urb: %d)\n", suret)); } spin_unlock_irqrestore(&as->lock, flags); } static int usbin_start(struct usb_audiodev *as) { struct usb_device *dev = as->state->usbdev; struct usbin *u = &as->usbin; struct urb *urb; unsigned long flags; unsigned int maxsze, bufsz; #if 0 printk(KERN_DEBUG "usbin_start: device %d ufmt 0x%08x dfmt 0x%08x srate %d\n", dev->devnum, u->format, u->dma.format, u->dma.srate); #endif /* allocate USB storage if not already done */ spin_lock_irqsave(&as->lock, flags); if (!(u->flags & FLG_CONNECTED)) { spin_unlock_irqrestore(&as->lock, flags); return -EIO; } if (!(u->flags & FLG_RUNNING)) { spin_unlock_irqrestore(&as->lock, flags); u->freqn = ((u->dma.srate << 11) + 62) / 125; /* this will overflow at approx 2MSPS */ u->freqmax = u->freqn + (u->freqn >> 2); u->phase = 0; maxsze = (u->freqmax + 0x3fff) >> (14 - AFMT_BYTESSHIFT(u->format)); bufsz = DESCFRAMES * maxsze; kfree(u->durb[0].urb->transfer_buffer); u->durb[0].urb->transfer_buffer = kmalloc(bufsz, GFP_KERNEL); u->durb[0].urb->transfer_buffer_length = bufsz; kfree(u->durb[1].urb->transfer_buffer); u->durb[1].urb->transfer_buffer = kmalloc(bufsz, GFP_KERNEL); u->durb[1].urb->transfer_buffer_length = bufsz; if (u->syncpipe) { kfree(u->surb[0].urb->transfer_buffer); u->surb[0].urb->transfer_buffer = kmalloc(3*SYNCFRAMES, GFP_KERNEL); u->surb[0].urb->transfer_buffer_length = 3*SYNCFRAMES; kfree(u->surb[1].urb->transfer_buffer); u->surb[1].urb->transfer_buffer = kmalloc(3*SYNCFRAMES, GFP_KERNEL); u->surb[1].urb->transfer_buffer_length = 3*SYNCFRAMES; } if (!u->durb[0].urb->transfer_buffer || !u->durb[1].urb->transfer_buffer || (u->syncpipe && (!u->surb[0].urb->transfer_buffer || !u->surb[1].urb->transfer_buffer))) { printk(KERN_ERR "usbaudio: cannot start playback device %d\n", dev->devnum); return 0; } spin_lock_irqsave(&as->lock, flags); } if (u->dma.count >= u->dma.dmasize && !u->dma.mapped) { spin_unlock_irqrestore(&as->lock, flags); return 0; } u->flags |= FLG_RUNNING; if (!(u->flags & FLG_URB0RUNNING)) { urb = u->durb[0].urb; urb->dev = dev; urb->pipe = u->datapipe; urb->transfer_flags = URB_ISO_ASAP; urb->number_of_packets = DESCFRAMES; urb->context = as; urb->complete = usbin_completed; if (!usbin_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_KERNEL)) u->flags |= FLG_URB0RUNNING; else u->flags &= ~FLG_RUNNING; } if (u->flags & FLG_RUNNING && !(u->flags & FLG_URB1RUNNING)) { urb = u->durb[1].urb; urb->dev = dev; urb->pipe = u->datapipe; urb->transfer_flags = URB_ISO_ASAP; urb->number_of_packets = DESCFRAMES; urb->context = as; urb->complete = usbin_completed; if (!usbin_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_KERNEL)) u->flags |= FLG_URB1RUNNING; else u->flags &= ~FLG_RUNNING; } if (u->syncpipe) { if (u->flags & FLG_RUNNING && !(u->flags & FLG_SYNC0RUNNING)) { urb = u->surb[0].urb; urb->dev = dev; urb->pipe = u->syncpipe; urb->transfer_flags = URB_ISO_ASAP; urb->number_of_packets = SYNCFRAMES; urb->context = as; urb->complete = usbin_sync_completed; /* stride: u->syncinterval */ if (!usbin_sync_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_KERNEL)) u->flags |= FLG_SYNC0RUNNING; else u->flags &= ~FLG_RUNNING; } if (u->flags & FLG_RUNNING && !(u->flags & FLG_SYNC1RUNNING)) { urb = u->surb[1].urb; urb->dev = dev; urb->pipe = u->syncpipe; urb->transfer_flags = URB_ISO_ASAP; urb->number_of_packets = SYNCFRAMES; urb->context = as; urb->complete = usbin_sync_completed; /* stride: u->syncinterval */ if (!usbin_sync_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_KERNEL)) u->flags |= FLG_SYNC1RUNNING; else u->flags &= ~FLG_RUNNING; } } spin_unlock_irqrestore(&as->lock, flags); return 0; } static void usbout_stop(struct usb_audiodev *as) { struct usbout *u = &as->usbout; unsigned long flags; unsigned int i, notkilled = 1; spin_lock_irqsave(&as->lock, flags); u->flags &= ~FLG_RUNNING; i = u->flags; spin_unlock_irqrestore(&as->lock, flags); while (i & (FLG_URB0RUNNING|FLG_URB1RUNNING|FLG_SYNC0RUNNING|FLG_SYNC1RUNNING)) { set_current_state(notkilled ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE); schedule_timeout(1); spin_lock_irqsave(&as->lock, flags); i = u->flags; spin_unlock_irqrestore(&as->lock, flags); if (notkilled && signal_pending(current)) { if (i & FLG_URB0RUNNING) usb_kill_urb(u->durb[0].urb); if (i & FLG_URB1RUNNING) usb_kill_urb(u->durb[1].urb); if (i & FLG_SYNC0RUNNING) usb_kill_urb(u->surb[0].urb); if (i & FLG_SYNC1RUNNING) usb_kill_urb(u->surb[1].urb); notkilled = 0; } } set_current_state(TASK_RUNNING); kfree(u->durb[0].urb->transfer_buffer); kfree(u->durb[1].urb->transfer_buffer); kfree(u->surb[0].urb->transfer_buffer); kfree(u->surb[1].urb->transfer_buffer); u->durb[0].urb->transfer_buffer = u->durb[1].urb->transfer_buffer = u->surb[0].urb->transfer_buffer = u->surb[1].urb->transfer_buffer = NULL; } static inline void usbout_release(struct usb_audiodev *as) { usbout_stop(as); } static void usbout_disc(struct usb_audiodev *as) { struct usbout *u = &as->usbout; unsigned long flags; spin_lock_irqsave(&as->lock, flags); u->flags &= ~(FLG_RUNNING | FLG_CONNECTED); spin_unlock_irqrestore(&as->lock, flags); usbout_stop(as); } static void usbout_convert(struct usbout *u, unsigned char *buffer, unsigned int samples) { union { __s16 s[64]; unsigned char b[0]; } tmp; unsigned int scnt, maxs, ufmtsh, dfmtsh; ufmtsh = AFMT_BYTESSHIFT(u->format); dfmtsh = AFMT_BYTESSHIFT(u->dma.format); maxs = (AFMT_ISSTEREO(u->dma.format | u->format)) ? 32 : 64; while (samples > 0) { scnt = samples; if (scnt > maxs) scnt = maxs; dmabuf_copyout(&u->dma, tmp.b, scnt << dfmtsh); conversion(tmp.b, u->dma.format, buffer, u->format, tmp.b, scnt); buffer += scnt << ufmtsh; samples -= scnt; } } static int usbout_prepare_desc(struct usbout *u, struct urb *urb) { unsigned int i, ufmtsh, dfmtsh, err = 0, cnt, scnt, offs; unsigned char *cp = urb->transfer_buffer; ufmtsh = AFMT_BYTESSHIFT(u->format); dfmtsh = AFMT_BYTESSHIFT(u->dma.format); for (i = offs = 0; i < DESCFRAMES; i++) { urb->iso_frame_desc[i].offset = offs; u->phase = (u->phase & 0x3fff) + u->freqm; scnt = u->phase >> 14; if (!scnt) { urb->iso_frame_desc[i].length = 0; continue; } cnt = scnt << dfmtsh; if (!u->dma.mapped) { if (cnt > u->dma.count) { scnt = u->dma.count >> dfmtsh; cnt = scnt << dfmtsh; err++; } u->dma.count -= cnt; } else u->dma.count += cnt; if (u->format == u->dma.format) { /* we do not need format conversion */ dmabuf_copyout(&u->dma, cp, cnt); } else { /* we need sampling format conversion */ usbout_convert(u, cp, scnt); } cnt = scnt << ufmtsh; urb->iso_frame_desc[i].length = cnt; offs += cnt; cp += cnt; } urb->interval = 1; if (err) u->dma.error++; if (u->dma.mapped) { if (u->dma.count >= (signed)u->dma.fragsize) wake_up(&u->dma.wait); } else { if ((signed)u->dma.dmasize >= u->dma.count + (signed)u->dma.fragsize) wake_up(&u->dma.wait); } return err ? -1 : 0; } /* * return value: 0 if descriptor should be restarted, -1 otherwise */ static int usbout_retire_desc(struct usbout *u, struct urb *urb) { unsigned int i; for (i = 0; i < DESCFRAMES; i++) { if (urb->iso_frame_desc[i].status) { dprintk((KERN_DEBUG "usbout_retire_desc: frame %u status %d\n", i, urb->iso_frame_desc[i].status)); continue; } } return 0; } static void usbout_completed(struct urb *urb, struct pt_regs *regs) { struct usb_audiodev *as = (struct usb_audiodev *)urb->context; struct usbout *u = &as->usbout; unsigned long flags; unsigned int mask; int suret = 0; #if 0 printk(KERN_DEBUG "usbout_completed: status %d errcnt %d flags 0x%x\n", urb->status, urb->error_count, u->flags); #endif if (urb == u->durb[0].urb) mask = FLG_URB0RUNNING; else if (urb == u->durb[1].urb) mask = FLG_URB1RUNNING; else { mask = 0; printk(KERN_ERR "usbout_completed: panic: unknown URB\n"); } urb->dev = as->state->usbdev; spin_lock_irqsave(&as->lock, flags); if (!usbout_retire_desc(u, urb) && u->flags & FLG_RUNNING && !usbout_prepare_desc(u, urb) && (suret = usb_submit_urb(urb, GFP_ATOMIC)) == 0) { u->flags |= mask; } else { u->flags &= ~(mask | FLG_RUNNING); wake_up(&u->dma.wait); dprintk((KERN_DEBUG "usbout_completed: descriptor not restarted (usb_submit_urb: %d)\n", suret)); } spin_unlock_irqrestore(&as->lock, flags); } static int usbout_sync_prepare_desc(struct usbout *u, struct urb *urb) { unsigned int i, offs; for (i = offs = 0; i < SYNCFRAMES; i++, offs += 3) { urb->iso_frame_desc[i].length = 3; urb->iso_frame_desc[i].offset = offs; } urb->interval = 1; return 0; } /* * return value: 0 if descriptor should be restarted, -1 otherwise */ static int usbout_sync_retire_desc(struct usbout *u, struct urb *urb) { unsigned char *cp = urb->transfer_buffer; unsigned int f, i; for (i = 0; i < SYNCFRAMES; i++, cp += 3) { if (urb->iso_frame_desc[i].status) { dprintk((KERN_DEBUG "usbout_sync_retire_desc: frame %u status %d\n", i, urb->iso_frame_desc[i].status)); continue; } if (urb->iso_frame_desc[i].actual_length < 3) { dprintk((KERN_DEBUG "usbout_sync_retire_desc: frame %u length %d\n", i, urb->iso_frame_desc[i].actual_length)); continue; } f = cp[0] | (cp[1] << 8) | (cp[2] << 16); if (abs(f - u->freqn) > (u->freqn >> 3) || f > u->freqmax) { printk(KERN_WARNING "usbout_sync_retire_desc: requested frequency %u (nominal %u) out of range!\n", f, u->freqn); continue; } u->freqm = f; } return 0; } static void usbout_sync_completed(struct urb *urb, struct pt_regs *regs) { struct usb_audiodev *as = (struct usb_audiodev *)urb->context; struct usbout *u = &as->usbout; unsigned long flags; unsigned int mask; int suret = 0; #if 0 printk(KERN_DEBUG "usbout_sync_completed: status %d errcnt %d flags 0x%x\n", urb->status, urb->error_count, u->flags); #endif if (urb == u->surb[0].urb) mask = FLG_SYNC0RUNNING; else if (urb == u->surb[1].urb) mask = FLG_SYNC1RUNNING; else { mask = 0; printk(KERN_ERR "usbout_sync_completed: panic: unknown URB\n"); } urb->dev = as->state->usbdev; spin_lock_irqsave(&as->lock, flags); if (!usbout_sync_retire_desc(u, urb) && u->flags & FLG_RUNNING && !usbout_sync_prepare_desc(u, urb) && (suret = usb_submit_urb(urb, GFP_ATOMIC)) == 0) { u->flags |= mask; } else { u->flags &= ~(mask | FLG_RUNNING); wake_up(&u->dma.wait); dprintk((KERN_DEBUG "usbout_sync_completed: descriptor not restarted (usb_submit_urb: %d)\n", suret)); } spin_unlock_irqrestore(&as->lock, flags); } static int usbout_start(struct usb_audiodev *as) { struct usb_device *dev = as->state->usbdev; struct usbout *u = &as->usbout; struct urb *urb; unsigned long flags; unsigned int maxsze, bufsz; #if 0 printk(KERN_DEBUG "usbout_start: device %d ufmt 0x%08x dfmt 0x%08x srate %d\n", dev->devnum, u->format, u->dma.format, u->dma.srate); #endif /* allocate USB storage if not already done */ spin_lock_irqsave(&as->lock, flags); if (!(u->flags & FLG_CONNECTED)) { spin_unlock_irqrestore(&as->lock, flags); return -EIO; } if (!(u->flags & FLG_RUNNING)) { spin_unlock_irqrestore(&as->lock, flags); u->freqn = u->freqm = ((u->dma.srate << 11) + 62) / 125; /* this will overflow at approx 2MSPS */ u->freqmax = u->freqn + (u->freqn >> 2); u->phase = 0; maxsze = (u->freqmax + 0x3fff) >> (14 - AFMT_BYTESSHIFT(u->format)); bufsz = DESCFRAMES * maxsze; kfree(u->durb[0].urb->transfer_buffer); u->durb[0].urb->transfer_buffer = kmalloc(bufsz, GFP_KERNEL); u->durb[0].urb->transfer_buffer_length = bufsz; kfree(u->durb[1].urb->transfer_buffer); u->durb[1].urb->transfer_buffer = kmalloc(bufsz, GFP_KERNEL); u->durb[1].urb->transfer_buffer_length = bufsz; if (u->syncpipe) { kfree(u->surb[0].urb->transfer_buffer); u->surb[0].urb->transfer_buffer = kmalloc(3*SYNCFRAMES, GFP_KERNEL); u->surb[0].urb->transfer_buffer_length = 3*SYNCFRAMES; kfree(u->surb[1].urb->transfer_buffer); u->surb[1].urb->transfer_buffer = kmalloc(3*SYNCFRAMES, GFP_KERNEL); u->surb[1].urb->transfer_buffer_length = 3*SYNCFRAMES; } if (!u->durb[0].urb->transfer_buffer || !u->durb[1].urb->transfer_buffer || (u->syncpipe && (!u->surb[0].urb->transfer_buffer || !u->surb[1].urb->transfer_buffer))) { printk(KERN_ERR "usbaudio: cannot start playback device %d\n", dev->devnum); return 0; } spin_lock_irqsave(&as->lock, flags); } if (u->dma.count <= 0 && !u->dma.mapped) { spin_unlock_irqrestore(&as->lock, flags); return 0; } u->flags |= FLG_RUNNING; if (!(u->flags & FLG_URB0RUNNING)) { urb = u->durb[0].urb; urb->dev = dev; urb->pipe = u->datapipe; urb->transfer_flags = URB_ISO_ASAP; urb->number_of_packets = DESCFRAMES; urb->context = as; urb->complete = usbout_completed; if (!usbout_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_ATOMIC)) u->flags |= FLG_URB0RUNNING; else u->flags &= ~FLG_RUNNING; } if (u->flags & FLG_RUNNING && !(u->flags & FLG_URB1RUNNING)) { urb = u->durb[1].urb; urb->dev = dev; urb->pipe = u->datapipe; urb->transfer_flags = URB_ISO_ASAP; urb->number_of_packets = DESCFRAMES; urb->context = as; urb->complete = usbout_completed; if (!usbout_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_ATOMIC)) u->flags |= FLG_URB1RUNNING; else u->flags &= ~FLG_RUNNING; } if (u->syncpipe) { if (u->flags & FLG_RUNNING && !(u->flags & FLG_SYNC0RUNNING)) { urb = u->surb[0].urb; urb->dev = dev; urb->pipe = u->syncpipe; urb->transfer_flags = URB_ISO_ASAP; urb->number_of_packets = SYNCFRAMES; urb->context = as; urb->complete = usbout_sync_completed; /* stride: u->syncinterval */ if (!usbout_sync_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_ATOMIC)) u->flags |= FLG_SYNC0RUNNING; else u->flags &= ~FLG_RUNNING; } if (u->flags & FLG_RUNNING && !(u->flags & FLG_SYNC1RUNNING)) { urb = u->surb[1].urb; urb->dev = dev; urb->pipe = u->syncpipe; urb->transfer_flags = URB_ISO_ASAP; urb->number_of_packets = SYNCFRAMES; urb->context = as; urb->complete = usbout_sync_completed; /* stride: u->syncinterval */ if (!usbout_sync_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_ATOMIC)) u->flags |= FLG_SYNC1RUNNING; else u->flags &= ~FLG_RUNNING; } } spin_unlock_irqrestore(&as->lock, flags); return 0; } /* --------------------------------------------------------------------- */ static unsigned int format_goodness(struct audioformat *afp, unsigned int fmt, unsigned int srate) { unsigned int g = 0; if (srate < afp->sratelo) g += afp->sratelo - srate; if (srate > afp->sratehi) g += srate - afp->sratehi; if (AFMT_ISSTEREO(afp->format) && !AFMT_ISSTEREO(fmt)) g += 0x100000; if (!AFMT_ISSTEREO(afp->format) && AFMT_ISSTEREO(fmt)) g += 0x400000; if (AFMT_IS16BIT(afp->format) && !AFMT_IS16BIT(fmt)) g += 0x100000; if (!AFMT_IS16BIT(afp->format) && AFMT_IS16BIT(fmt)) g += 0x400000; return g; } static int find_format(struct audioformat *afp, unsigned int nr, unsigned int fmt, unsigned int srate) { unsigned int i, g, gb = ~0; int j = -1; /* default to failure */ /* find "best" format (according to format_goodness) */ for (i = 0; i < nr; i++) { g = format_goodness(&afp[i], fmt, srate); if (g >= gb) continue; j = i; gb = g; } return j; } static int set_format_in(struct usb_audiodev *as) { struct usb_device *dev = as->state->usbdev; struct usb_host_interface *alts; struct usb_interface *iface; struct usbin *u = &as->usbin; struct dmabuf *d = &u->dma; struct audioformat *fmt; unsigned int ep; unsigned char data[3]; int fmtnr, ret; iface = usb_ifnum_to_if(dev, u->interface); if (!iface) return 0; fmtnr = find_format(as->fmtin, as->numfmtin, d->format, d->srate); if (fmtnr < 0) { printk(KERN_ERR "usbaudio: set_format_in(): failed to find desired format/speed combination.\n"); return -1; } fmt = as->fmtin + fmtnr; alts = usb_altnum_to_altsetting(iface, fmt->altsetting); u->format = fmt->format; u->datapipe = usb_rcvisocpipe(dev, alts->endpoint[0].desc.bEndpointAddress & 0xf); u->syncpipe = u->syncinterval = 0; if ((alts->endpoint[0].desc.bmAttributes & 0x0c) == 0x08) { if (alts->desc.bNumEndpoints < 2 || alts->endpoint[1].desc.bmAttributes != 0x01 || alts->endpoint[1].desc.bSynchAddress != 0 || alts->endpoint[1].desc.bEndpointAddress != (alts->endpoint[0].desc.bSynchAddress & 0x7f)) { printk(KERN_WARNING "usbaudio: device %d interface %d altsetting %d claims adaptive in " "but has invalid synch pipe; treating as asynchronous in\n", dev->devnum, u->interface, fmt->altsetting); } else { u->syncpipe = usb_sndisocpipe(dev, alts->endpoint[1].desc.bEndpointAddress & 0xf); u->syncinterval = alts->endpoint[1].desc.bRefresh; } } if (d->srate < fmt->sratelo) d->srate = fmt->sratelo; if (d->srate > fmt->sratehi) d->srate = fmt->sratehi; dprintk((KERN_DEBUG "usbaudio: set_format_in: usb_set_interface %u %u\n", u->interface, fmt->altsetting)); if (usb_set_interface(dev, alts->desc.bInterfaceNumber, fmt->altsetting) < 0) { printk(KERN_WARNING "usbaudio: usb_set_interface failed, device %d interface %d altsetting %d\n", dev->devnum, u->interface, fmt->altsetting); return -1; } if (fmt->sratelo == fmt->sratehi) return 0; ep = usb_pipeendpoint(u->datapipe) | (u->datapipe & USB_DIR_IN); /* if endpoint has pitch control, enable it */ if (fmt->attributes & 0x02) { data[0] = 1; if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_TYPE_CLASS|USB_RECIP_ENDPOINT|USB_DIR_OUT, PITCH_CONTROL << 8, ep, data, 1, 1000)) < 0) { printk(KERN_ERR "usbaudio: failure (error %d) to set output pitch control device %d interface %u endpoint 0x%x to %u\n", ret, dev->devnum, u->interface, ep, d->srate); return -1; } } /* if endpoint has sampling rate control, set it */ if (fmt->attributes & 0x01) { data[0] = d->srate; data[1] = d->srate >> 8; data[2] = d->srate >> 16; if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_TYPE_CLASS|USB_RECIP_ENDPOINT|USB_DIR_OUT, SAMPLING_FREQ_CONTROL << 8, ep, data, 3, 1000)) < 0) { printk(KERN_ERR "usbaudio: failure (error %d) to set input sampling frequency device %d interface %u endpoint 0x%x to %u\n", ret, dev->devnum, u->interface, ep, d->srate); return -1; } if ((ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_TYPE_CLASS|USB_RECIP_ENDPOINT|USB_DIR_IN, SAMPLING_FREQ_CONTROL << 8, ep, data, 3, 1000)) < 0) { printk(KERN_ERR "usbaudio: failure (error %d) to get input sampling frequency device %d interface %u endpoint 0x%x\n", ret, dev->devnum, u->interface, ep); return -1; } dprintk((KERN_DEBUG "usbaudio: set_format_in: device %d interface %d altsetting %d srate req: %u real %u\n", dev->devnum, u->interface, fmt->altsetting, d->srate, data[0] | (data[1] << 8) | (data[2] << 16))); d->srate = data[0] | (data[1] << 8) | (data[2] << 16); } dprintk((KERN_DEBUG "usbaudio: set_format_in: USB format 0x%x, DMA format 0x%x srate %u\n", u->format, d->format, d->srate)); return 0; } static int set_format_out(struct usb_audiodev *as) { struct usb_device *dev = as->state->usbdev; struct usb_host_interface *alts; struct usb_interface *iface; struct usbout *u = &as->usbout; struct dmabuf *d = &u->dma; struct audioformat *fmt; unsigned int ep; unsigned char data[3]; int fmtnr, ret; iface = usb_ifnum_to_if(dev, u->interface); if (!iface) return 0; fmtnr = find_format(as->fmtout, as->numfmtout, d->format, d->srate); if (fmtnr < 0) { printk(KERN_ERR "usbaudio: set_format_out(): failed to find desired format/speed combination.\n"); return -1; } fmt = as->fmtout + fmtnr; u->format = fmt->format; alts = usb_altnum_to_altsetting(iface, fmt->altsetting); u->datapipe = usb_sndisocpipe(dev, alts->endpoint[0].desc.bEndpointAddress & 0xf); u->syncpipe = u->syncinterval = 0; if ((alts->endpoint[0].desc.bmAttributes & 0x0c) == 0x04) { #if 0 printk(KERN_DEBUG "bNumEndpoints 0x%02x endpoint[1].bmAttributes 0x%02x\n" KERN_DEBUG "endpoint[1].bSynchAddress 0x%02x endpoint[1].bEndpointAddress 0x%02x\n" KERN_DEBUG "endpoint[0].bSynchAddress 0x%02x\n", alts->bNumEndpoints, alts->endpoint[1].bmAttributes, alts->endpoint[1].bSynchAddress, alts->endpoint[1].bEndpointAddress, alts->endpoint[0].bSynchAddress); #endif if (alts->desc.bNumEndpoints < 2 || alts->endpoint[1].desc.bmAttributes != 0x01 || alts->endpoint[1].desc.bSynchAddress != 0 || alts->endpoint[1].desc.bEndpointAddress != (alts->endpoint[0].desc.bSynchAddress | 0x80)) { printk(KERN_WARNING "usbaudio: device %d interface %d altsetting %d claims asynch out " "but has invalid synch pipe; treating as adaptive out\n", dev->devnum, u->interface, fmt->altsetting); } else { u->syncpipe = usb_rcvisocpipe(dev, alts->endpoint[1].desc.bEndpointAddress & 0xf); u->syncinterval = alts->endpoint[1].desc.bRefresh; } } if (d->srate < fmt->sratelo) d->srate = fmt->sratelo; if (d->srate > fmt->sratehi) d->srate = fmt->sratehi; dprintk((KERN_DEBUG "usbaudio: set_format_out: usb_set_interface %u %u\n", u->interface, fmt->altsetting)); if (usb_set_interface(dev, u->interface, fmt->altsetting) < 0) { printk(KERN_WARNING "usbaudio: usb_set_interface failed, device %d interface %d altsetting %d\n", dev->devnum, u->interface, fmt->altsetting); return -1; } if (fmt->sratelo == fmt->sratehi) return 0; ep = usb_pipeendpoint(u->datapipe) | (u->datapipe & USB_DIR_IN); /* if endpoint has pitch control, enable it */ if (fmt->attributes & 0x02) { data[0] = 1; if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_TYPE_CLASS|USB_RECIP_ENDPOINT|USB_DIR_OUT, PITCH_CONTROL << 8, ep, data, 1, 1000)) < 0) { printk(KERN_ERR "usbaudio: failure (error %d) to set output pitch control device %d interface %u endpoint 0x%x to %u\n", ret, dev->devnum, u->interface, ep, d->srate); return -1; } } /* if endpoint has sampling rate control, set it */ if (fmt->attributes & 0x01) { data[0] = d->srate; data[1] = d->srate >> 8; data[2] = d->srate >> 16; if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_TYPE_CLASS|USB_RECIP_ENDPOINT|USB_DIR_OUT, SAMPLING_FREQ_CONTROL << 8, ep, data, 3, 1000)) < 0) { printk(KERN_ERR "usbaudio: failure (error %d) to set output sampling frequency device %d interface %u endpoint 0x%x to %u\n", ret, dev->devnum, u->interface, ep, d->srate); return -1; } if ((ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_TYPE_CLASS|USB_RECIP_ENDPOINT|USB_DIR_IN, SAMPLING_FREQ_CONTROL << 8, ep, data, 3, 1000)) < 0) { printk(KERN_ERR "usbaudio: failure (error %d) to get output sampling frequency device %d interface %u endpoint 0x%x\n", ret, dev->devnum, u->interface, ep); return -1; } dprintk((KERN_DEBUG "usbaudio: set_format_out: device %d interface %d altsetting %d srate req: %u real %u\n", dev->devnum, u->interface, fmt->altsetting, d->srate, data[0] | (data[1] << 8) | (data[2] << 16))); d->srate = data[0] | (data[1] << 8) | (data[2] << 16); } dprintk((KERN_DEBUG "usbaudio: set_format_out: USB format 0x%x, DMA format 0x%x srate %u\n", u->format, d->format, d->srate)); return 0; } static int set_format(struct usb_audiodev *s, unsigned int fmode, unsigned int fmt, unsigned int srate) { int ret1 = 0, ret2 = 0; if (!(fmode & (FMODE_READ|FMODE_WRITE))) return -EINVAL; if (fmode & FMODE_READ) { usbin_stop(s); s->usbin.dma.ready = 0; if (fmt == AFMT_QUERY) fmt = s->usbin.dma.format; else s->usbin.dma.format = fmt; if (!srate) srate = s->usbin.dma.srate; else s->usbin.dma.srate = srate; } if (fmode & FMODE_WRITE) { usbout_stop(s); s->usbout.dma.ready = 0; if (fmt == AFMT_QUERY) fmt = s->usbout.dma.format; else s->usbout.dma.format = fmt; if (!srate) srate = s->usbout.dma.srate; else s->usbout.dma.srate = srate; } if (fmode & FMODE_READ) ret1 = set_format_in(s); if (fmode & FMODE_WRITE) ret2 = set_format_out(s); return ret1 ? ret1 : ret2; } /* --------------------------------------------------------------------- */ static int wrmixer(struct usb_mixerdev *ms, unsigned mixch, unsigned value) { struct usb_device *dev = ms->state->usbdev; unsigned char data[2]; struct mixerchannel *ch; int v1, v2, v3; if (mixch >= ms->numch) return -1; ch = &ms->ch[mixch]; v3 = ch->maxval - ch->minval; v1 = value & 0xff; v2 = (value >> 8) & 0xff; if (v1 > 100) v1 = 100; if (v2 > 100) v2 = 100; if (!(ch->flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT))) v2 = v1; ch->value = v1 | (v2 << 8); v1 = (v1 * v3) / 100 + ch->minval; v2 = (v2 * v3) / 100 + ch->minval; switch (ch->selector) { case 0: /* mixer unit request */ data[0] = v1; data[1] = v1 >> 8; if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT, (ch->chnum << 8) | 1, ms->iface | (ch->unitid << 8), data, 2, 1000) < 0) goto err; if (!(ch->flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT))) return 0; data[0] = v2; data[1] = v2 >> 8; if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT, ((ch->chnum + !!(ch->flags & MIXFLG_STEREOIN)) << 8) | (1 + !!(ch->flags & MIXFLG_STEREOOUT)), ms->iface | (ch->unitid << 8), data, 2, 1000) < 0) goto err; return 0; /* various feature unit controls */ case VOLUME_CONTROL: data[0] = v1; data[1] = v1 >> 8; if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT, (ch->selector << 8) | ch->chnum, ms->iface | (ch->unitid << 8), data, 2, 1000) < 0) goto err; if (!(ch->flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT))) return 0; data[0] = v2; data[1] = v2 >> 8; if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT, (ch->selector << 8) | (ch->chnum + 1), ms->iface | (ch->unitid << 8), data, 2, 1000) < 0) goto err; return 0; case BASS_CONTROL: case MID_CONTROL: case TREBLE_CONTROL: data[0] = v1 >> 8; if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT, (ch->selector << 8) | ch->chnum, ms->iface | (ch->unitid << 8), data, 1, 1000) < 0) goto err; if (!(ch->flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT))) return 0; data[0] = v2 >> 8; if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT, (ch->selector << 8) | (ch->chnum + 1), ms->iface | (ch->unitid << 8), data, 1, 1000) < 0) goto err; return 0; default: return -1; } return 0; err: printk(KERN_ERR "usbaudio: mixer request device %u if %u unit %u ch %u selector %u failed\n", dev->devnum, ms->iface, ch->unitid, ch->chnum, ch->selector); return -1; } static int get_rec_src(struct usb_mixerdev *ms) { struct usb_device *dev = ms->state->usbdev; unsigned int mask = 0, retmask = 0; unsigned int i, j; unsigned char buf; int err = 0; for (i = 0; i < ms->numch; i++) { if (!ms->ch[i].slctunitid || (mask & (1 << i))) continue; if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN, 0, ms->iface | (ms->ch[i].slctunitid << 8), &buf, 1, 1000) < 0) { err = -EIO; printk(KERN_ERR "usbaudio: selector read request device %u if %u unit %u failed\n", dev->devnum, ms->iface, ms->ch[i].slctunitid & 0xff); continue; } for (j = i; j < ms->numch; j++) { if ((ms->ch[i].slctunitid ^ ms->ch[j].slctunitid) & 0xff) continue; mask |= 1 << j; if (buf == (ms->ch[j].slctunitid >> 8)) retmask |= 1 << ms->ch[j].osschannel; } } if (err) return -EIO; return retmask; } static int set_rec_src(struct usb_mixerdev *ms, int srcmask) { struct usb_device *dev = ms->state->usbdev; unsigned int mask = 0, smask, bmask; unsigned int i, j; unsigned char buf; int err = 0; for (i = 0; i < ms->numch; i++) { if (!ms->ch[i].slctunitid || (mask & (1 << i))) continue; if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN, 0, ms->iface | (ms->ch[i].slctunitid << 8), &buf, 1, 1000) < 0) { err = -EIO; printk(KERN_ERR "usbaudio: selector read request device %u if %u unit %u failed\n", dev->devnum, ms->iface, ms->ch[i].slctunitid & 0xff); continue; } /* first generate smask */ smask = bmask = 0; for (j = i; j < ms->numch; j++) { if ((ms->ch[i].slctunitid ^ ms->ch[j].slctunitid) & 0xff) continue; smask |= 1 << ms->ch[j].osschannel; if (buf == (ms->ch[j].slctunitid >> 8)) bmask |= 1 << ms->ch[j].osschannel; mask |= 1 << j; } /* check for multiple set sources */ j = hweight32(srcmask & smask); if (j == 0) continue; if (j > 1) srcmask &= ~bmask; for (j = i; j < ms->numch; j++) { if ((ms->ch[i].slctunitid ^ ms->ch[j].slctunitid) & 0xff) continue; if (!(srcmask & (1 << ms->ch[j].osschannel))) continue; buf = ms->ch[j].slctunitid >> 8; if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT, 0, ms->iface | (ms->ch[j].slctunitid << 8), &buf, 1, 1000) < 0) { err = -EIO; printk(KERN_ERR "usbaudio: selector write request device %u if %u unit %u failed\n", dev->devnum, ms->iface, ms->ch[j].slctunitid & 0xff); continue; } } } return err ? -EIO : 0; } /* --------------------------------------------------------------------- */ /* * should be called with open_sem hold, so that no new processes * look at the audio device to be destroyed */ static void release(struct usb_audio_state *s) { struct usb_audiodev *as; struct usb_mixerdev *ms; s->count--; if (s->count) { up(&open_sem); return; } up(&open_sem); wake_up(&open_wait); while (!list_empty(&s->audiolist)) { as = list_entry(s->audiolist.next, struct usb_audiodev, list); list_del(&as->list); usbin_release(as); usbout_release(as); dmabuf_release(&as->usbin.dma); dmabuf_release(&as->usbout.dma); usb_free_urb(as->usbin.durb[0].urb); usb_free_urb(as->usbin.durb[1].urb); usb_free_urb(as->usbin.surb[0].urb); usb_free_urb(as->usbin.surb[1].urb); usb_free_urb(as->usbout.durb[0].urb); usb_free_urb(as->usbout.durb[1].urb); usb_free_urb(as->usbout.surb[0].urb); usb_free_urb(as->usbout.surb[1].urb); kfree(as); } while (!list_empty(&s->mixerlist)) { ms = list_entry(s->mixerlist.next, struct usb_mixerdev, list); list_del(&ms->list); kfree(ms); } kfree(s); } static inline int prog_dmabuf_in(struct usb_audiodev *as) { usbin_stop(as); return dmabuf_init(&as->usbin.dma); } static inline int prog_dmabuf_out(struct usb_audiodev *as) { usbout_stop(as); return dmabuf_init(&as->usbout.dma); } /* --------------------------------------------------------------------- */ static int usb_audio_open_mixdev(struct inode *inode, struct file *file) { unsigned int minor = iminor(inode); struct usb_mixerdev *ms; struct usb_audio_state *s; down(&open_sem); list_for_each_entry(s, &audiodevs, audiodev) { list_for_each_entry(ms, &s->mixerlist, list) { if (ms->dev_mixer == minor) goto mixer_found; } } up(&open_sem); return -ENODEV; mixer_found: if (!s->usbdev) { up(&open_sem); return -EIO; } file->private_data = ms; s->count++; up(&open_sem); return nonseekable_open(inode, file); } static int usb_audio_release_mixdev(struct inode *inode, struct file *file) { struct usb_mixerdev *ms = (struct usb_mixerdev *)file->private_data; struct usb_audio_state *s; lock_kernel(); s = ms->state; down(&open_sem); release(s); unlock_kernel(); return 0; } static int usb_audio_ioctl_mixdev(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { struct usb_mixerdev *ms = (struct usb_mixerdev *)file->private_data; int i, j, val; int __user *user_arg = (int __user *)arg; if (!ms->state->usbdev) return -ENODEV; if (cmd == SOUND_MIXER_INFO) { mixer_info info; memset(&info, 0, sizeof(info)); strncpy(info.id, "USB_AUDIO", sizeof(info.id)); strncpy(info.name, "USB Audio Class Driver", sizeof(info.name)); info.modify_counter = ms->modcnt; if (copy_to_user((void __user *)arg, &info, sizeof(info))) return -EFAULT; return 0; } if (cmd == SOUND_OLD_MIXER_INFO) { _old_mixer_info info; memset(&info, 0, sizeof(info)); strncpy(info.id, "USB_AUDIO", sizeof(info.id)); strncpy(info.name, "USB Audio Class Driver", sizeof(info.name)); if (copy_to_user((void __user *)arg, &info, sizeof(info))) return -EFAULT; return 0; } if (cmd == OSS_GETVERSION) return put_user(SOUND_VERSION, user_arg); if (_IOC_TYPE(cmd) != 'M' || _IOC_SIZE(cmd) != sizeof(int)) return -EINVAL; if (_IOC_DIR(cmd) == _IOC_READ) { switch (_IOC_NR(cmd)) { case SOUND_MIXER_RECSRC: /* Arg contains a bit for each recording source */ val = get_rec_src(ms); if (val < 0) return val; return put_user(val, user_arg); case SOUND_MIXER_DEVMASK: /* Arg contains a bit for each supported device */ for (val = i = 0; i < ms->numch; i++) val |= 1 << ms->ch[i].osschannel; return put_user(val, user_arg); case SOUND_MIXER_RECMASK: /* Arg contains a bit for each supported recording source */ for (val = i = 0; i < ms->numch; i++) if (ms->ch[i].slctunitid) val |= 1 << ms->ch[i].osschannel; return put_user(val, user_arg); case SOUND_MIXER_STEREODEVS: /* Mixer channels supporting stereo */ for (val = i = 0; i < ms->numch; i++) if (ms->ch[i].flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT)) val |= 1 << ms->ch[i].osschannel; return put_user(val, user_arg); case SOUND_MIXER_CAPS: return put_user(SOUND_CAP_EXCL_INPUT, user_arg); default: i = _IOC_NR(cmd); if (i >= SOUND_MIXER_NRDEVICES) return -EINVAL; for (j = 0; j < ms->numch; j++) { if (ms->ch[j].osschannel == i) { return put_user(ms->ch[j].value, user_arg); } } return -EINVAL; } } if (_IOC_DIR(cmd) != (_IOC_READ|_IOC_WRITE)) return -EINVAL; ms->modcnt++; switch (_IOC_NR(cmd)) { case SOUND_MIXER_RECSRC: /* Arg contains a bit for each recording source */ if (get_user(val, user_arg)) return -EFAULT; return set_rec_src(ms, val); default: i = _IOC_NR(cmd); if (i >= SOUND_MIXER_NRDEVICES) return -EINVAL; for (j = 0; j < ms->numch && ms->ch[j].osschannel != i; j++); if (j >= ms->numch) return -EINVAL; if (get_user(val, user_arg)) return -EFAULT; if (wrmixer(ms, j, val)) return -EIO; return put_user(ms->ch[j].value, user_arg); } } static /*const*/ struct file_operations usb_mixer_fops = { .owner = THIS_MODULE, .llseek = no_llseek, .ioctl = usb_audio_ioctl_mixdev, .open = usb_audio_open_mixdev, .release = usb_audio_release_mixdev, }; /* --------------------------------------------------------------------- */ static int drain_out(struct usb_audiodev *as, int nonblock) { DECLARE_WAITQUEUE(wait, current); unsigned long flags; int count, tmo; if (as->usbout.dma.mapped || !as->usbout.dma.ready) return 0; usbout_start(as); add_wait_queue(&as->usbout.dma.wait, &wait); for (;;) { __set_current_state(TASK_INTERRUPTIBLE); spin_lock_irqsave(&as->lock, flags); count = as->usbout.dma.count; spin_unlock_irqrestore(&as->lock, flags); if (count <= 0) break; if (signal_pending(current)) break; if (nonblock) { remove_wait_queue(&as->usbout.dma.wait, &wait); set_current_state(TASK_RUNNING); return -EBUSY; } tmo = 3 * HZ * count / as->usbout.dma.srate; tmo >>= AFMT_BYTESSHIFT(as->usbout.dma.format); if (!schedule_timeout(tmo + 1)) { printk(KERN_DEBUG "usbaudio: dma timed out??\n"); break; } } remove_wait_queue(&as->usbout.dma.wait, &wait); set_current_state(TASK_RUNNING); if (signal_pending(current)) return -ERESTARTSYS; return 0; } /* --------------------------------------------------------------------- */ static ssize_t usb_audio_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos) { struct usb_audiodev *as = (struct usb_audiodev *)file->private_data; DECLARE_WAITQUEUE(wait, current); ssize_t ret = 0; unsigned long flags; unsigned int ptr; int cnt, err; if (as->usbin.dma.mapped) return -ENXIO; if (!as->usbin.dma.ready && (ret = prog_dmabuf_in(as))) return ret; if (!access_ok(VERIFY_WRITE, buffer, count)) return -EFAULT; add_wait_queue(&as->usbin.dma.wait, &wait); while (count > 0) { spin_lock_irqsave(&as->lock, flags); ptr = as->usbin.dma.rdptr; cnt = as->usbin.dma.count; /* set task state early to avoid wakeup races */ if (cnt <= 0) __set_current_state(TASK_INTERRUPTIBLE); spin_unlock_irqrestore(&as->lock, flags); if (cnt > count) cnt = count; if (cnt <= 0) { if (usbin_start(as)) { if (!ret) ret = -ENODEV; break; } if (file->f_flags & O_NONBLOCK) { if (!ret) ret = -EAGAIN; break; } schedule(); if (signal_pending(current)) { if (!ret) ret = -ERESTARTSYS; break; } continue; } if ((err = dmabuf_copyout_user(&as->usbin.dma, ptr, buffer, cnt))) { if (!ret) ret = err; break; } ptr += cnt; if (ptr >= as->usbin.dma.dmasize) ptr -= as->usbin.dma.dmasize; spin_lock_irqsave(&as->lock, flags); as->usbin.dma.rdptr = ptr; as->usbin.dma.count -= cnt; spin_unlock_irqrestore(&as->lock, flags); count -= cnt; buffer += cnt; ret += cnt; } __set_current_state(TASK_RUNNING); remove_wait_queue(&as->usbin.dma.wait, &wait); return ret; } static ssize_t usb_audio_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos) { struct usb_audiodev *as = (struct usb_audiodev *)file->private_data; DECLARE_WAITQUEUE(wait, current); ssize_t ret = 0; unsigned long flags; unsigned int ptr; unsigned int start_thr; int cnt, err; if (as->usbout.dma.mapped) return -ENXIO; if (!as->usbout.dma.ready && (ret = prog_dmabuf_out(as))) return ret; if (!access_ok(VERIFY_READ, buffer, count)) return -EFAULT; start_thr = (as->usbout.dma.srate << AFMT_BYTESSHIFT(as->usbout.dma.format)) / (1000 / (3 * DESCFRAMES)); add_wait_queue(&as->usbout.dma.wait, &wait); while (count > 0) { #if 0 printk(KERN_DEBUG "usb_audio_write: count %u dma: count %u rdptr %u wrptr %u dmasize %u fragsize %u flags 0x%02x taskst 0x%lx\n", count, as->usbout.dma.count, as->usbout.dma.rdptr, as->usbout.dma.wrptr, as->usbout.dma.dmasize, as->usbout.dma.fragsize, as->usbout.flags, current->state); #endif spin_lock_irqsave(&as->lock, flags); if (as->usbout.dma.count < 0) { as->usbout.dma.count = 0; as->usbout.dma.rdptr = as->usbout.dma.wrptr; } ptr = as->usbout.dma.wrptr; cnt = as->usbout.dma.dmasize - as->usbout.dma.count; /* set task state early to avoid wakeup races */ if (cnt <= 0) __set_current_state(TASK_INTERRUPTIBLE); spin_unlock_irqrestore(&as->lock, flags); if (cnt > count) cnt = count; if (cnt <= 0) { if (usbout_start(as)) { if (!ret) ret = -ENODEV; break; } if (file->f_flags & O_NONBLOCK) { if (!ret) ret = -EAGAIN; break; } schedule(); if (signal_pending(current)) { if (!ret) ret = -ERESTARTSYS; break; } continue; } if ((err = dmabuf_copyin_user(&as->usbout.dma, ptr, buffer, cnt))) { if (!ret) ret = err; break; } ptr += cnt; if (ptr >= as->usbout.dma.dmasize) ptr -= as->usbout.dma.dmasize; spin_lock_irqsave(&as->lock, flags); as->usbout.dma.wrptr = ptr; as->usbout.dma.count += cnt; spin_unlock_irqrestore(&as->lock, flags); count -= cnt; buffer += cnt; ret += cnt; if (as->usbout.dma.count >= start_thr && usbout_start(as)) { if (!ret) ret = -ENODEV; break; } } __set_current_state(TASK_RUNNING); remove_wait_queue(&as->usbout.dma.wait, &wait); return ret; } /* Called without the kernel lock - fine */ static unsigned int usb_audio_poll(struct file *file, struct poll_table_struct *wait) { struct usb_audiodev *as = (struct usb_audiodev *)file->private_data; unsigned long flags; unsigned int mask = 0; if (file->f_mode & FMODE_WRITE) { if (!as->usbout.dma.ready) prog_dmabuf_out(as); poll_wait(file, &as->usbout.dma.wait, wait); } if (file->f_mode & FMODE_READ) { if (!as->usbin.dma.ready) prog_dmabuf_in(as); poll_wait(file, &as->usbin.dma.wait, wait); } spin_lock_irqsave(&as->lock, flags); if (file->f_mode & FMODE_READ) { if (as->usbin.dma.count >= (signed)as->usbin.dma.fragsize) mask |= POLLIN | POLLRDNORM; } if (file->f_mode & FMODE_WRITE) { if (as->usbout.dma.mapped) { if (as->usbout.dma.count >= (signed)as->usbout.dma.fragsize) mask |= POLLOUT | POLLWRNORM; } else { if ((signed)as->usbout.dma.dmasize >= as->usbout.dma.count + (signed)as->usbout.dma.fragsize) mask |= POLLOUT | POLLWRNORM; } } spin_unlock_irqrestore(&as->lock, flags); return mask; } static int usb_audio_mmap(struct file *file, struct vm_area_struct *vma) { struct usb_audiodev *as = (struct usb_audiodev *)file->private_data; struct dmabuf *db; int ret = -EINVAL; lock_kernel(); if (vma->vm_flags & VM_WRITE) { if ((ret = prog_dmabuf_out(as)) != 0) goto out; db = &as->usbout.dma; } else if (vma->vm_flags & VM_READ) { if ((ret = prog_dmabuf_in(as)) != 0) goto out; db = &as->usbin.dma; } else goto out; ret = -EINVAL; if (vma->vm_pgoff != 0) goto out; ret = dmabuf_mmap(vma, db, vma->vm_start, vma->vm_end - vma->vm_start, vma->vm_page_prot); out: unlock_kernel(); return ret; } static int usb_audio_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { struct usb_audiodev *as = (struct usb_audiodev *)file->private_data; struct usb_audio_state *s = as->state; int __user *user_arg = (int __user *)arg; unsigned long flags; audio_buf_info abinfo; count_info cinfo; int val = 0; int val2, mapped, ret; if (!s->usbdev) return -EIO; mapped = ((file->f_mode & FMODE_WRITE) && as->usbout.dma.mapped) || ((file->f_mode & FMODE_READ) && as->usbin.dma.mapped); #if 0 if (arg) get_user(val, (int *)arg); printk(KERN_DEBUG "usbaudio: usb_audio_ioctl cmd=%x arg=%lx *arg=%d\n", cmd, arg, val) #endif switch (cmd) { case OSS_GETVERSION: return put_user(SOUND_VERSION, user_arg); case SNDCTL_DSP_SYNC: if (file->f_mode & FMODE_WRITE) return drain_out(as, 0/*file->f_flags & O_NONBLOCK*/); return 0; case SNDCTL_DSP_SETDUPLEX: return 0; case SNDCTL_DSP_GETCAPS: return put_user(DSP_CAP_DUPLEX | DSP_CAP_REALTIME | DSP_CAP_TRIGGER | DSP_CAP_MMAP | DSP_CAP_BATCH, user_arg); case SNDCTL_DSP_RESET: if (file->f_mode & FMODE_WRITE) { usbout_stop(as); as->usbout.dma.rdptr = as->usbout.dma.wrptr = as->usbout.dma.count = as->usbout.dma.total_bytes = 0; } if (file->f_mode & FMODE_READ) { usbin_stop(as); as->usbin.dma.rdptr = as->usbin.dma.wrptr = as->usbin.dma.count = as->usbin.dma.total_bytes = 0; } return 0; case SNDCTL_DSP_SPEED: if (get_user(val, user_arg)) return -EFAULT; if (val >= 0) { if (val < 4000) val = 4000; if (val > 100000) val = 100000; if (set_format(as, file->f_mode, AFMT_QUERY, val)) return -EIO; } return put_user((file->f_mode & FMODE_READ) ? as->usbin.dma.srate : as->usbout.dma.srate, user_arg); case SNDCTL_DSP_STEREO: if (get_user(val, user_arg)) return -EFAULT; val2 = (file->f_mode & FMODE_READ) ? as->usbin.dma.format : as->usbout.dma.format; if (val) val2 |= AFMT_STEREO; else val2 &= ~AFMT_STEREO; if (set_format(as, file->f_mode, val2, 0)) return -EIO; return 0; case SNDCTL_DSP_CHANNELS: if (get_user(val, user_arg)) return -EFAULT; if (val != 0) { val2 = (file->f_mode & FMODE_READ) ? as->usbin.dma.format : as->usbout.dma.format; if (val == 1) val2 &= ~AFMT_STEREO; else val2 |= AFMT_STEREO; if (set_format(as, file->f_mode, val2, 0)) return -EIO; } val2 = (file->f_mode & FMODE_READ) ? as->usbin.dma.format : as->usbout.dma.format; return put_user(AFMT_ISSTEREO(val2) ? 2 : 1, user_arg); case SNDCTL_DSP_GETFMTS: /* Returns a mask */ return put_user(AFMT_U8 | AFMT_U16_LE | AFMT_U16_BE | AFMT_S8 | AFMT_S16_LE | AFMT_S16_BE, user_arg); case SNDCTL_DSP_SETFMT: /* Selects ONE fmt*/ if (get_user(val, user_arg)) return -EFAULT; if (val != AFMT_QUERY) { if (hweight32(val) != 1) return -EINVAL; if (!(val & (AFMT_U8 | AFMT_U16_LE | AFMT_U16_BE | AFMT_S8 | AFMT_S16_LE | AFMT_S16_BE))) return -EINVAL; val2 = (file->f_mode & FMODE_READ) ? as->usbin.dma.format : as->usbout.dma.format; val |= val2 & AFMT_STEREO; if (set_format(as, file->f_mode, val, 0)) return -EIO; } val2 = (file->f_mode & FMODE_READ) ? as->usbin.dma.format : as->usbout.dma.format; return put_user(val2 & ~AFMT_STEREO, user_arg); case SNDCTL_DSP_POST: return 0; case SNDCTL_DSP_GETTRIGGER: val = 0; if (file->f_mode & FMODE_READ && as->usbin.flags & FLG_RUNNING) val |= PCM_ENABLE_INPUT; if (file->f_mode & FMODE_WRITE && as->usbout.flags & FLG_RUNNING) val |= PCM_ENABLE_OUTPUT; return put_user(val, user_arg); case SNDCTL_DSP_SETTRIGGER: if (get_user(val, user_arg)) return -EFAULT; if (file->f_mode & FMODE_READ) { if (val & PCM_ENABLE_INPUT) { if (!as->usbin.dma.ready && (ret = prog_dmabuf_in(as))) return ret; if (usbin_start(as)) return -ENODEV; } else usbin_stop(as); } if (file->f_mode & FMODE_WRITE) { if (val & PCM_ENABLE_OUTPUT) { if (!as->usbout.dma.ready && (ret = prog_dmabuf_out(as))) return ret; if (usbout_start(as)) return -ENODEV; } else usbout_stop(as); } return 0; case SNDCTL_DSP_GETOSPACE: if (!(file->f_mode & FMODE_WRITE)) return -EINVAL; if (!(as->usbout.flags & FLG_RUNNING) && (val = prog_dmabuf_out(as)) != 0) return val; spin_lock_irqsave(&as->lock, flags); abinfo.fragsize = as->usbout.dma.fragsize; abinfo.bytes = as->usbout.dma.dmasize - as->usbout.dma.count; abinfo.fragstotal = as->usbout.dma.numfrag; abinfo.fragments = abinfo.bytes >> as->usbout.dma.fragshift; spin_unlock_irqrestore(&as->lock, flags); return copy_to_user((void __user *)arg, &abinfo, sizeof(abinfo)) ? -EFAULT : 0; case SNDCTL_DSP_GETISPACE: if (!(file->f_mode & FMODE_READ)) return -EINVAL; if (!(as->usbin.flags & FLG_RUNNING) && (val = prog_dmabuf_in(as)) != 0) return val; spin_lock_irqsave(&as->lock, flags); abinfo.fragsize = as->usbin.dma.fragsize; abinfo.bytes = as->usbin.dma.count; abinfo.fragstotal = as->usbin.dma.numfrag; abinfo.fragments = abinfo.bytes >> as->usbin.dma.fragshift; spin_unlock_irqrestore(&as->lock, flags); return copy_to_user((void __user *)arg, &abinfo, sizeof(abinfo)) ? -EFAULT : 0; case SNDCTL_DSP_NONBLOCK: file->f_flags |= O_NONBLOCK; return 0; case SNDCTL_DSP_GETODELAY: if (!(file->f_mode & FMODE_WRITE)) return -EINVAL; spin_lock_irqsave(&as->lock, flags); val = as->usbout.dma.count; spin_unlock_irqrestore(&as->lock, flags); return put_user(val, user_arg); case SNDCTL_DSP_GETIPTR: if (!(file->f_mode & FMODE_READ)) return -EINVAL; spin_lock_irqsave(&as->lock, flags); cinfo.bytes = as->usbin.dma.total_bytes; cinfo.blocks = as->usbin.dma.count >> as->usbin.dma.fragshift; cinfo.ptr = as->usbin.dma.wrptr; if (as->usbin.dma.mapped) as->usbin.dma.count &= as->usbin.dma.fragsize-1; spin_unlock_irqrestore(&as->lock, flags); if (copy_to_user((void __user *)arg, &cinfo, sizeof(cinfo))) return -EFAULT; return 0; case SNDCTL_DSP_GETOPTR: if (!(file->f_mode & FMODE_WRITE)) return -EINVAL; spin_lock_irqsave(&as->lock, flags); cinfo.bytes = as->usbout.dma.total_bytes; cinfo.blocks = as->usbout.dma.count >> as->usbout.dma.fragshift; cinfo.ptr = as->usbout.dma.rdptr; if (as->usbout.dma.mapped) as->usbout.dma.count &= as->usbout.dma.fragsize-1; spin_unlock_irqrestore(&as->lock, flags); if (copy_to_user((void __user *)arg, &cinfo, sizeof(cinfo))) return -EFAULT; return 0; case SNDCTL_DSP_GETBLKSIZE: if (file->f_mode & FMODE_WRITE) { if ((val = prog_dmabuf_out(as))) return val; return put_user(as->usbout.dma.fragsize, user_arg); } if ((val = prog_dmabuf_in(as))) return val; return put_user(as->usbin.dma.fragsize, user_arg); case SNDCTL_DSP_SETFRAGMENT: if (get_user(val, user_arg)) return -EFAULT; if (file->f_mode & FMODE_READ) { as->usbin.dma.ossfragshift = val & 0xffff; as->usbin.dma.ossmaxfrags = (val >> 16) & 0xffff; if (as->usbin.dma.ossfragshift < 4) as->usbin.dma.ossfragshift = 4; if (as->usbin.dma.ossfragshift > 15) as->usbin.dma.ossfragshift = 15; if (as->usbin.dma.ossmaxfrags < 4) as->usbin.dma.ossmaxfrags = 4; } if (file->f_mode & FMODE_WRITE) { as->usbout.dma.ossfragshift = val & 0xffff; as->usbout.dma.ossmaxfrags = (val >> 16) & 0xffff; if (as->usbout.dma.ossfragshift < 4) as->usbout.dma.ossfragshift = 4; if (as->usbout.dma.ossfragshift > 15) as->usbout.dma.ossfragshift = 15; if (as->usbout.dma.ossmaxfrags < 4) as->usbout.dma.ossmaxfrags = 4; } return 0; case SNDCTL_DSP_SUBDIVIDE: if ((file->f_mode & FMODE_READ && as->usbin.dma.subdivision) || (file->f_mode & FMODE_WRITE && as->usbout.dma.subdivision)) return -EINVAL; if (get_user(val, user_arg)) return -EFAULT; if (val != 1 && val != 2 && val != 4) return -EINVAL; if (file->f_mode & FMODE_READ) as->usbin.dma.subdivision = val; if (file->f_mode & FMODE_WRITE) as->usbout.dma.subdivision = val; return 0; case SOUND_PCM_READ_RATE: return put_user((file->f_mode & FMODE_READ) ? as->usbin.dma.srate : as->usbout.dma.srate, user_arg); case SOUND_PCM_READ_CHANNELS: val2 = (file->f_mode & FMODE_READ) ? as->usbin.dma.format : as->usbout.dma.format; return put_user(AFMT_ISSTEREO(val2) ? 2 : 1, user_arg); case SOUND_PCM_READ_BITS: val2 = (file->f_mode & FMODE_READ) ? as->usbin.dma.format : as->usbout.dma.format; return put_user(AFMT_IS16BIT(val2) ? 16 : 8, user_arg); case SOUND_PCM_WRITE_FILTER: case SNDCTL_DSP_SETSYNCRO: case SOUND_PCM_READ_FILTER: return -EINVAL; } dprintk((KERN_DEBUG "usbaudio: usb_audio_ioctl - no command found\n")); return -ENOIOCTLCMD; } static int usb_audio_open(struct inode *inode, struct file *file) { unsigned int minor = iminor(inode); DECLARE_WAITQUEUE(wait, current); struct usb_audiodev *as; struct usb_audio_state *s; for (;;) { down(&open_sem); list_for_each_entry(s, &audiodevs, audiodev) { list_for_each_entry(as, &s->audiolist, list) { if (!((as->dev_audio ^ minor) & ~0xf)) goto device_found; } } up(&open_sem); return -ENODEV; device_found: if (!s->usbdev) { up(&open_sem); return -EIO; } /* wait for device to become free */ if (!(as->open_mode & file->f_mode)) break; if (file->f_flags & O_NONBLOCK) { up(&open_sem); return -EBUSY; } __set_current_state(TASK_INTERRUPTIBLE); add_wait_queue(&open_wait, &wait); up(&open_sem); schedule(); __set_current_state(TASK_RUNNING); remove_wait_queue(&open_wait, &wait); if (signal_pending(current)) return -ERESTARTSYS; } if (file->f_mode & FMODE_READ) as->usbin.dma.ossfragshift = as->usbin.dma.ossmaxfrags = as->usbin.dma.subdivision = 0; if (file->f_mode & FMODE_WRITE) as->usbout.dma.ossfragshift = as->usbout.dma.ossmaxfrags = as->usbout.dma.subdivision = 0; if (set_format(as, file->f_mode, ((minor & 0xf) == SND_DEV_DSP16) ? AFMT_S16_LE : AFMT_U8 /* AFMT_ULAW */, 8000)) { up(&open_sem); return -EIO; } file->private_data = as; as->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE); s->count++; up(&open_sem); return nonseekable_open(inode, file); } static int usb_audio_release(struct inode *inode, struct file *file) { struct usb_audiodev *as = (struct usb_audiodev *)file->private_data; struct usb_audio_state *s; struct usb_device *dev; lock_kernel(); s = as->state; dev = s->usbdev; if (file->f_mode & FMODE_WRITE) drain_out(as, file->f_flags & O_NONBLOCK); down(&open_sem); if (file->f_mode & FMODE_WRITE) { usbout_stop(as); if (dev && as->usbout.interface >= 0) usb_set_interface(dev, as->usbout.interface, 0); dmabuf_release(&as->usbout.dma); usbout_release(as); } if (file->f_mode & FMODE_READ) { usbin_stop(as); if (dev && as->usbin.interface >= 0) usb_set_interface(dev, as->usbin.interface, 0); dmabuf_release(&as->usbin.dma); usbin_release(as); } as->open_mode &= (~file->f_mode) & (FMODE_READ|FMODE_WRITE); release(s); wake_up(&open_wait); unlock_kernel(); return 0; } static /*const*/ struct file_operations usb_audio_fops = { .owner = THIS_MODULE, .llseek = no_llseek, .read = usb_audio_read, .write = usb_audio_write, .poll = usb_audio_poll, .ioctl = usb_audio_ioctl, .mmap = usb_audio_mmap, .open = usb_audio_open, .release = usb_audio_release, }; /* --------------------------------------------------------------------- */ static int usb_audio_probe(struct usb_interface *iface, const struct usb_device_id *id); static void usb_audio_disconnect(struct usb_interface *iface); static struct usb_device_id usb_audio_ids [] = { { .match_flags = (USB_DEVICE_ID_MATCH_INT_CLASS | USB_DEVICE_ID_MATCH_INT_SUBCLASS), .bInterfaceClass = USB_CLASS_AUDIO, .bInterfaceSubClass = 1}, { } /* Terminating entry */ }; MODULE_DEVICE_TABLE (usb, usb_audio_ids); static struct usb_driver usb_audio_driver = { .owner = THIS_MODULE, .name = "audio", .probe = usb_audio_probe, .disconnect = usb_audio_disconnect, .id_table = usb_audio_ids, }; static void *find_descriptor(void *descstart, unsigned int desclen, void *after, u8 dtype, int iface, int altsetting) { u8 *p, *end, *next; int ifc = -1, as = -1; p = descstart; end = p + desclen; for (; p < end;) { if (p[0] < 2) return NULL; next = p + p[0]; if (next > end) return NULL; if (p[1] == USB_DT_INTERFACE) { /* minimum length of interface descriptor */ if (p[0] < 9) return NULL; ifc = p[2]; as = p[3]; } if (p[1] == dtype && (!after || (void *)p > after) && (iface == -1 || iface == ifc) && (altsetting == -1 || altsetting == as)) { return p; } p = next; } return NULL; } static void *find_csinterface_descriptor(void *descstart, unsigned int desclen, void *after, u8 dsubtype, int iface, int altsetting) { unsigned char *p; p = find_descriptor(descstart, desclen, after, USB_DT_CS_INTERFACE, iface, altsetting); while (p) { if (p[0] >= 3 && p[2] == dsubtype) return p; p = find_descriptor(descstart, desclen, p, USB_DT_CS_INTERFACE, iface, altsetting); } return NULL; } static void *find_audiocontrol_unit(void *descstart, unsigned int desclen, void *after, u8 unit, int iface) { unsigned char *p; p = find_descriptor(descstart, desclen, after, USB_DT_CS_INTERFACE, iface, -1); while (p) { if (p[0] >= 4 && p[2] >= INPUT_TERMINAL && p[2] <= EXTENSION_UNIT && p[3] == unit) return p; p = find_descriptor(descstart, desclen, p, USB_DT_CS_INTERFACE, iface, -1); } return NULL; } static void usb_audio_parsestreaming(struct usb_audio_state *s, unsigned char *buffer, unsigned int buflen, int asifin, int asifout) { struct usb_device *dev = s->usbdev; struct usb_audiodev *as; struct usb_host_interface *alts; struct usb_interface *iface; struct audioformat *fp; unsigned char *fmt, *csep; unsigned int i, j, k, format, idx; if (!(as = kmalloc(sizeof(struct usb_audiodev), GFP_KERNEL))) return; memset(as, 0, sizeof(struct usb_audiodev)); init_waitqueue_head(&as->usbin.dma.wait); init_waitqueue_head(&as->usbout.dma.wait); spin_lock_init(&as->lock); as->usbin.durb[0].urb = usb_alloc_urb (DESCFRAMES, GFP_KERNEL); as->usbin.durb[1].urb = usb_alloc_urb (DESCFRAMES, GFP_KERNEL); as->usbin.surb[0].urb = usb_alloc_urb (SYNCFRAMES, GFP_KERNEL); as->usbin.surb[1].urb = usb_alloc_urb (SYNCFRAMES, GFP_KERNEL); as->usbout.durb[0].urb = usb_alloc_urb (DESCFRAMES, GFP_KERNEL); as->usbout.durb[1].urb = usb_alloc_urb (DESCFRAMES, GFP_KERNEL); as->usbout.surb[0].urb = usb_alloc_urb (SYNCFRAMES, GFP_KERNEL); as->usbout.surb[1].urb = usb_alloc_urb (SYNCFRAMES, GFP_KERNEL); if ((!as->usbin.durb[0].urb) || (!as->usbin.durb[1].urb) || (!as->usbin.surb[0].urb) || (!as->usbin.surb[1].urb) || (!as->usbout.durb[0].urb) || (!as->usbout.durb[1].urb) || (!as->usbout.surb[0].urb) || (!as->usbout.surb[1].urb)) { usb_free_urb(as->usbin.durb[0].urb); usb_free_urb(as->usbin.durb[1].urb); usb_free_urb(as->usbin.surb[0].urb); usb_free_urb(as->usbin.surb[1].urb); usb_free_urb(as->usbout.durb[0].urb); usb_free_urb(as->usbout.durb[1].urb); usb_free_urb(as->usbout.surb[0].urb); usb_free_urb(as->usbout.surb[1].urb); kfree(as); return; } as->state = s; as->usbin.interface = asifin; as->usbout.interface = asifout; /* search for input formats */ if (asifin >= 0) { as->usbin.flags = FLG_CONNECTED; iface = usb_ifnum_to_if(dev, asifin); for (idx = 0; idx < iface->num_altsetting; idx++) { alts = &iface->altsetting[idx]; i = alts->desc.bAlternateSetting; if (alts->desc.bInterfaceClass != USB_CLASS_AUDIO || alts->desc.bInterfaceSubClass != 2) continue; if (alts->desc.bNumEndpoints < 1) { if (i != 0) { /* altsetting 0 has no endpoints (Section B.3.4.1) */ printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u does not have an endpoint\n", dev->devnum, asifin, i); } continue; } if ((alts->endpoint[0].desc.bmAttributes & 0x03) != 0x01 || !(alts->endpoint[0].desc.bEndpointAddress & 0x80)) { printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u first endpoint not isochronous in\n", dev->devnum, asifin, i); continue; } fmt = find_csinterface_descriptor(buffer, buflen, NULL, AS_GENERAL, asifin, i); if (!fmt) { printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u FORMAT_TYPE descriptor not found\n", dev->devnum, asifin, i); continue; } if (fmt[0] < 7 || fmt[6] != 0 || (fmt[5] != 1 && fmt[5] != 2)) { printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u format not supported\n", dev->devnum, asifin, i); continue; } format = (fmt[5] == 2) ? (AFMT_U16_LE | AFMT_U8) : (AFMT_S16_LE | AFMT_S8); fmt = find_csinterface_descriptor(buffer, buflen, NULL, FORMAT_TYPE, asifin, i); if (!fmt) { printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u FORMAT_TYPE descriptor not found\n", dev->devnum, asifin, i); continue; } if (fmt[0] < 8+3*(fmt[7] ? fmt[7] : 2) || fmt[3] != 1) { printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u FORMAT_TYPE descriptor not supported\n", dev->devnum, asifin, i); continue; } if (fmt[4] < 1 || fmt[4] > 2 || fmt[5] < 1 || fmt[5] > 2) { printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u unsupported channels %u framesize %u\n", dev->devnum, asifin, i, fmt[4], fmt[5]); continue; } csep = find_descriptor(buffer, buflen, NULL, USB_DT_CS_ENDPOINT, asifin, i); if (!csep || csep[0] < 7 || csep[2] != EP_GENERAL) { printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u no or invalid class specific endpoint descriptor\n", dev->devnum, asifin, i); continue; } if (as->numfmtin >= MAXFORMATS) continue; fp = &as->fmtin[as->numfmtin++]; if (fmt[5] == 2) format &= (AFMT_U16_LE | AFMT_S16_LE); else format &= (AFMT_U8 | AFMT_S8); if (fmt[4] == 2) format |= AFMT_STEREO; fp->format = format; fp->altsetting = i; fp->sratelo = fp->sratehi = fmt[8] | (fmt[9] << 8) | (fmt[10] << 16); printk(KERN_INFO "usbaudio: valid input sample rate %u\n", fp->sratelo); for (j = fmt[7] ? (fmt[7]-1) : 1; j > 0; j--) { k = fmt[8+3*j] | (fmt[9+3*j] << 8) | (fmt[10+3*j] << 16); printk(KERN_INFO "usbaudio: valid input sample rate %u\n", k); if (k > fp->sratehi) fp->sratehi = k; if (k < fp->sratelo) fp->sratelo = k; } fp->attributes = csep[3]; printk(KERN_INFO "usbaudio: device %u interface %u altsetting %u: format 0x%08x sratelo %u sratehi %u attributes 0x%02x\n", dev->devnum, asifin, i, fp->format, fp->sratelo, fp->sratehi, fp->attributes); } } /* search for output formats */ if (asifout >= 0) { as->usbout.flags = FLG_CONNECTED; iface = usb_ifnum_to_if(dev, asifout); for (idx = 0; idx < iface->num_altsetting; idx++) { alts = &iface->altsetting[idx]; i = alts->desc.bAlternateSetting; if (alts->desc.bInterfaceClass != USB_CLASS_AUDIO || alts->desc.bInterfaceSubClass != 2) continue; if (alts->desc.bNumEndpoints < 1) { /* altsetting 0 should never have iso EPs */ if (i != 0) printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u does not have an endpoint\n", dev->devnum, asifout, i); continue; } if ((alts->endpoint[0].desc.bmAttributes & 0x03) != 0x01 || (alts->endpoint[0].desc.bEndpointAddress & 0x80)) { printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u first endpoint not isochronous out\n", dev->devnum, asifout, i); continue; } /* See USB audio formats manual, section 2 */ fmt = find_csinterface_descriptor(buffer, buflen, NULL, AS_GENERAL, asifout, i); if (!fmt) { printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u FORMAT_TYPE descriptor not found\n", dev->devnum, asifout, i); continue; } if (fmt[0] < 7 || fmt[6] != 0 || (fmt[5] != 1 && fmt[5] != 2)) { printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u format not supported\n", dev->devnum, asifout, i); continue; } format = (fmt[5] == 2) ? (AFMT_U16_LE | AFMT_U8) : (AFMT_S16_LE | AFMT_S8); /* Dallas DS4201 workaround */ if (le16_to_cpu(dev->descriptor.idVendor) == 0x04fa && le16_to_cpu(dev->descriptor.idProduct) == 0x4201) format = (AFMT_S16_LE | AFMT_S8); fmt = find_csinterface_descriptor(buffer, buflen, NULL, FORMAT_TYPE, asifout, i); if (!fmt) { printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u FORMAT_TYPE descriptor not found\n", dev->devnum, asifout, i); continue; } if (fmt[0] < 8+3*(fmt[7] ? fmt[7] : 2) || fmt[3] != 1) { printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u FORMAT_TYPE descriptor not supported\n", dev->devnum, asifout, i); continue; } if (fmt[4] < 1 || fmt[4] > 2 || fmt[5] < 1 || fmt[5] > 2) { printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u unsupported channels %u framesize %u\n", dev->devnum, asifout, i, fmt[4], fmt[5]); continue; } csep = find_descriptor(buffer, buflen, NULL, USB_DT_CS_ENDPOINT, asifout, i); if (!csep || csep[0] < 7 || csep[2] != EP_GENERAL) { printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u no or invalid class specific endpoint descriptor\n", dev->devnum, asifout, i); continue; } if (as->numfmtout >= MAXFORMATS) continue; fp = &as->fmtout[as->numfmtout++]; if (fmt[5] == 2) format &= (AFMT_U16_LE | AFMT_S16_LE); else format &= (AFMT_U8 | AFMT_S8); if (fmt[4] == 2) format |= AFMT_STEREO; fp->format = format; fp->altsetting = i; fp->sratelo = fp->sratehi = fmt[8] | (fmt[9] << 8) | (fmt[10] << 16); printk(KERN_INFO "usbaudio: valid output sample rate %u\n", fp->sratelo); for (j = fmt[7] ? (fmt[7]-1) : 1; j > 0; j--) { k = fmt[8+3*j] | (fmt[9+3*j] << 8) | (fmt[10+3*j] << 16); printk(KERN_INFO "usbaudio: valid output sample rate %u\n", k); if (k > fp->sratehi) fp->sratehi = k; if (k < fp->sratelo) fp->sratelo = k; } fp->attributes = csep[3]; printk(KERN_INFO "usbaudio: device %u interface %u altsetting %u: format 0x%08x sratelo %u sratehi %u attributes 0x%02x\n", dev->devnum, asifout, i, fp->format, fp->sratelo, fp->sratehi, fp->attributes); } } if (as->numfmtin == 0 && as->numfmtout == 0) { usb_free_urb(as->usbin.durb[0].urb); usb_free_urb(as->usbin.durb[1].urb); usb_free_urb(as->usbin.surb[0].urb); usb_free_urb(as->usbin.surb[1].urb); usb_free_urb(as->usbout.durb[0].urb); usb_free_urb(as->usbout.durb[1].urb); usb_free_urb(as->usbout.surb[0].urb); usb_free_urb(as->usbout.surb[1].urb); kfree(as); return; } if ((as->dev_audio = register_sound_dsp(&usb_audio_fops, -1)) < 0) { printk(KERN_ERR "usbaudio: cannot register dsp\n"); usb_free_urb(as->usbin.durb[0].urb); usb_free_urb(as->usbin.durb[1].urb); usb_free_urb(as->usbin.surb[0].urb); usb_free_urb(as->usbin.surb[1].urb); usb_free_urb(as->usbout.durb[0].urb); usb_free_urb(as->usbout.durb[1].urb); usb_free_urb(as->usbout.surb[0].urb); usb_free_urb(as->usbout.surb[1].urb); kfree(as); return; } printk(KERN_INFO "usbaudio: registered dsp 14,%d\n", as->dev_audio); /* everything successful */ list_add_tail(&as->list, &s->audiolist); } struct consmixstate { struct usb_audio_state *s; unsigned char *buffer; unsigned int buflen; unsigned int ctrlif; struct mixerchannel mixch[SOUND_MIXER_NRDEVICES]; unsigned int nrmixch; unsigned int mixchmask; unsigned long unitbitmap[32/sizeof(unsigned long)]; /* return values */ unsigned int nrchannels; unsigned int termtype; unsigned int chconfig; }; static struct mixerchannel *getmixchannel(struct consmixstate *state, unsigned int nr) { struct mixerchannel *c; if (nr >= SOUND_MIXER_NRDEVICES) { printk(KERN_ERR "usbaudio: invalid OSS mixer channel %u\n", nr); return NULL; } if (!(state->mixchmask & (1 << nr))) { printk(KERN_WARNING "usbaudio: OSS mixer channel %u already in use\n", nr); return NULL; } c = &state->mixch[state->nrmixch++]; c->osschannel = nr; state->mixchmask &= ~(1 << nr); return c; } static unsigned int getvolchannel(struct consmixstate *state) { unsigned int u; if ((state->termtype & 0xff00) == 0x0000 && (state->mixchmask & SOUND_MASK_VOLUME)) return SOUND_MIXER_VOLUME; if ((state->termtype & 0xff00) == 0x0100) { if (state->mixchmask & SOUND_MASK_PCM) return SOUND_MIXER_PCM; if (state->mixchmask & SOUND_MASK_ALTPCM) return SOUND_MIXER_ALTPCM; } if ((state->termtype & 0xff00) == 0x0200 && (state->mixchmask & SOUND_MASK_MIC)) return SOUND_MIXER_MIC; if ((state->termtype & 0xff00) == 0x0300 && (state->mixchmask & SOUND_MASK_SPEAKER)) return SOUND_MIXER_SPEAKER; if ((state->termtype & 0xff00) == 0x0500) { if (state->mixchmask & SOUND_MASK_PHONEIN) return SOUND_MIXER_PHONEIN; if (state->mixchmask & SOUND_MASK_PHONEOUT) return SOUND_MIXER_PHONEOUT; } if (state->termtype >= 0x710 && state->termtype <= 0x711 && (state->mixchmask & SOUND_MASK_RADIO)) return SOUND_MIXER_RADIO; if (state->termtype >= 0x709 && state->termtype <= 0x70f && (state->mixchmask & SOUND_MASK_VIDEO)) return SOUND_MIXER_VIDEO; u = ffs(state->mixchmask & (SOUND_MASK_LINE | SOUND_MASK_CD | SOUND_MASK_LINE1 | SOUND_MASK_LINE2 | SOUND_MASK_LINE3 | SOUND_MASK_DIGITAL1 | SOUND_MASK_DIGITAL2 | SOUND_MASK_DIGITAL3)); return u-1; } static void prepmixch(struct consmixstate *state) { struct usb_device *dev = state->s->usbdev; struct mixerchannel *ch; unsigned char *buf; __s16 v1; unsigned int v2, v3; if (!state->nrmixch || state->nrmixch > SOUND_MIXER_NRDEVICES) return; buf = kmalloc(sizeof(*buf) * 2, GFP_KERNEL); if (!buf) { printk(KERN_ERR "prepmixch: out of memory\n") ; return; } ch = &state->mixch[state->nrmixch-1]; switch (ch->selector) { case 0: /* mixer unit request */ if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_MIN, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN, (ch->chnum << 8) | 1, state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0) goto err; ch->minval = buf[0] | (buf[1] << 8); if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_MAX, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN, (ch->chnum << 8) | 1, state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0) goto err; ch->maxval = buf[0] | (buf[1] << 8); v2 = ch->maxval - ch->minval; if (!v2) v2 = 1; if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN, (ch->chnum << 8) | 1, state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0) goto err; v1 = buf[0] | (buf[1] << 8); v3 = v1 - ch->minval; v3 = 100 * v3 / v2; if (v3 > 100) v3 = 100; ch->value = v3; if (ch->flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT)) { if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN, ((ch->chnum + !!(ch->flags & MIXFLG_STEREOIN)) << 8) | (1 + !!(ch->flags & MIXFLG_STEREOOUT)), state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0) goto err; v1 = buf[0] | (buf[1] << 8); v3 = v1 - ch->minval; v3 = 100 * v3 / v2; if (v3 > 100) v3 = 100; } ch->value |= v3 << 8; break; /* various feature unit controls */ case VOLUME_CONTROL: if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_MIN, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN, (ch->selector << 8) | ch->chnum, state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0) goto err; ch->minval = buf[0] | (buf[1] << 8); if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_MAX, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN, (ch->selector << 8) | ch->chnum, state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0) goto err; ch->maxval = buf[0] | (buf[1] << 8); if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN, (ch->selector << 8) | ch->chnum, state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0) goto err; v1 = buf[0] | (buf[1] << 8); v2 = ch->maxval - ch->minval; v3 = v1 - ch->minval; if (!v2) v2 = 1; v3 = 100 * v3 / v2; if (v3 > 100) v3 = 100; ch->value = v3; if (ch->flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT)) { if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN, (ch->selector << 8) | (ch->chnum + 1), state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0) goto err; v1 = buf[0] | (buf[1] << 8); v3 = v1 - ch->minval; v3 = 100 * v3 / v2; if (v3 > 100) v3 = 100; } ch->value |= v3 << 8; break; case BASS_CONTROL: case MID_CONTROL: case TREBLE_CONTROL: if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_MIN, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN, (ch->selector << 8) | ch->chnum, state->ctrlif | (ch->unitid << 8), buf, 1, 1000) < 0) goto err; ch->minval = buf[0] << 8; if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_MAX, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN, (ch->selector << 8) | ch->chnum, state->ctrlif | (ch->unitid << 8), buf, 1, 1000) < 0) goto err; ch->maxval = buf[0] << 8; if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN, (ch->selector << 8) | ch->chnum, state->ctrlif | (ch->unitid << 8), buf, 1, 1000) < 0) goto err; v1 = buf[0] << 8; v2 = ch->maxval - ch->minval; v3 = v1 - ch->minval; if (!v2) v2 = 1; v3 = 100 * v3 / v2; if (v3 > 100) v3 = 100; ch->value = v3; if (ch->flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT)) { if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN, (ch->selector << 8) | (ch->chnum + 1), state->ctrlif | (ch->unitid << 8), buf, 1, 1000) < 0) goto err; v1 = buf[0] << 8; v3 = v1 - ch->minval; v3 = 100 * v3 / v2; if (v3 > 100) v3 = 100; } ch->value |= v3 << 8; break; default: goto err; } freebuf: kfree(buf); return; err: printk(KERN_ERR "usbaudio: mixer request device %u if %u unit %u ch %u selector %u failed\n", dev->devnum, state->ctrlif, ch->unitid, ch->chnum, ch->selector); if (state->nrmixch) state->nrmixch--; goto freebuf; } static void usb_audio_recurseunit(struct consmixstate *state, unsigned char unitid); static inline int checkmixbmap(unsigned char *bmap, unsigned char flg, unsigned int inidx, unsigned int numoch) { unsigned int idx; idx = inidx*numoch; if (!(bmap[-(idx >> 3)] & (0x80 >> (idx & 7)))) return 0; if (!(flg & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT))) return 1; idx = (inidx+!!(flg & MIXFLG_STEREOIN))*numoch+!!(flg & MIXFLG_STEREOOUT); if (!(bmap[-(idx >> 3)] & (0x80 >> (idx & 7)))) return 0; return 1; } static void usb_audio_mixerunit(struct consmixstate *state, unsigned char *mixer) { unsigned int nroutch = mixer[5+mixer[4]]; unsigned int chidx[SOUND_MIXER_NRDEVICES+1]; unsigned int termt[SOUND_MIXER_NRDEVICES]; unsigned char flg = (nroutch >= 2) ? MIXFLG_STEREOOUT : 0; unsigned char *bmap = &mixer[9+mixer[4]]; unsigned int bmapsize; struct mixerchannel *ch; unsigned int i; if (!mixer[4]) { printk(KERN_ERR "usbaudio: unit %u invalid MIXER_UNIT descriptor\n", mixer[3]); return; } if (mixer[4] > SOUND_MIXER_NRDEVICES) { printk(KERN_ERR "usbaudio: mixer unit %u: too many input pins\n", mixer[3]); return; } chidx[0] = 0; for (i = 0; i < mixer[4]; i++) { usb_audio_recurseunit(state, mixer[5+i]); chidx[i+1] = chidx[i] + state->nrchannels; termt[i] = state->termtype; } state->termtype = 0; state->chconfig = mixer[6+mixer[4]] | (mixer[7+mixer[4]] << 8); bmapsize = (nroutch * chidx[mixer[4]] + 7) >> 3; bmap += bmapsize - 1; if (mixer[0] < 10+mixer[4]+bmapsize) { printk(KERN_ERR "usbaudio: unit %u invalid MIXER_UNIT descriptor (bitmap too small)\n", mixer[3]); return; } for (i = 0; i < mixer[4]; i++) { state->termtype = termt[i]; if (chidx[i+1]-chidx[i] >= 2) { flg |= MIXFLG_STEREOIN; if (checkmixbmap(bmap, flg, chidx[i], nroutch)) { ch = getmixchannel(state, getvolchannel(state)); if (ch) { ch->unitid = mixer[3]; ch->selector = 0; ch->chnum = chidx[i]+1; ch->flags = flg; prepmixch(state); } continue; } } flg &= ~MIXFLG_STEREOIN; if (checkmixbmap(bmap, flg, chidx[i], nroutch)) { ch = getmixchannel(state, getvolchannel(state)); if (ch) { ch->unitid = mixer[3]; ch->selector = 0; ch->chnum = chidx[i]+1; ch->flags = flg; prepmixch(state); } } } state->termtype = 0; } static struct mixerchannel *slctsrc_findunit(struct consmixstate *state, __u8 unitid) { unsigned int i; for (i = 0; i < state->nrmixch; i++) if (state->mixch[i].unitid == unitid) return &state->mixch[i]; return NULL; } static void usb_audio_selectorunit(struct consmixstate *state, unsigned char *selector) { unsigned int chnum, i, mixch; struct mixerchannel *mch; if (!selector[4]) { printk(KERN_ERR "usbaudio: unit %u invalid SELECTOR_UNIT descriptor\n", selector[3]); return; } mixch = state->nrmixch; usb_audio_recurseunit(state, selector[5]); if (state->nrmixch != mixch) { mch = &state->mixch[state->nrmixch-1]; mch->slctunitid = selector[3] | (1 << 8); } else if ((mch = slctsrc_findunit(state, selector[5]))) { mch->slctunitid = selector[3] | (1 << 8); } else { printk(KERN_INFO "usbaudio: selector unit %u: ignoring channel 1\n", selector[3]); } chnum = state->nrchannels; for (i = 1; i < selector[4]; i++) { mixch = state->nrmixch; usb_audio_recurseunit(state, selector[5+i]); if (chnum != state->nrchannels) { printk(KERN_ERR "usbaudio: selector unit %u: input pins with varying channel numbers\n", selector[3]); state->termtype = 0; state->chconfig = 0; state->nrchannels = 0; return; } if (state->nrmixch != mixch) { mch = &state->mixch[state->nrmixch-1]; mch->slctunitid = selector[3] | ((i + 1) << 8); } else if ((mch = slctsrc_findunit(state, selector[5+i]))) { mch->slctunitid = selector[3] | ((i + 1) << 8); } else { printk(KERN_INFO "usbaudio: selector unit %u: ignoring channel %u\n", selector[3], i+1); } } state->termtype = 0; state->chconfig = 0; } /* in the future we might try to handle 3D etc. effect units */ static void usb_audio_processingunit(struct consmixstate *state, unsigned char *proc) { unsigned int i; for (i = 0; i < proc[6]; i++) usb_audio_recurseunit(state, proc[7+i]); state->nrchannels = proc[7+proc[6]]; state->termtype = 0; state->chconfig = proc[8+proc[6]] | (proc[9+proc[6]] << 8); } /* See Audio Class Spec, section 4.3.2.5 */ static void usb_audio_featureunit(struct consmixstate *state, unsigned char *ftr) { struct mixerchannel *ch; unsigned short chftr, mchftr; #if 0 struct usb_device *dev = state->s->usbdev; unsigned char data[1]; #endif unsigned char nr_logical_channels, i; usb_audio_recurseunit(state, ftr[4]); if (ftr[5] == 0 ) { printk(KERN_ERR "usbaudio: wrong controls size in feature unit %u\n",ftr[3]); return; } if (state->nrchannels == 0) { printk(KERN_ERR "usbaudio: feature unit %u source has no channels\n", ftr[3]); return; } if (state->nrchannels > 2) printk(KERN_WARNING "usbaudio: feature unit %u: OSS mixer interface does not support more than 2 channels\n", ftr[3]); nr_logical_channels=(ftr[0]-7)/ftr[5]-1; if (nr_logical_channels != state->nrchannels) { printk(KERN_WARNING "usbaudio: warning: found %d of %d logical channels.\n", state->nrchannels,nr_logical_channels); if (state->nrchannels == 1 && nr_logical_channels==0) { printk(KERN_INFO "usbaudio: assuming the channel found is the master channel (got a Philips camera?). Should be fine.\n"); } else if (state->nrchannels == 1 && nr_logical_channels==2) { printk(KERN_INFO "usbaudio: assuming that a stereo channel connected directly to a mixer is missing in search (got Labtec headset?). Should be fine.\n"); state->nrchannels=nr_logical_channels; } else { printk(KERN_WARNING "usbaudio: no idea what's going on..., contact linux-usb-devel@lists.sourceforge.net\n"); } } /* There is always a master channel */ mchftr = ftr[6]; /* Binary AND over logical channels if they exist */ if (nr_logical_channels) { chftr = ftr[6+ftr[5]]; for (i = 2; i <= nr_logical_channels; i++) chftr &= ftr[6+i*ftr[5]]; } else { chftr = 0; } /* volume control */ if (chftr & 2) { ch = getmixchannel(state, getvolchannel(state)); if (ch) { ch->unitid = ftr[3]; ch->selector = VOLUME_CONTROL; ch->chnum = 1; ch->flags = (state->nrchannels > 1) ? (MIXFLG_STEREOIN | MIXFLG_STEREOOUT) : 0; prepmixch(state); } } else if (mchftr & 2) { ch = getmixchannel(state, getvolchannel(state)); if (ch) { ch->unitid = ftr[3]; ch->selector = VOLUME_CONTROL; ch->chnum = 0; ch->flags = 0; prepmixch(state); } } /* bass control */ if (chftr & 4) { ch = getmixchannel(state, SOUND_MIXER_BASS); if (ch) { ch->unitid = ftr[3]; ch->selector = BASS_CONTROL; ch->chnum = 1; ch->flags = (state->nrchannels > 1) ? (MIXFLG_STEREOIN | MIXFLG_STEREOOUT) : 0; prepmixch(state); } } else if (mchftr & 4) { ch = getmixchannel(state, SOUND_MIXER_BASS); if (ch) { ch->unitid = ftr[3]; ch->selector = BASS_CONTROL; ch->chnum = 0; ch->flags = 0; prepmixch(state); } } /* treble control */ if (chftr & 16) { ch = getmixchannel(state, SOUND_MIXER_TREBLE); if (ch) { ch->unitid = ftr[3]; ch->selector = TREBLE_CONTROL; ch->chnum = 1; ch->flags = (state->nrchannels > 1) ? (MIXFLG_STEREOIN | MIXFLG_STEREOOUT) : 0; prepmixch(state); } } else if (mchftr & 16) { ch = getmixchannel(state, SOUND_MIXER_TREBLE); if (ch) { ch->unitid = ftr[3]; ch->selector = TREBLE_CONTROL; ch->chnum = 0; ch->flags = 0; prepmixch(state); } } #if 0 /* if there are mute controls, unmute them */ /* does not seem to be necessary, and the Dallas chip does not seem to support the "all" channel (255) */ if ((chftr & 1) || (mchftr & 1)) { printk(KERN_DEBUG "usbaudio: unmuting feature unit %u interface %u\n", ftr[3], state->ctrlif); data[0] = 0; if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT, (MUTE_CONTROL << 8) | 0xff, state->ctrlif | (ftr[3] << 8), data, 1, 1000) < 0) printk(KERN_WARNING "usbaudio: failure to unmute feature unit %u interface %u\n", ftr[3], state->ctrlif); } #endif } static void usb_audio_recurseunit(struct consmixstate *state, unsigned char unitid) { unsigned char *p1; unsigned int i, j; if (test_and_set_bit(unitid, state->unitbitmap)) { printk(KERN_INFO "usbaudio: mixer path revisits unit %d\n", unitid); return; } p1 = find_audiocontrol_unit(state->buffer, state->buflen, NULL, unitid, state->ctrlif); if (!p1) { printk(KERN_ERR "usbaudio: unit %d not found!\n", unitid); return; } state->nrchannels = 0; state->termtype = 0; state->chconfig = 0; switch (p1[2]) { case INPUT_TERMINAL: if (p1[0] < 12) { printk(KERN_ERR "usbaudio: unit %u: invalid INPUT_TERMINAL descriptor\n", unitid); return; } state->nrchannels = p1[7]; state->termtype = p1[4] | (p1[5] << 8); state->chconfig = p1[8] | (p1[9] << 8); return; case MIXER_UNIT: if (p1[0] < 10 || p1[0] < 10+p1[4]) { printk(KERN_ERR "usbaudio: unit %u: invalid MIXER_UNIT descriptor\n", unitid); return; } usb_audio_mixerunit(state, p1); return; case SELECTOR_UNIT: if (p1[0] < 6 || p1[0] < 6+p1[4]) { printk(KERN_ERR "usbaudio: unit %u: invalid SELECTOR_UNIT descriptor\n", unitid); return; } usb_audio_selectorunit(state, p1); return; case FEATURE_UNIT: /* See USB Audio Class Spec 4.3.2.5 */ if (p1[0] < 7 || p1[0] < 7+p1[5]) { printk(KERN_ERR "usbaudio: unit %u: invalid FEATURE_UNIT descriptor\n", unitid); return; } usb_audio_featureunit(state, p1); return; case PROCESSING_UNIT: if (p1[0] < 13 || p1[0] < 13+p1[6] || p1[0] < 13+p1[6]+p1[11+p1[6]]) { printk(KERN_ERR "usbaudio: unit %u: invalid PROCESSING_UNIT descriptor\n", unitid); return; } usb_audio_processingunit(state, p1); return; case EXTENSION_UNIT: if (p1[0] < 13 || p1[0] < 13+p1[6] || p1[0] < 13+p1[6]+p1[11+p1[6]]) { printk(KERN_ERR "usbaudio: unit %u: invalid EXTENSION_UNIT descriptor\n", unitid); return; } for (j = i = 0; i < p1[6]; i++) { usb_audio_recurseunit(state, p1[7+i]); if (!i) j = state->termtype; else if (j != state->termtype) j = 0; } state->nrchannels = p1[7+p1[6]]; state->chconfig = p1[8+p1[6]] | (p1[9+p1[6]] << 8); state->termtype = j; return; default: printk(KERN_ERR "usbaudio: unit %u: unexpected type 0x%02x\n", unitid, p1[2]); return; } } static void usb_audio_constructmixer(struct usb_audio_state *s, unsigned char *buffer, unsigned int buflen, unsigned int ctrlif, unsigned char *oterm) { struct usb_mixerdev *ms; struct consmixstate state; memset(&state, 0, sizeof(state)); state.s = s; state.nrmixch = 0; state.mixchmask = ~0; state.buffer = buffer; state.buflen = buflen; state.ctrlif = ctrlif; set_bit(oterm[3], state.unitbitmap); /* mark terminal ID as visited */ printk(KERN_DEBUG "usbaudio: constructing mixer for Terminal %u type 0x%04x\n", oterm[3], oterm[4] | (oterm[5] << 8)); usb_audio_recurseunit(&state, oterm[7]); if (!state.nrmixch) { printk(KERN_INFO "usbaudio: no mixer controls found for Terminal %u\n", oterm[3]); return; } if (!(ms = kmalloc(sizeof(struct usb_mixerdev)+state.nrmixch*sizeof(struct mixerchannel), GFP_KERNEL))) return; memset(ms, 0, sizeof(struct usb_mixerdev)); memcpy(&ms->ch, &state.mixch, state.nrmixch*sizeof(struct mixerchannel)); ms->state = s; ms->iface = ctrlif; ms->numch = state.nrmixch; if ((ms->dev_mixer = register_sound_mixer(&usb_mixer_fops, -1)) < 0) { printk(KERN_ERR "usbaudio: cannot register mixer\n"); kfree(ms); return; } printk(KERN_INFO "usbaudio: registered mixer 14,%d\n", ms->dev_mixer); list_add_tail(&ms->list, &s->mixerlist); } /* arbitrary limit, we won't check more interfaces than this */ #define USB_MAXINTERFACES 32 static struct usb_audio_state *usb_audio_parsecontrol(struct usb_device *dev, unsigned char *buffer, unsigned int buflen, unsigned int ctrlif) { struct usb_audio_state *s; struct usb_interface *iface; struct usb_host_interface *alt; unsigned char ifin[USB_MAXINTERFACES], ifout[USB_MAXINTERFACES]; unsigned char *p1; unsigned int i, j, k, numifin = 0, numifout = 0; if (!(s = kmalloc(sizeof(struct usb_audio_state), GFP_KERNEL))) return NULL; memset(s, 0, sizeof(struct usb_audio_state)); INIT_LIST_HEAD(&s->audiolist); INIT_LIST_HEAD(&s->mixerlist); s->usbdev = dev; s->count = 1; /* find audiocontrol interface */ if (!(p1 = find_csinterface_descriptor(buffer, buflen, NULL, HEADER, ctrlif, -1))) { printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u no HEADER found\n", dev->devnum, ctrlif); goto ret; } if (p1[0] < 8 + p1[7]) { printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u HEADER error\n", dev->devnum, ctrlif); goto ret; } if (!p1[7]) printk(KERN_INFO "usbaudio: device %d audiocontrol interface %u has no AudioStreaming and MidiStreaming interfaces\n", dev->devnum, ctrlif); for (i = 0; i < p1[7]; i++) { j = p1[8+i]; iface = usb_ifnum_to_if(dev, j); if (!iface) { printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u interface %u does not exist\n", dev->devnum, ctrlif, j); continue; } if (iface->num_altsetting == 1) { printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u has only 1 altsetting.\n", dev->devnum, ctrlif); continue; } alt = usb_altnum_to_altsetting(iface, 0); if (!alt) { printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u interface %u has no altsetting 0\n", dev->devnum, ctrlif, j); continue; } if (alt->desc.bInterfaceClass != USB_CLASS_AUDIO) { printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u interface %u is not an AudioClass interface\n", dev->devnum, ctrlif, j); continue; } if (alt->desc.bInterfaceSubClass == 3) { printk(KERN_INFO "usbaudio: device %d audiocontrol interface %u interface %u MIDIStreaming not supported\n", dev->devnum, ctrlif, j); continue; } if (alt->desc.bInterfaceSubClass != 2) { printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u interface %u invalid AudioClass subtype\n", dev->devnum, ctrlif, j); continue; } if (alt->desc.bNumEndpoints > 0) { /* Check all endpoints; should they all have a bandwidth of 0 ? */ for (k = 0; k < alt->desc.bNumEndpoints; k++) { if (le16_to_cpu(alt->endpoint[k].desc.wMaxPacketSize) > 0) { printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u endpoint %d does not have 0 bandwidth at alt[0]\n", dev->devnum, ctrlif, k); break; } } if (k < alt->desc.bNumEndpoints) continue; } alt = usb_altnum_to_altsetting(iface, 1); if (!alt) { printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u interface %u has no altsetting 1\n", dev->devnum, ctrlif, j); continue; } if (alt->desc.bNumEndpoints < 1) { printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u interface %u has no endpoint\n", dev->devnum, ctrlif, j); continue; } /* note: this requires the data endpoint to be ep0 and the optional sync ep to be ep1, which seems to be the case */ if (alt->endpoint[0].desc.bEndpointAddress & USB_DIR_IN) { if (numifin < USB_MAXINTERFACES) { ifin[numifin++] = j; usb_driver_claim_interface(&usb_audio_driver, iface, (void *)-1); } } else { if (numifout < USB_MAXINTERFACES) { ifout[numifout++] = j; usb_driver_claim_interface(&usb_audio_driver, iface, (void *)-1); } } } printk(KERN_INFO "usbaudio: device %d audiocontrol interface %u has %u input and %u output AudioStreaming interfaces\n", dev->devnum, ctrlif, numifin, numifout); for (i = 0; i < numifin && i < numifout; i++) usb_audio_parsestreaming(s, buffer, buflen, ifin[i], ifout[i]); for (j = i; j < numifin; j++) usb_audio_parsestreaming(s, buffer, buflen, ifin[i], -1); for (j = i; j < numifout; j++) usb_audio_parsestreaming(s, buffer, buflen, -1, ifout[i]); /* now walk through all OUTPUT_TERMINAL descriptors to search for mixers */ p1 = find_csinterface_descriptor(buffer, buflen, NULL, OUTPUT_TERMINAL, ctrlif, -1); while (p1) { if (p1[0] >= 9) usb_audio_constructmixer(s, buffer, buflen, ctrlif, p1); p1 = find_csinterface_descriptor(buffer, buflen, p1, OUTPUT_TERMINAL, ctrlif, -1); } ret: if (list_empty(&s->audiolist) && list_empty(&s->mixerlist)) { kfree(s); return NULL; } /* everything successful */ down(&open_sem); list_add_tail(&s->audiodev, &audiodevs); up(&open_sem); printk(KERN_DEBUG "usb_audio_parsecontrol: usb_audio_state at %p\n", s); return s; } /* we only care for the currently active configuration */ static int usb_audio_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *dev = interface_to_usbdev (intf); struct usb_audio_state *s; unsigned char *buffer; unsigned int buflen; #if 0 printk(KERN_DEBUG "usbaudio: Probing if %i: IC %x, ISC %x\n", ifnum, config->interface[ifnum].altsetting[0].desc.bInterfaceClass, config->interface[ifnum].altsetting[0].desc.bInterfaceSubClass); #endif /* * audiocontrol interface found * find which configuration number is active */ buffer = dev->rawdescriptors[dev->actconfig - dev->config]; buflen = le16_to_cpu(dev->actconfig->desc.wTotalLength); s = usb_audio_parsecontrol(dev, buffer, buflen, intf->altsetting->desc.bInterfaceNumber); if (s) { usb_set_intfdata (intf, s); return 0; } return -ENODEV; } /* a revoke facility would make things simpler */ static void usb_audio_disconnect(struct usb_interface *intf) { struct usb_audio_state *s = usb_get_intfdata (intf); struct usb_audiodev *as; struct usb_mixerdev *ms; if (!s) return; /* we get called with -1 for every audiostreaming interface registered */ if (s == (struct usb_audio_state *)-1) { dprintk((KERN_DEBUG "usbaudio: note, usb_audio_disconnect called with -1\n")); return; } if (!s->usbdev) { dprintk((KERN_DEBUG "usbaudio: error, usb_audio_disconnect already called for %p!\n", s)); return; } down(&open_sem); list_del_init(&s->audiodev); s->usbdev = NULL; usb_set_intfdata (intf, NULL); /* deregister all audio and mixer devices, so no new processes can open this device */ list_for_each_entry(as, &s->audiolist, list) { usbin_disc(as); usbout_disc(as); wake_up(&as->usbin.dma.wait); wake_up(&as->usbout.dma.wait); if (as->dev_audio >= 0) { unregister_sound_dsp(as->dev_audio); printk(KERN_INFO "usbaudio: unregister dsp 14,%d\n", as->dev_audio); } as->dev_audio = -1; } list_for_each_entry(ms, &s->mixerlist, list) { if (ms->dev_mixer >= 0) { unregister_sound_mixer(ms->dev_mixer); printk(KERN_INFO "usbaudio: unregister mixer 14,%d\n", ms->dev_mixer); } ms->dev_mixer = -1; } release(s); wake_up(&open_wait); } static int __init usb_audio_init(void) { int result = usb_register(&usb_audio_driver); if (result == 0) info(DRIVER_VERSION ":" DRIVER_DESC); return result; } static void __exit usb_audio_cleanup(void) { usb_deregister(&usb_audio_driver); } module_init(usb_audio_init); module_exit(usb_audio_cleanup); MODULE_AUTHOR( DRIVER_AUTHOR ); MODULE_DESCRIPTION( DRIVER_DESC ); MODULE_LICENSE("GPL");