/* * Thunderbolt Cactus Ridge driver - eeprom access * * Copyright (c) 2014 Andreas Noever */ #include #include #include "tb.h" /** * tb_eeprom_ctl_write() - write control word */ static int tb_eeprom_ctl_write(struct tb_switch *sw, struct tb_eeprom_ctl *ctl) { return tb_sw_write(sw, ctl, TB_CFG_SWITCH, sw->cap_plug_events + 4, 1); } /** * tb_eeprom_ctl_write() - read control word */ static int tb_eeprom_ctl_read(struct tb_switch *sw, struct tb_eeprom_ctl *ctl) { return tb_sw_read(sw, ctl, TB_CFG_SWITCH, sw->cap_plug_events + 4, 1); } enum tb_eeprom_transfer { TB_EEPROM_IN, TB_EEPROM_OUT, }; /** * tb_eeprom_active - enable rom access * * WARNING: Always disable access after usage. Otherwise the controller will * fail to reprobe. */ static int tb_eeprom_active(struct tb_switch *sw, bool enable) { struct tb_eeprom_ctl ctl; int res = tb_eeprom_ctl_read(sw, &ctl); if (res) return res; if (enable) { ctl.access_high = 1; res = tb_eeprom_ctl_write(sw, &ctl); if (res) return res; ctl.access_low = 0; return tb_eeprom_ctl_write(sw, &ctl); } else { ctl.access_low = 1; res = tb_eeprom_ctl_write(sw, &ctl); if (res) return res; ctl.access_high = 0; return tb_eeprom_ctl_write(sw, &ctl); } } /** * tb_eeprom_transfer - transfer one bit * * If TB_EEPROM_IN is passed, then the bit can be retrieved from ctl->data_in. * If TB_EEPROM_OUT is passed, then ctl->data_out will be written. */ static int tb_eeprom_transfer(struct tb_switch *sw, struct tb_eeprom_ctl *ctl, enum tb_eeprom_transfer direction) { int res; if (direction == TB_EEPROM_OUT) { res = tb_eeprom_ctl_write(sw, ctl); if (res) return res; } ctl->clock = 1; res = tb_eeprom_ctl_write(sw, ctl); if (res) return res; if (direction == TB_EEPROM_IN) { res = tb_eeprom_ctl_read(sw, ctl); if (res) return res; } ctl->clock = 0; return tb_eeprom_ctl_write(sw, ctl); } /** * tb_eeprom_out - write one byte to the bus */ static int tb_eeprom_out(struct tb_switch *sw, u8 val) { struct tb_eeprom_ctl ctl; int i; int res = tb_eeprom_ctl_read(sw, &ctl); if (res) return res; for (i = 0; i < 8; i++) { ctl.data_out = val & 0x80; res = tb_eeprom_transfer(sw, &ctl, TB_EEPROM_OUT); if (res) return res; val <<= 1; } return 0; } /** * tb_eeprom_in - read one byte from the bus */ static int tb_eeprom_in(struct tb_switch *sw, u8 *val) { struct tb_eeprom_ctl ctl; int i; int res = tb_eeprom_ctl_read(sw, &ctl); if (res) return res; *val = 0; for (i = 0; i < 8; i++) { *val <<= 1; res = tb_eeprom_transfer(sw, &ctl, TB_EEPROM_IN); if (res) return res; *val |= ctl.data_in; } return 0; } /** * tb_eeprom_read_n - read count bytes from offset into val */ static int tb_eeprom_read_n(struct tb_switch *sw, u16 offset, u8 *val, size_t count) { int i, res; res = tb_eeprom_active(sw, true); if (res) return res; res = tb_eeprom_out(sw, 3); if (res) return res; res = tb_eeprom_out(sw, offset >> 8); if (res) return res; res = tb_eeprom_out(sw, offset); if (res) return res; for (i = 0; i < count; i++) { res = tb_eeprom_in(sw, val + i); if (res) return res; } return tb_eeprom_active(sw, false); } static u8 tb_crc8(u8 *data, int len) { int i, j; u8 val = 0xff; for (i = 0; i < len; i++) { val ^= data[i]; for (j = 0; j < 8; j++) val = (val << 1) ^ ((val & 0x80) ? 7 : 0); } return val; } static u32 tb_crc32(void *data, size_t len) { return ~__crc32c_le(~0, data, len); } #define TB_DROM_DATA_START 13 struct tb_drom_header { /* BYTE 0 */ u8 uid_crc8; /* checksum for uid */ /* BYTES 1-8 */ u64 uid; /* BYTES 9-12 */ u32 data_crc32; /* checksum for data_len bytes starting at byte 13 */ /* BYTE 13 */ u8 device_rom_revision; /* should be <= 1 */ u16 data_len:10; u8 __unknown1:6; /* BYTES 16-21 */ u16 vendor_id; u16 model_id; u8 model_rev; u8 eeprom_rev; } __packed; enum tb_drom_entry_type { /* force unsigned to prevent "one-bit signed bitfield" warning */ TB_DROM_ENTRY_GENERIC = 0U, TB_DROM_ENTRY_PORT, }; struct tb_drom_entry_header { u8 len; u8 index:6; bool port_disabled:1; /* only valid if type is TB_DROM_ENTRY_PORT */ enum tb_drom_entry_type type:1; } __packed; struct tb_drom_entry_port { /* BYTES 0-1 */ struct tb_drom_entry_header header; /* BYTE 2 */ u8 dual_link_port_rid:4; u8 link_nr:1; u8 unknown1:2; bool has_dual_link_port:1; /* BYTE 3 */ u8 dual_link_port_nr:6; u8 unknown2:2; /* BYTES 4 - 5 TODO decode */ u8 micro2:4; u8 micro1:4; u8 micro3; /* BYTES 5-6, TODO: verify (find hardware that has these set) */ u8 peer_port_rid:4; u8 unknown3:3; bool has_peer_port:1; u8 peer_port_nr:6; u8 unknown4:2; } __packed; /** * tb_eeprom_get_drom_offset - get drom offset within eeprom */ static int tb_eeprom_get_drom_offset(struct tb_switch *sw, u16 *offset) { struct tb_cap_plug_events cap; int res; if (!sw->cap_plug_events) { tb_sw_warn(sw, "no TB_CAP_PLUG_EVENTS, cannot read eeprom\n"); return -ENOSYS; } res = tb_sw_read(sw, &cap, TB_CFG_SWITCH, sw->cap_plug_events, sizeof(cap) / 4); if (res) return res; if (!cap.eeprom_ctl.present || cap.eeprom_ctl.not_present) { tb_sw_warn(sw, "no NVM\n"); return -ENOSYS; } if (cap.drom_offset > 0xffff) { tb_sw_warn(sw, "drom offset is larger than 0xffff: %#x\n", cap.drom_offset); return -ENXIO; } *offset = cap.drom_offset; return 0; } /** * tb_drom_read_uid_only - read uid directly from drom * * Does not use the cached copy in sw->drom. Used during resume to check switch * identity. */ int tb_drom_read_uid_only(struct tb_switch *sw, u64 *uid) { u8 data[9]; u16 drom_offset; u8 crc; int res = tb_eeprom_get_drom_offset(sw, &drom_offset); if (res) return res; /* read uid */ res = tb_eeprom_read_n(sw, drom_offset, data, 9); if (res) return res; crc = tb_crc8(data + 1, 8); if (crc != data[0]) { tb_sw_warn(sw, "uid crc8 missmatch (expected: %#x, got: %#x)\n", data[0], crc); return -EIO; } *uid = *(u64 *)(data+1); return 0; } static void tb_drom_parse_port_entry(struct tb_port *port, struct tb_drom_entry_port *entry) { port->link_nr = entry->link_nr; if (entry->has_dual_link_port) port->dual_link_port = &port->sw->ports[entry->dual_link_port_nr]; } static int tb_drom_parse_entry(struct tb_switch *sw, struct tb_drom_entry_header *header) { struct tb_port *port; int res; enum tb_port_type type; if (header->type != TB_DROM_ENTRY_PORT) return 0; port = &sw->ports[header->index]; port->disabled = header->port_disabled; if (port->disabled) return 0; res = tb_port_read(port, &type, TB_CFG_PORT, 2, 1); if (res) return res; type &= 0xffffff; if (type == TB_TYPE_PORT) { struct tb_drom_entry_port *entry = (void *) header; if (header->len != sizeof(*entry)) { tb_sw_warn(sw, "port entry has size %#x (expected %#zx)\n", header->len, sizeof(struct tb_drom_entry_port)); return -EIO; } tb_drom_parse_port_entry(port, entry); } return 0; } /** * tb_drom_parse_entries - parse the linked list of drom entries * * Drom must have been copied to sw->drom. */ static int tb_drom_parse_entries(struct tb_switch *sw) { struct tb_drom_header *header = (void *) sw->drom; u16 pos = sizeof(*header); u16 drom_size = header->data_len + TB_DROM_DATA_START; while (pos < drom_size) { struct tb_drom_entry_header *entry = (void *) (sw->drom + pos); if (pos + 1 == drom_size || pos + entry->len > drom_size || !entry->len) { tb_sw_warn(sw, "drom buffer overrun, aborting\n"); return -EIO; } tb_drom_parse_entry(sw, entry); pos += entry->len; } return 0; } /** * tb_drom_read - copy drom to sw->drom and parse it */ int tb_drom_read(struct tb_switch *sw) { u16 drom_offset; u16 size; u32 crc; struct tb_drom_header *header; int res; if (sw->drom) return 0; if (tb_route(sw) == 0) { /* * The root switch contains only a dummy drom (header only, * no entries). Hardcode the configuration here. */ tb_drom_read_uid_only(sw, &sw->uid); sw->ports[1].link_nr = 0; sw->ports[2].link_nr = 1; sw->ports[1].dual_link_port = &sw->ports[2]; sw->ports[2].dual_link_port = &sw->ports[1]; sw->ports[3].link_nr = 0; sw->ports[4].link_nr = 1; sw->ports[3].dual_link_port = &sw->ports[4]; sw->ports[4].dual_link_port = &sw->ports[3]; return 0; } res = tb_eeprom_get_drom_offset(sw, &drom_offset); if (res) return res; res = tb_eeprom_read_n(sw, drom_offset + 14, (u8 *) &size, 2); if (res) return res; size &= 0x3ff; size += TB_DROM_DATA_START; tb_sw_info(sw, "reading drom (length: %#x)\n", size); if (size < sizeof(*header)) { tb_sw_warn(sw, "drom too small, aborting\n"); return -EIO; } sw->drom = kzalloc(size, GFP_KERNEL); if (!sw->drom) return -ENOMEM; res = tb_eeprom_read_n(sw, drom_offset, sw->drom, size); if (res) goto err; header = (void *) sw->drom; if (header->data_len + TB_DROM_DATA_START != size) { tb_sw_warn(sw, "drom size mismatch, aborting\n"); goto err; } crc = tb_crc8((u8 *) &header->uid, 8); if (crc != header->uid_crc8) { tb_sw_warn(sw, "drom uid crc8 mismatch (expected: %#x, got: %#x), aborting\n", header->uid_crc8, crc); goto err; } sw->uid = header->uid; crc = tb_crc32(sw->drom + TB_DROM_DATA_START, header->data_len); if (crc != header->data_crc32) { tb_sw_warn(sw, "drom data crc32 mismatch (expected: %#x, got: %#x), aborting\n", header->data_crc32, crc); goto err; } if (header->device_rom_revision > 1) tb_sw_warn(sw, "drom device_rom_revision %#x unknown\n", header->device_rom_revision); return tb_drom_parse_entries(sw); err: kfree(sw->drom); return -EIO; }