/* * decserial.c: Serial port driver for IOASIC DECstations. * * Derived from drivers/sbus/char/sunserial.c by Paul Mackerras. * Derived from drivers/macintosh/macserial.c by Harald Koerfgen. * * DECstation changes * Copyright (C) 1998-2000 Harald Koerfgen * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005 Maciej W. Rozycki * * For the rest of the code the original Copyright applies: * Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au) * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) * * * Note: for IOASIC systems the wiring is as follows: * * mouse/keyboard: * DIN-7 MJ-4 signal SCC * 2 1 TxD <- A.TxD * 3 4 RxD -> A.RxD * * EIA-232/EIA-423: * DB-25 MMJ-6 signal SCC * 2 2 TxD <- B.TxD * 3 5 RxD -> B.RxD * 4 RTS <- ~A.RTS * 5 CTS -> ~B.CTS * 6 6 DSR -> ~A.SYNC * 8 CD -> ~B.DCD * 12 DSRS(DCE) -> ~A.CTS (*) * 15 TxC -> B.TxC * 17 RxC -> B.RxC * 20 1 DTR <- ~A.DTR * 22 RI -> ~A.DCD * 23 DSRS(DTE) <- ~B.RTS * * (*) EIA-232 defines the signal at this pin to be SCD, while DSRS(DCE) * is shared with DSRS(DTE) at pin 23. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_SERIAL_DEC_CONSOLE #include #endif #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_KGDB #include #endif #ifdef CONFIG_MAGIC_SYSRQ #include #endif #include "zs.h" /* * It would be nice to dynamically allocate everything that * depends on NUM_SERIAL, so we could support any number of * Z8530s, but for now... */ #define NUM_SERIAL 2 /* Max number of ZS chips supported */ #define NUM_CHANNELS (NUM_SERIAL * 2) /* 2 channels per chip */ #define CHANNEL_A_NR (zs_parms->channel_a_offset > zs_parms->channel_b_offset) /* Number of channel A in the chip */ #define ZS_CHAN_IO_SIZE 8 #define ZS_CLOCK 7372800 /* Z8530 RTxC input clock rate */ #define RECOVERY_DELAY udelay(2) struct zs_parms { unsigned long scc0; unsigned long scc1; int channel_a_offset; int channel_b_offset; int irq0; int irq1; int clock; }; static struct zs_parms *zs_parms; #ifdef CONFIG_MACH_DECSTATION static struct zs_parms ds_parms = { scc0 : IOASIC_SCC0, scc1 : IOASIC_SCC1, channel_a_offset : 1, channel_b_offset : 9, irq0 : -1, irq1 : -1, clock : ZS_CLOCK }; #endif #ifdef CONFIG_MACH_DECSTATION #define DS_BUS_PRESENT (IOASIC) #else #define DS_BUS_PRESENT 0 #endif #define BUS_PRESENT (DS_BUS_PRESENT) DEFINE_SPINLOCK(zs_lock); struct dec_zschannel zs_channels[NUM_CHANNELS]; struct dec_serial zs_soft[NUM_CHANNELS]; int zs_channels_found; struct dec_serial *zs_chain; /* list of all channels */ struct tty_struct zs_ttys[NUM_CHANNELS]; #ifdef CONFIG_SERIAL_DEC_CONSOLE static struct console sercons; #endif #if defined(CONFIG_SERIAL_DEC_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) && \ !defined(MODULE) static unsigned long break_pressed; /* break, really ... */ #endif static unsigned char zs_init_regs[16] __initdata = { 0, /* write 0 */ 0, /* write 1 */ 0, /* write 2 */ 0, /* write 3 */ (X16CLK), /* write 4 */ 0, /* write 5 */ 0, 0, 0, /* write 6, 7, 8 */ (MIE | DLC | NV), /* write 9 */ (NRZ), /* write 10 */ (TCBR | RCBR), /* write 11 */ 0, 0, /* BRG time constant, write 12 + 13 */ (BRSRC | BRENABL), /* write 14 */ 0 /* write 15 */ }; static struct tty_driver *serial_driver; /* serial subtype definitions */ #define SERIAL_TYPE_NORMAL 1 /* number of characters left in xmit buffer before we ask for more */ #define WAKEUP_CHARS 256 /* * Debugging. */ #undef SERIAL_DEBUG_OPEN #undef SERIAL_DEBUG_FLOW #undef SERIAL_DEBUG_THROTTLE #undef SERIAL_PARANOIA_CHECK #undef ZS_DEBUG_REGS #ifdef SERIAL_DEBUG_THROTTLE #define _tty_name(tty,buf) tty_name(tty,buf) #endif #define RS_STROBE_TIME 10 #define RS_ISR_PASS_LIMIT 256 static void probe_sccs(void); static void change_speed(struct dec_serial *info); static void rs_wait_until_sent(struct tty_struct *tty, int timeout); static inline int serial_paranoia_check(struct dec_serial *info, char *name, const char *routine) { #ifdef SERIAL_PARANOIA_CHECK static const char *badmagic = "Warning: bad magic number for serial struct %s in %s\n"; static const char *badinfo = "Warning: null mac_serial for %s in %s\n"; if (!info) { printk(badinfo, name, routine); return 1; } if (info->magic != SERIAL_MAGIC) { printk(badmagic, name, routine); return 1; } #endif return 0; } /* * This is used to figure out the divisor speeds and the timeouts */ static int baud_table[] = { 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 0 }; /* * Reading and writing Z8530 registers. */ static inline unsigned char read_zsreg(struct dec_zschannel *channel, unsigned char reg) { unsigned char retval; if (reg != 0) { *channel->control = reg & 0xf; fast_iob(); RECOVERY_DELAY; } retval = *channel->control; RECOVERY_DELAY; return retval; } static inline void write_zsreg(struct dec_zschannel *channel, unsigned char reg, unsigned char value) { if (reg != 0) { *channel->control = reg & 0xf; fast_iob(); RECOVERY_DELAY; } *channel->control = value; fast_iob(); RECOVERY_DELAY; return; } static inline unsigned char read_zsdata(struct dec_zschannel *channel) { unsigned char retval; retval = *channel->data; RECOVERY_DELAY; return retval; } static inline void write_zsdata(struct dec_zschannel *channel, unsigned char value) { *channel->data = value; fast_iob(); RECOVERY_DELAY; return; } static inline void load_zsregs(struct dec_zschannel *channel, unsigned char *regs) { /* ZS_CLEARERR(channel); ZS_CLEARFIFO(channel); */ /* Load 'em up */ write_zsreg(channel, R3, regs[R3] & ~RxENABLE); write_zsreg(channel, R5, regs[R5] & ~TxENAB); write_zsreg(channel, R4, regs[R4]); write_zsreg(channel, R9, regs[R9]); write_zsreg(channel, R1, regs[R1]); write_zsreg(channel, R2, regs[R2]); write_zsreg(channel, R10, regs[R10]); write_zsreg(channel, R11, regs[R11]); write_zsreg(channel, R12, regs[R12]); write_zsreg(channel, R13, regs[R13]); write_zsreg(channel, R14, regs[R14]); write_zsreg(channel, R15, regs[R15]); write_zsreg(channel, R3, regs[R3]); write_zsreg(channel, R5, regs[R5]); return; } /* Sets or clears DTR/RTS on the requested line */ static inline void zs_rtsdtr(struct dec_serial *info, int which, int set) { unsigned long flags; spin_lock_irqsave(&zs_lock, flags); if (info->zs_channel != info->zs_chan_a) { if (set) { info->zs_chan_a->curregs[5] |= (which & (RTS | DTR)); } else { info->zs_chan_a->curregs[5] &= ~(which & (RTS | DTR)); } write_zsreg(info->zs_chan_a, 5, info->zs_chan_a->curregs[5]); } spin_unlock_irqrestore(&zs_lock, flags); } /* Utility routines for the Zilog */ static inline int get_zsbaud(struct dec_serial *ss) { struct dec_zschannel *channel = ss->zs_channel; int brg; /* The baud rate is split up between two 8-bit registers in * what is termed 'BRG time constant' format in my docs for * the chip, it is a function of the clk rate the chip is * receiving which happens to be constant. */ brg = (read_zsreg(channel, 13) << 8); brg |= read_zsreg(channel, 12); return BRG_TO_BPS(brg, (zs_parms->clock/(ss->clk_divisor))); } /* On receive, this clears errors and the receiver interrupts */ static inline void rs_recv_clear(struct dec_zschannel *zsc) { write_zsreg(zsc, 0, ERR_RES); write_zsreg(zsc, 0, RES_H_IUS); /* XXX this is unnecessary */ } /* * ---------------------------------------------------------------------- * * Here starts the interrupt handling routines. All of the following * subroutines are declared as inline and are folded into * rs_interrupt(). They were separated out for readability's sake. * * - Ted Ts'o (tytso@mit.edu), 7-Mar-93 * ----------------------------------------------------------------------- */ /* * This routine is used by the interrupt handler to schedule * processing in the software interrupt portion of the driver. */ static void rs_sched_event(struct dec_serial *info, int event) { info->event |= 1 << event; tasklet_schedule(&info->tlet); } static void receive_chars(struct dec_serial *info, struct pt_regs *regs) { struct tty_struct *tty = info->tty; unsigned char ch, stat, flag; while ((read_zsreg(info->zs_channel, R0) & Rx_CH_AV) != 0) { stat = read_zsreg(info->zs_channel, R1); ch = read_zsdata(info->zs_channel); if (!tty && (!info->hook || !info->hook->rx_char)) continue; flag = TTY_NORMAL; if (info->tty_break) { info->tty_break = 0; flag = TTY_BREAK; if (info->flags & ZILOG_SAK) do_SAK(tty); /* Ignore the null char got when BREAK is removed. */ if (ch == 0) continue; } else { if (stat & Rx_OVR) { flag = TTY_OVERRUN; } else if (stat & FRM_ERR) { flag = TTY_FRAME; } else if (stat & PAR_ERR) { flag = TTY_PARITY; } if (flag != TTY_NORMAL) /* reset the error indication */ write_zsreg(info->zs_channel, R0, ERR_RES); } #if defined(CONFIG_SERIAL_DEC_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) && \ !defined(MODULE) if (break_pressed && info->line == sercons.index) { /* Ignore the null char got when BREAK is removed. */ if (ch == 0) continue; if (time_before(jiffies, break_pressed + HZ * 5)) { handle_sysrq(ch, regs, NULL); break_pressed = 0; continue; } break_pressed = 0; } #endif if (info->hook && info->hook->rx_char) { (*info->hook->rx_char)(ch, flag); return; } tty_insert_flip_char(tty, ch, flag); } if (tty) tty_flip_buffer_push(tty); } static void transmit_chars(struct dec_serial *info) { if ((read_zsreg(info->zs_channel, R0) & Tx_BUF_EMP) == 0) return; info->tx_active = 0; if (info->x_char) { /* Send next char */ write_zsdata(info->zs_channel, info->x_char); info->x_char = 0; info->tx_active = 1; return; } if ((info->xmit_cnt <= 0) || (info->tty && info->tty->stopped) || info->tx_stopped) { write_zsreg(info->zs_channel, R0, RES_Tx_P); return; } /* Send char */ write_zsdata(info->zs_channel, info->xmit_buf[info->xmit_tail++]); info->xmit_tail = info->xmit_tail & (SERIAL_XMIT_SIZE-1); info->xmit_cnt--; info->tx_active = 1; if (info->xmit_cnt < WAKEUP_CHARS) rs_sched_event(info, RS_EVENT_WRITE_WAKEUP); } static void status_handle(struct dec_serial *info) { unsigned char stat; /* Get status from Read Register 0 */ stat = read_zsreg(info->zs_channel, R0); if ((stat & BRK_ABRT) && !(info->read_reg_zero & BRK_ABRT)) { #if defined(CONFIG_SERIAL_DEC_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) && \ !defined(MODULE) if (info->line == sercons.index) { if (!break_pressed) break_pressed = jiffies; } else #endif info->tty_break = 1; } if (info->zs_channel != info->zs_chan_a) { /* Check for DCD transitions */ if (info->tty && !C_CLOCAL(info->tty) && ((stat ^ info->read_reg_zero) & DCD) != 0 ) { if (stat & DCD) { wake_up_interruptible(&info->open_wait); } else { tty_hangup(info->tty); } } /* Check for CTS transitions */ if (info->tty && C_CRTSCTS(info->tty)) { if ((stat & CTS) != 0) { if (info->tx_stopped) { info->tx_stopped = 0; if (!info->tx_active) transmit_chars(info); } } else { info->tx_stopped = 1; } } } /* Clear status condition... */ write_zsreg(info->zs_channel, R0, RES_EXT_INT); info->read_reg_zero = stat; } /* * This is the serial driver's generic interrupt routine */ static irqreturn_t rs_interrupt(int irq, void *dev_id, struct pt_regs *regs) { struct dec_serial *info = (struct dec_serial *) dev_id; irqreturn_t status = IRQ_NONE; unsigned char zs_intreg; int shift; /* NOTE: The read register 3, which holds the irq status, * does so for both channels on each chip. Although * the status value itself must be read from the A * channel and is only valid when read from channel A. * Yes... broken hardware... */ #define CHAN_IRQMASK (CHBRxIP | CHBTxIP | CHBEXT) if (info->zs_chan_a == info->zs_channel) shift = 3; /* Channel A */ else shift = 0; /* Channel B */ for (;;) { zs_intreg = read_zsreg(info->zs_chan_a, R3) >> shift; if ((zs_intreg & CHAN_IRQMASK) == 0) break; status = IRQ_HANDLED; if (zs_intreg & CHBRxIP) { receive_chars(info, regs); } if (zs_intreg & CHBTxIP) { transmit_chars(info); } if (zs_intreg & CHBEXT) { status_handle(info); } } /* Why do we need this ? */ write_zsreg(info->zs_channel, 0, RES_H_IUS); return status; } #ifdef ZS_DEBUG_REGS void zs_dump (void) { int i, j; for (i = 0; i < zs_channels_found; i++) { struct dec_zschannel *ch = &zs_channels[i]; if ((long)ch->control == UNI_IO_BASE+UNI_SCC1A_CTRL) { for (j = 0; j < 15; j++) { printk("W%d = 0x%x\t", j, (int)ch->curregs[j]); } for (j = 0; j < 15; j++) { printk("R%d = 0x%x\t", j, (int)read_zsreg(ch,j)); } printk("\n\n"); } } } #endif /* * ------------------------------------------------------------------- * Here ends the serial interrupt routines. * ------------------------------------------------------------------- */ /* * ------------------------------------------------------------ * rs_stop() and rs_start() * * This routines are called before setting or resetting tty->stopped. * ------------------------------------------------------------ */ static void rs_stop(struct tty_struct *tty) { struct dec_serial *info = (struct dec_serial *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->name, "rs_stop")) return; #if 1 spin_lock_irqsave(&zs_lock, flags); if (info->zs_channel->curregs[5] & TxENAB) { info->zs_channel->curregs[5] &= ~TxENAB; write_zsreg(info->zs_channel, 5, info->zs_channel->curregs[5]); } spin_unlock_irqrestore(&zs_lock, flags); #endif } static void rs_start(struct tty_struct *tty) { struct dec_serial *info = (struct dec_serial *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->name, "rs_start")) return; spin_lock_irqsave(&zs_lock, flags); #if 1 if (info->xmit_cnt && info->xmit_buf && !(info->zs_channel->curregs[5] & TxENAB)) { info->zs_channel->curregs[5] |= TxENAB; write_zsreg(info->zs_channel, 5, info->zs_channel->curregs[5]); } #else if (info->xmit_cnt && info->xmit_buf && !info->tx_active) { transmit_chars(info); } #endif spin_unlock_irqrestore(&zs_lock, flags); } /* * This routine is used to handle the "bottom half" processing for the * serial driver, known also the "software interrupt" processing. * This processing is done at the kernel interrupt level, after the * rs_interrupt() has returned, BUT WITH INTERRUPTS TURNED ON. This * is where time-consuming activities which can not be done in the * interrupt driver proper are done; the interrupt driver schedules * them using rs_sched_event(), and they get done here. */ static void do_softint(unsigned long private_) { struct dec_serial *info = (struct dec_serial *) private_; struct tty_struct *tty; tty = info->tty; if (!tty) return; if (test_and_clear_bit(RS_EVENT_WRITE_WAKEUP, &info->event)) { tty_wakeup(tty); wake_up_interruptible(&tty->write_wait); } } static int zs_startup(struct dec_serial * info) { unsigned long flags; if (info->flags & ZILOG_INITIALIZED) return 0; if (!info->xmit_buf) { info->xmit_buf = (unsigned char *) get_zeroed_page(GFP_KERNEL); if (!info->xmit_buf) return -ENOMEM; } spin_lock_irqsave(&zs_lock, flags); #ifdef SERIAL_DEBUG_OPEN printk("starting up ttyS%d (irq %d)...", info->line, info->irq); #endif /* * Clear the receive FIFO. */ ZS_CLEARFIFO(info->zs_channel); info->xmit_fifo_size = 1; /* * Clear the interrupt registers. */ write_zsreg(info->zs_channel, R0, ERR_RES); write_zsreg(info->zs_channel, R0, RES_H_IUS); /* * Set the speed of the serial port */ change_speed(info); /* * Turn on RTS and DTR. */ zs_rtsdtr(info, RTS | DTR, 1); /* * Finally, enable sequencing and interrupts */ info->zs_channel->curregs[R1] &= ~RxINT_MASK; info->zs_channel->curregs[R1] |= (RxINT_ALL | TxINT_ENAB | EXT_INT_ENAB); info->zs_channel->curregs[R3] |= RxENABLE; info->zs_channel->curregs[R5] |= TxENAB; info->zs_channel->curregs[R15] |= (DCDIE | CTSIE | TxUIE | BRKIE); write_zsreg(info->zs_channel, R1, info->zs_channel->curregs[R1]); write_zsreg(info->zs_channel, R3, info->zs_channel->curregs[R3]); write_zsreg(info->zs_channel, R5, info->zs_channel->curregs[R5]); write_zsreg(info->zs_channel, R15, info->zs_channel->curregs[R15]); /* * And clear the interrupt registers again for luck. */ write_zsreg(info->zs_channel, R0, ERR_RES); write_zsreg(info->zs_channel, R0, RES_H_IUS); /* Save the current value of RR0 */ info->read_reg_zero = read_zsreg(info->zs_channel, R0); if (info->tty) clear_bit(TTY_IO_ERROR, &info->tty->flags); info->xmit_cnt = info->xmit_head = info->xmit_tail = 0; info->flags |= ZILOG_INITIALIZED; spin_unlock_irqrestore(&zs_lock, flags); return 0; } /* * This routine will shutdown a serial port; interrupts are disabled, and * DTR is dropped if the hangup on close termio flag is on. */ static void shutdown(struct dec_serial * info) { unsigned long flags; if (!(info->flags & ZILOG_INITIALIZED)) return; #ifdef SERIAL_DEBUG_OPEN printk("Shutting down serial port %d (irq %d)....", info->line, info->irq); #endif spin_lock_irqsave(&zs_lock, flags); if (info->xmit_buf) { free_page((unsigned long) info->xmit_buf); info->xmit_buf = 0; } info->zs_channel->curregs[1] = 0; write_zsreg(info->zs_channel, 1, info->zs_channel->curregs[1]); /* no interrupts */ info->zs_channel->curregs[3] &= ~RxENABLE; write_zsreg(info->zs_channel, 3, info->zs_channel->curregs[3]); info->zs_channel->curregs[5] &= ~TxENAB; write_zsreg(info->zs_channel, 5, info->zs_channel->curregs[5]); if (!info->tty || C_HUPCL(info->tty)) { zs_rtsdtr(info, RTS | DTR, 0); } if (info->tty) set_bit(TTY_IO_ERROR, &info->tty->flags); info->flags &= ~ZILOG_INITIALIZED; spin_unlock_irqrestore(&zs_lock, flags); } /* * This routine is called to set the UART divisor registers to match * the specified baud rate for a serial port. */ static void change_speed(struct dec_serial *info) { unsigned cflag; int i; int brg, bits; unsigned long flags; if (!info->hook) { if (!info->tty || !info->tty->termios) return; cflag = info->tty->termios->c_cflag; if (!info->port) return; } else { cflag = info->hook->cflags; } i = cflag & CBAUD; if (i & CBAUDEX) { i &= ~CBAUDEX; if (i < 1 || i > 2) { if (!info->hook) info->tty->termios->c_cflag &= ~CBAUDEX; else info->hook->cflags &= ~CBAUDEX; } else i += 15; } spin_lock_irqsave(&zs_lock, flags); info->zs_baud = baud_table[i]; if (info->zs_baud) { brg = BPS_TO_BRG(info->zs_baud, zs_parms->clock/info->clk_divisor); info->zs_channel->curregs[12] = (brg & 255); info->zs_channel->curregs[13] = ((brg >> 8) & 255); zs_rtsdtr(info, DTR, 1); } else { zs_rtsdtr(info, RTS | DTR, 0); return; } /* byte size and parity */ info->zs_channel->curregs[3] &= ~RxNBITS_MASK; info->zs_channel->curregs[5] &= ~TxNBITS_MASK; switch (cflag & CSIZE) { case CS5: bits = 7; info->zs_channel->curregs[3] |= Rx5; info->zs_channel->curregs[5] |= Tx5; break; case CS6: bits = 8; info->zs_channel->curregs[3] |= Rx6; info->zs_channel->curregs[5] |= Tx6; break; case CS7: bits = 9; info->zs_channel->curregs[3] |= Rx7; info->zs_channel->curregs[5] |= Tx7; break; case CS8: default: /* defaults to 8 bits */ bits = 10; info->zs_channel->curregs[3] |= Rx8; info->zs_channel->curregs[5] |= Tx8; break; } info->timeout = ((info->xmit_fifo_size*HZ*bits) / info->zs_baud); info->timeout += HZ/50; /* Add .02 seconds of slop */ info->zs_channel->curregs[4] &= ~(SB_MASK | PAR_ENA | PAR_EVEN); if (cflag & CSTOPB) { info->zs_channel->curregs[4] |= SB2; } else { info->zs_channel->curregs[4] |= SB1; } if (cflag & PARENB) { info->zs_channel->curregs[4] |= PAR_ENA; } if (!(cflag & PARODD)) { info->zs_channel->curregs[4] |= PAR_EVEN; } if (!(cflag & CLOCAL)) { if (!(info->zs_channel->curregs[15] & DCDIE)) info->read_reg_zero = read_zsreg(info->zs_channel, 0); info->zs_channel->curregs[15] |= DCDIE; } else info->zs_channel->curregs[15] &= ~DCDIE; if (cflag & CRTSCTS) { info->zs_channel->curregs[15] |= CTSIE; if ((read_zsreg(info->zs_channel, 0) & CTS) == 0) info->tx_stopped = 1; } else { info->zs_channel->curregs[15] &= ~CTSIE; info->tx_stopped = 0; } /* Load up the new values */ load_zsregs(info->zs_channel, info->zs_channel->curregs); spin_unlock_irqrestore(&zs_lock, flags); } static void rs_flush_chars(struct tty_struct *tty) { struct dec_serial *info = (struct dec_serial *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->name, "rs_flush_chars")) return; if (info->xmit_cnt <= 0 || tty->stopped || info->tx_stopped || !info->xmit_buf) return; /* Enable transmitter */ spin_lock_irqsave(&zs_lock, flags); transmit_chars(info); spin_unlock_irqrestore(&zs_lock, flags); } static int rs_write(struct tty_struct * tty, const unsigned char *buf, int count) { int c, total = 0; struct dec_serial *info = (struct dec_serial *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->name, "rs_write")) return 0; if (!tty || !info->xmit_buf) return 0; while (1) { spin_lock_irqsave(&zs_lock, flags); c = min(count, min(SERIAL_XMIT_SIZE - info->xmit_cnt - 1, SERIAL_XMIT_SIZE - info->xmit_head)); if (c <= 0) break; memcpy(info->xmit_buf + info->xmit_head, buf, c); info->xmit_head = (info->xmit_head + c) & (SERIAL_XMIT_SIZE-1); info->xmit_cnt += c; spin_unlock_irqrestore(&zs_lock, flags); buf += c; count -= c; total += c; } if (info->xmit_cnt && !tty->stopped && !info->tx_stopped && !info->tx_active) transmit_chars(info); spin_unlock_irqrestore(&zs_lock, flags); return total; } static int rs_write_room(struct tty_struct *tty) { struct dec_serial *info = (struct dec_serial *)tty->driver_data; int ret; if (serial_paranoia_check(info, tty->name, "rs_write_room")) return 0; ret = SERIAL_XMIT_SIZE - info->xmit_cnt - 1; if (ret < 0) ret = 0; return ret; } static int rs_chars_in_buffer(struct tty_struct *tty) { struct dec_serial *info = (struct dec_serial *)tty->driver_data; if (serial_paranoia_check(info, tty->name, "rs_chars_in_buffer")) return 0; return info->xmit_cnt; } static void rs_flush_buffer(struct tty_struct *tty) { struct dec_serial *info = (struct dec_serial *)tty->driver_data; if (serial_paranoia_check(info, tty->name, "rs_flush_buffer")) return; spin_lock_irq(&zs_lock); info->xmit_cnt = info->xmit_head = info->xmit_tail = 0; spin_unlock_irq(&zs_lock); tty_wakeup(tty); } /* * ------------------------------------------------------------ * rs_throttle() * * This routine is called by the upper-layer tty layer to signal that * incoming characters should be throttled. * ------------------------------------------------------------ */ static void rs_throttle(struct tty_struct * tty) { struct dec_serial *info = (struct dec_serial *)tty->driver_data; unsigned long flags; #ifdef SERIAL_DEBUG_THROTTLE char buf[64]; printk("throttle %s: %d....\n", _tty_name(tty, buf), tty->ldisc.chars_in_buffer(tty)); #endif if (serial_paranoia_check(info, tty->name, "rs_throttle")) return; if (I_IXOFF(tty)) { spin_lock_irqsave(&zs_lock, flags); info->x_char = STOP_CHAR(tty); if (!info->tx_active) transmit_chars(info); spin_unlock_irqrestore(&zs_lock, flags); } if (C_CRTSCTS(tty)) { zs_rtsdtr(info, RTS, 0); } } static void rs_unthrottle(struct tty_struct * tty) { struct dec_serial *info = (struct dec_serial *)tty->driver_data; unsigned long flags; #ifdef SERIAL_DEBUG_THROTTLE char buf[64]; printk("unthrottle %s: %d....\n", _tty_name(tty, buf), tty->ldisc.chars_in_buffer(tty)); #endif if (serial_paranoia_check(info, tty->name, "rs_unthrottle")) return; if (I_IXOFF(tty)) { spin_lock_irqsave(&zs_lock, flags); if (info->x_char) info->x_char = 0; else { info->x_char = START_CHAR(tty); if (!info->tx_active) transmit_chars(info); } spin_unlock_irqrestore(&zs_lock, flags); } if (C_CRTSCTS(tty)) { zs_rtsdtr(info, RTS, 1); } } /* * ------------------------------------------------------------ * rs_ioctl() and friends * ------------------------------------------------------------ */ static int get_serial_info(struct dec_serial * info, struct serial_struct * retinfo) { struct serial_struct tmp; if (!retinfo) return -EFAULT; memset(&tmp, 0, sizeof(tmp)); tmp.type = info->type; tmp.line = info->line; tmp.port = info->port; tmp.irq = info->irq; tmp.flags = info->flags; tmp.baud_base = info->baud_base; tmp.close_delay = info->close_delay; tmp.closing_wait = info->closing_wait; tmp.custom_divisor = info->custom_divisor; return copy_to_user(retinfo,&tmp,sizeof(*retinfo)) ? -EFAULT : 0; } static int set_serial_info(struct dec_serial * info, struct serial_struct * new_info) { struct serial_struct new_serial; struct dec_serial old_info; int retval = 0; if (!new_info) return -EFAULT; copy_from_user(&new_serial,new_info,sizeof(new_serial)); old_info = *info; if (!capable(CAP_SYS_ADMIN)) { if ((new_serial.baud_base != info->baud_base) || (new_serial.type != info->type) || (new_serial.close_delay != info->close_delay) || ((new_serial.flags & ~ZILOG_USR_MASK) != (info->flags & ~ZILOG_USR_MASK))) return -EPERM; info->flags = ((info->flags & ~ZILOG_USR_MASK) | (new_serial.flags & ZILOG_USR_MASK)); info->custom_divisor = new_serial.custom_divisor; goto check_and_exit; } if (info->count > 1) return -EBUSY; /* * OK, past this point, all the error checking has been done. * At this point, we start making changes..... */ info->baud_base = new_serial.baud_base; info->flags = ((info->flags & ~ZILOG_FLAGS) | (new_serial.flags & ZILOG_FLAGS)); info->type = new_serial.type; info->close_delay = new_serial.close_delay; info->closing_wait = new_serial.closing_wait; check_and_exit: retval = zs_startup(info); return retval; } /* * get_lsr_info - get line status register info * * Purpose: Let user call ioctl() to get info when the UART physically * is emptied. On bus types like RS485, the transmitter must * release the bus after transmitting. This must be done when * the transmit shift register is empty, not be done when the * transmit holding register is empty. This functionality * allows an RS485 driver to be written in user space. */ static int get_lsr_info(struct dec_serial * info, unsigned int *value) { unsigned char status; spin_lock(&zs_lock); status = read_zsreg(info->zs_channel, 0); spin_unlock_irq(&zs_lock); put_user(status,value); return 0; } static int rs_tiocmget(struct tty_struct *tty, struct file *file) { struct dec_serial * info = (struct dec_serial *)tty->driver_data; unsigned char control, status_a, status_b; unsigned int result; if (info->hook) return -ENODEV; if (serial_paranoia_check(info, tty->name, __FUNCTION__)) return -ENODEV; if (tty->flags & (1 << TTY_IO_ERROR)) return -EIO; if (info->zs_channel == info->zs_chan_a) result = 0; else { spin_lock(&zs_lock); control = info->zs_chan_a->curregs[5]; status_a = read_zsreg(info->zs_chan_a, 0); status_b = read_zsreg(info->zs_channel, 0); spin_unlock_irq(&zs_lock); result = ((control & RTS) ? TIOCM_RTS: 0) | ((control & DTR) ? TIOCM_DTR: 0) | ((status_b & DCD) ? TIOCM_CAR: 0) | ((status_a & DCD) ? TIOCM_RNG: 0) | ((status_a & SYNC_HUNT) ? TIOCM_DSR: 0) | ((status_b & CTS) ? TIOCM_CTS: 0); } return result; } static int rs_tiocmset(struct tty_struct *tty, struct file *file, unsigned int set, unsigned int clear) { struct dec_serial * info = (struct dec_serial *)tty->driver_data; if (info->hook) return -ENODEV; if (serial_paranoia_check(info, tty->name, __FUNCTION__)) return -ENODEV; if (tty->flags & (1 << TTY_IO_ERROR)) return -EIO; if (info->zs_channel == info->zs_chan_a) return 0; spin_lock(&zs_lock); if (set & TIOCM_RTS) info->zs_chan_a->curregs[5] |= RTS; if (set & TIOCM_DTR) info->zs_chan_a->curregs[5] |= DTR; if (clear & TIOCM_RTS) info->zs_chan_a->curregs[5] &= ~RTS; if (clear & TIOCM_DTR) info->zs_chan_a->curregs[5] &= ~DTR; write_zsreg(info->zs_chan_a, 5, info->zs_chan_a->curregs[5]); spin_unlock_irq(&zs_lock); return 0; } /* * rs_break - turn transmit break condition on/off */ static void rs_break(struct tty_struct *tty, int break_state) { struct dec_serial *info = (struct dec_serial *) tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->name, "rs_break")) return; if (!info->port) return; spin_lock_irqsave(&zs_lock, flags); if (break_state == -1) info->zs_channel->curregs[5] |= SND_BRK; else info->zs_channel->curregs[5] &= ~SND_BRK; write_zsreg(info->zs_channel, 5, info->zs_channel->curregs[5]); spin_unlock_irqrestore(&zs_lock, flags); } static int rs_ioctl(struct tty_struct *tty, struct file * file, unsigned int cmd, unsigned long arg) { struct dec_serial * info = (struct dec_serial *)tty->driver_data; if (info->hook) return -ENODEV; if (serial_paranoia_check(info, tty->name, "rs_ioctl")) return -ENODEV; if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) && (cmd != TIOCSERCONFIG) && (cmd != TIOCSERGWILD) && (cmd != TIOCSERSWILD) && (cmd != TIOCSERGSTRUCT)) { if (tty->flags & (1 << TTY_IO_ERROR)) return -EIO; } switch (cmd) { case TIOCGSERIAL: if (!access_ok(VERIFY_WRITE, (void *)arg, sizeof(struct serial_struct))) return -EFAULT; return get_serial_info(info, (struct serial_struct *)arg); case TIOCSSERIAL: return set_serial_info(info, (struct serial_struct *)arg); case TIOCSERGETLSR: /* Get line status register */ if (!access_ok(VERIFY_WRITE, (void *)arg, sizeof(unsigned int))) return -EFAULT; return get_lsr_info(info, (unsigned int *)arg); case TIOCSERGSTRUCT: if (!access_ok(VERIFY_WRITE, (void *)arg, sizeof(struct dec_serial))) return -EFAULT; copy_from_user((struct dec_serial *)arg, info, sizeof(struct dec_serial)); return 0; default: return -ENOIOCTLCMD; } return 0; } static void rs_set_termios(struct tty_struct *tty, struct termios *old_termios) { struct dec_serial *info = (struct dec_serial *)tty->driver_data; int was_stopped; if (tty->termios->c_cflag == old_termios->c_cflag) return; was_stopped = info->tx_stopped; change_speed(info); if (was_stopped && !info->tx_stopped) rs_start(tty); } /* * ------------------------------------------------------------ * rs_close() * * This routine is called when the serial port gets closed. * Wait for the last remaining data to be sent. * ------------------------------------------------------------ */ static void rs_close(struct tty_struct *tty, struct file * filp) { struct dec_serial * info = (struct dec_serial *)tty->driver_data; unsigned long flags; if (!info || serial_paranoia_check(info, tty->name, "rs_close")) return; spin_lock_irqsave(&zs_lock, flags); if (tty_hung_up_p(filp)) { spin_unlock_irqrestore(&zs_lock, flags); return; } #ifdef SERIAL_DEBUG_OPEN printk("rs_close ttyS%d, count = %d\n", info->line, info->count); #endif if ((tty->count == 1) && (info->count != 1)) { /* * Uh, oh. tty->count is 1, which means that the tty * structure will be freed. Info->count should always * be one in these conditions. If it's greater than * one, we've got real problems, since it means the * serial port won't be shutdown. */ printk("rs_close: bad serial port count; tty->count is 1, " "info->count is %d\n", info->count); info->count = 1; } if (--info->count < 0) { printk("rs_close: bad serial port count for ttyS%d: %d\n", info->line, info->count); info->count = 0; } if (info->count) { spin_unlock_irqrestore(&zs_lock, flags); return; } info->flags |= ZILOG_CLOSING; /* * Now we wait for the transmit buffer to clear; and we notify * the line discipline to only process XON/XOFF characters. */ tty->closing = 1; if (info->closing_wait != ZILOG_CLOSING_WAIT_NONE) tty_wait_until_sent(tty, info->closing_wait); /* * At this point we stop accepting input. To do this, we * disable the receiver and receive interrupts. */ info->zs_channel->curregs[3] &= ~RxENABLE; write_zsreg(info->zs_channel, 3, info->zs_channel->curregs[3]); info->zs_channel->curregs[1] = 0; /* disable any rx ints */ write_zsreg(info->zs_channel, 1, info->zs_channel->curregs[1]); ZS_CLEARFIFO(info->zs_channel); if (info->flags & ZILOG_INITIALIZED) { /* * Before we drop DTR, make sure the SCC transmitter * has completely drained. */ rs_wait_until_sent(tty, info->timeout); } shutdown(info); if (tty->driver->flush_buffer) tty->driver->flush_buffer(tty); tty_ldisc_flush(tty); tty->closing = 0; info->event = 0; info->tty = 0; if (info->blocked_open) { if (info->close_delay) { msleep_interruptible(jiffies_to_msecs(info->close_delay)); } wake_up_interruptible(&info->open_wait); } info->flags &= ~(ZILOG_NORMAL_ACTIVE|ZILOG_CLOSING); wake_up_interruptible(&info->close_wait); spin_unlock_irqrestore(&zs_lock, flags); } /* * rs_wait_until_sent() --- wait until the transmitter is empty */ static void rs_wait_until_sent(struct tty_struct *tty, int timeout) { struct dec_serial *info = (struct dec_serial *) tty->driver_data; unsigned long orig_jiffies; int char_time; if (serial_paranoia_check(info, tty->name, "rs_wait_until_sent")) return; orig_jiffies = jiffies; /* * Set the check interval to be 1/5 of the estimated time to * send a single character, and make it at least 1. The check * interval should also be less than the timeout. */ char_time = (info->timeout - HZ/50) / info->xmit_fifo_size; char_time = char_time / 5; if (char_time == 0) char_time = 1; if (timeout) char_time = min(char_time, timeout); while ((read_zsreg(info->zs_channel, 1) & Tx_BUF_EMP) == 0) { msleep_interruptible(jiffies_to_msecs(char_time)); if (signal_pending(current)) break; if (timeout && time_after(jiffies, orig_jiffies + timeout)) break; } current->state = TASK_RUNNING; } /* * rs_hangup() --- called by tty_hangup() when a hangup is signaled. */ static void rs_hangup(struct tty_struct *tty) { struct dec_serial * info = (struct dec_serial *)tty->driver_data; if (serial_paranoia_check(info, tty->name, "rs_hangup")) return; rs_flush_buffer(tty); shutdown(info); info->event = 0; info->count = 0; info->flags &= ~ZILOG_NORMAL_ACTIVE; info->tty = 0; wake_up_interruptible(&info->open_wait); } /* * ------------------------------------------------------------ * rs_open() and friends * ------------------------------------------------------------ */ static int block_til_ready(struct tty_struct *tty, struct file * filp, struct dec_serial *info) { DECLARE_WAITQUEUE(wait, current); int retval; int do_clocal = 0; /* * If the device is in the middle of being closed, then block * until it's done, and then try again. */ if (info->flags & ZILOG_CLOSING) { interruptible_sleep_on(&info->close_wait); #ifdef SERIAL_DO_RESTART return ((info->flags & ZILOG_HUP_NOTIFY) ? -EAGAIN : -ERESTARTSYS); #else return -EAGAIN; #endif } /* * If non-blocking mode is set, or the port is not enabled, * then make the check up front and then exit. */ if ((filp->f_flags & O_NONBLOCK) || (tty->flags & (1 << TTY_IO_ERROR))) { info->flags |= ZILOG_NORMAL_ACTIVE; return 0; } if (tty->termios->c_cflag & CLOCAL) do_clocal = 1; /* * Block waiting for the carrier detect and the line to become * free (i.e., not in use by the callout). While we are in * this loop, info->count is dropped by one, so that * rs_close() knows when to free things. We restore it upon * exit, either normal or abnormal. */ retval = 0; add_wait_queue(&info->open_wait, &wait); #ifdef SERIAL_DEBUG_OPEN printk("block_til_ready before block: ttyS%d, count = %d\n", info->line, info->count); #endif spin_lock(&zs_lock); if (!tty_hung_up_p(filp)) info->count--; spin_unlock_irq(&zs_lock); info->blocked_open++; while (1) { spin_lock(&zs_lock); if (tty->termios->c_cflag & CBAUD) zs_rtsdtr(info, RTS | DTR, 1); spin_unlock_irq(&zs_lock); set_current_state(TASK_INTERRUPTIBLE); if (tty_hung_up_p(filp) || !(info->flags & ZILOG_INITIALIZED)) { #ifdef SERIAL_DO_RESTART if (info->flags & ZILOG_HUP_NOTIFY) retval = -EAGAIN; else retval = -ERESTARTSYS; #else retval = -EAGAIN; #endif break; } if (!(info->flags & ZILOG_CLOSING) && (do_clocal || (read_zsreg(info->zs_channel, 0) & DCD))) break; if (signal_pending(current)) { retval = -ERESTARTSYS; break; } #ifdef SERIAL_DEBUG_OPEN printk("block_til_ready blocking: ttyS%d, count = %d\n", info->line, info->count); #endif schedule(); } current->state = TASK_RUNNING; remove_wait_queue(&info->open_wait, &wait); if (!tty_hung_up_p(filp)) info->count++; info->blocked_open--; #ifdef SERIAL_DEBUG_OPEN printk("block_til_ready after blocking: ttyS%d, count = %d\n", info->line, info->count); #endif if (retval) return retval; info->flags |= ZILOG_NORMAL_ACTIVE; return 0; } /* * This routine is called whenever a serial port is opened. It * enables interrupts for a serial port, linking in its ZILOG structure into * the IRQ chain. It also performs the serial-specific * initialization for the tty structure. */ static int rs_open(struct tty_struct *tty, struct file * filp) { struct dec_serial *info; int retval, line; line = tty->index; if ((line < 0) || (line >= zs_channels_found)) return -ENODEV; info = zs_soft + line; if (info->hook) return -ENODEV; if (serial_paranoia_check(info, tty->name, "rs_open")) return -ENODEV; #ifdef SERIAL_DEBUG_OPEN printk("rs_open %s, count = %d\n", tty->name, info->count); #endif info->count++; tty->driver_data = info; info->tty = tty; /* * If the port is the middle of closing, bail out now */ if (tty_hung_up_p(filp) || (info->flags & ZILOG_CLOSING)) { if (info->flags & ZILOG_CLOSING) interruptible_sleep_on(&info->close_wait); #ifdef SERIAL_DO_RESTART return ((info->flags & ZILOG_HUP_NOTIFY) ? -EAGAIN : -ERESTARTSYS); #else return -EAGAIN; #endif } /* * Start up serial port */ retval = zs_startup(info); if (retval) return retval; retval = block_til_ready(tty, filp, info); if (retval) { #ifdef SERIAL_DEBUG_OPEN printk("rs_open returning after block_til_ready with %d\n", retval); #endif return retval; } #ifdef CONFIG_SERIAL_DEC_CONSOLE if (sercons.cflag && sercons.index == line) { tty->termios->c_cflag = sercons.cflag; sercons.cflag = 0; change_speed(info); } #endif #ifdef SERIAL_DEBUG_OPEN printk("rs_open %s successful...", tty->name); #endif /* tty->low_latency = 1; */ return 0; } /* Finally, routines used to initialize the serial driver. */ static void __init show_serial_version(void) { printk("DECstation Z8530 serial driver version 0.09\n"); } /* Initialize Z8530s zs_channels */ static void __init probe_sccs(void) { struct dec_serial **pp; int i, n, n_chips = 0, n_channels, chip, channel; unsigned long flags; /* * did we get here by accident? */ if(!BUS_PRESENT) { printk("Not on JUNKIO machine, skipping probe_sccs\n"); return; } switch(mips_machtype) { #ifdef CONFIG_MACH_DECSTATION case MACH_DS5000_2X0: case MACH_DS5900: n_chips = 2; zs_parms = &ds_parms; zs_parms->irq0 = dec_interrupt[DEC_IRQ_SCC0]; zs_parms->irq1 = dec_interrupt[DEC_IRQ_SCC1]; break; case MACH_DS5000_1XX: n_chips = 2; zs_parms = &ds_parms; zs_parms->irq0 = dec_interrupt[DEC_IRQ_SCC0]; zs_parms->irq1 = dec_interrupt[DEC_IRQ_SCC1]; break; case MACH_DS5000_XX: n_chips = 1; zs_parms = &ds_parms; zs_parms->irq0 = dec_interrupt[DEC_IRQ_SCC0]; break; #endif default: panic("zs: unsupported bus"); } if (!zs_parms) panic("zs: uninitialized parms"); pp = &zs_chain; n_channels = 0; for (chip = 0; chip < n_chips; chip++) { for (channel = 0; channel <= 1; channel++) { /* * The sccs reside on the high byte of the 16 bit IOBUS */ zs_channels[n_channels].control = (volatile void *)CKSEG1ADDR(dec_kn_slot_base + (0 == chip ? zs_parms->scc0 : zs_parms->scc1) + (0 == channel ? zs_parms->channel_a_offset : zs_parms->channel_b_offset)); zs_channels[n_channels].data = zs_channels[n_channels].control + 4; #ifndef CONFIG_SERIAL_DEC_CONSOLE /* * We're called early and memory managment isn't up, yet. * Thus request_region would fail. */ if (!request_region((unsigned long) zs_channels[n_channels].control, ZS_CHAN_IO_SIZE, "SCC")) panic("SCC I/O region is not free"); #endif zs_soft[n_channels].zs_channel = &zs_channels[n_channels]; /* HACK alert! */ if (!(chip & 1)) zs_soft[n_channels].irq = zs_parms->irq0; else zs_soft[n_channels].irq = zs_parms->irq1; /* * Identification of channel A. Location of channel A * inside chip depends on mapping of internal address * the chip decodes channels by. * CHANNEL_A_NR returns either 0 (in case of * DECstations) or 1 (in case of Baget). */ if (CHANNEL_A_NR == channel) zs_soft[n_channels].zs_chan_a = &zs_channels[n_channels+1-2*CHANNEL_A_NR]; else zs_soft[n_channels].zs_chan_a = &zs_channels[n_channels]; *pp = &zs_soft[n_channels]; pp = &zs_soft[n_channels].zs_next; n_channels++; } } *pp = 0; zs_channels_found = n_channels; for (n = 0; n < zs_channels_found; n++) { for (i = 0; i < 16; i++) { zs_soft[n].zs_channel->curregs[i] = zs_init_regs[i]; } } spin_lock_irqsave(&zs_lock, flags); for (n = 0; n < zs_channels_found; n++) { if (n % 2 == 0) { write_zsreg(zs_soft[n].zs_chan_a, R9, FHWRES); udelay(10); write_zsreg(zs_soft[n].zs_chan_a, R9, 0); } load_zsregs(zs_soft[n].zs_channel, zs_soft[n].zs_channel->curregs); } spin_unlock_irqrestore(&zs_lock, flags); } static struct tty_operations serial_ops = { .open = rs_open, .close = rs_close, .write = rs_write, .flush_chars = rs_flush_chars, .write_room = rs_write_room, .chars_in_buffer = rs_chars_in_buffer, .flush_buffer = rs_flush_buffer, .ioctl = rs_ioctl, .throttle = rs_throttle, .unthrottle = rs_unthrottle, .set_termios = rs_set_termios, .stop = rs_stop, .start = rs_start, .hangup = rs_hangup, .break_ctl = rs_break, .wait_until_sent = rs_wait_until_sent, .tiocmget = rs_tiocmget, .tiocmset = rs_tiocmset, }; /* zs_init inits the driver */ int __init zs_init(void) { int channel, i; struct dec_serial *info; if(!BUS_PRESENT) return -ENODEV; /* Find out how many Z8530 SCCs we have */ if (zs_chain == 0) probe_sccs(); serial_driver = alloc_tty_driver(zs_channels_found); if (!serial_driver) return -ENOMEM; show_serial_version(); /* Initialize the tty_driver structure */ /* Not all of this is exactly right for us. */ serial_driver->owner = THIS_MODULE; serial_driver->devfs_name = "tts/"; serial_driver->name = "ttyS"; serial_driver->major = TTY_MAJOR; serial_driver->minor_start = 64; serial_driver->type = TTY_DRIVER_TYPE_SERIAL; serial_driver->subtype = SERIAL_TYPE_NORMAL; serial_driver->init_termios = tty_std_termios; serial_driver->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL | CLOCAL; serial_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_NO_DEVFS; tty_set_operations(serial_driver, &serial_ops); if (tty_register_driver(serial_driver)) panic("Couldn't register serial driver"); for (info = zs_chain, i = 0; info; info = info->zs_next, i++) { /* Needed before interrupts are enabled. */ info->tty = 0; info->x_char = 0; if (info->hook && info->hook->init_info) { (*info->hook->init_info)(info); continue; } info->magic = SERIAL_MAGIC; info->port = (int) info->zs_channel->control; info->line = i; info->custom_divisor = 16; info->close_delay = 50; info->closing_wait = 3000; info->event = 0; info->count = 0; info->blocked_open = 0; tasklet_init(&info->tlet, do_softint, (unsigned long)info); init_waitqueue_head(&info->open_wait); init_waitqueue_head(&info->close_wait); printk("ttyS%02d at 0x%08x (irq = %d) is a Z85C30 SCC\n", info->line, info->port, info->irq); tty_register_device(serial_driver, info->line, NULL); } for (channel = 0; channel < zs_channels_found; ++channel) { zs_soft[channel].clk_divisor = 16; zs_soft[channel].zs_baud = get_zsbaud(&zs_soft[channel]); if (request_irq(zs_soft[channel].irq, rs_interrupt, SA_SHIRQ, "scc", &zs_soft[channel])) printk(KERN_ERR "decserial: can't get irq %d\n", zs_soft[channel].irq); if (zs_soft[channel].hook) { zs_startup(&zs_soft[channel]); if (zs_soft[channel].hook->init_channel) (*zs_soft[channel].hook->init_channel) (&zs_soft[channel]); } } return 0; } /* * polling I/O routines */ static int zs_poll_tx_char(void *handle, unsigned char ch) { struct dec_serial *info = handle; struct dec_zschannel *chan = info->zs_channel; int ret; if(chan) { int loops = 10000; while (loops && !(read_zsreg(chan, 0) & Tx_BUF_EMP)) loops--; if (loops) { write_zsdata(chan, ch); ret = 0; } else ret = -EAGAIN; return ret; } else return -ENODEV; } static int zs_poll_rx_char(void *handle) { struct dec_serial *info = handle; struct dec_zschannel *chan = info->zs_channel; int ret; if(chan) { int loops = 10000; while (loops && !(read_zsreg(chan, 0) & Rx_CH_AV)) loops--; if (loops) ret = read_zsdata(chan); else ret = -EAGAIN; return ret; } else return -ENODEV; } int register_zs_hook(unsigned int channel, struct dec_serial_hook *hook) { struct dec_serial *info = &zs_soft[channel]; if (info->hook) { printk("%s: line %d has already a hook registered\n", __FUNCTION__, channel); return 0; } else { hook->poll_rx_char = zs_poll_rx_char; hook->poll_tx_char = zs_poll_tx_char; info->hook = hook; return 1; } } int unregister_zs_hook(unsigned int channel) { struct dec_serial *info = &zs_soft[channel]; if (info->hook) { info->hook = NULL; return 1; } else { printk("%s: trying to unregister hook on line %d," " but none is registered\n", __FUNCTION__, channel); return 0; } } /* * ------------------------------------------------------------ * Serial console driver * ------------------------------------------------------------ */ #ifdef CONFIG_SERIAL_DEC_CONSOLE /* * Print a string to the serial port trying not to disturb * any possible real use of the port... */ static void serial_console_write(struct console *co, const char *s, unsigned count) { struct dec_serial *info; int i; info = zs_soft + co->index; for (i = 0; i < count; i++, s++) { if(*s == '\n') zs_poll_tx_char(info, '\r'); zs_poll_tx_char(info, *s); } } static struct tty_driver *serial_console_device(struct console *c, int *index) { *index = c->index; return serial_driver; } /* * Setup initial baud/bits/parity. We do two things here: * - construct a cflag setting for the first rs_open() * - initialize the serial port * Return non-zero if we didn't find a serial port. */ static int __init serial_console_setup(struct console *co, char *options) { struct dec_serial *info; int baud = 9600; int bits = 8; int parity = 'n'; int cflag = CREAD | HUPCL | CLOCAL; int clk_divisor = 16; int brg; char *s; unsigned long flags; if(!BUS_PRESENT) return -ENODEV; info = zs_soft + co->index; if (zs_chain == 0) probe_sccs(); info->is_cons = 1; if (options) { baud = simple_strtoul(options, NULL, 10); s = options; while(*s >= '0' && *s <= '9') s++; if (*s) parity = *s++; if (*s) bits = *s - '0'; } /* * Now construct a cflag setting. */ switch(baud) { case 1200: cflag |= B1200; break; case 2400: cflag |= B2400; break; case 4800: cflag |= B4800; break; case 19200: cflag |= B19200; break; case 38400: cflag |= B38400; break; case 57600: cflag |= B57600; break; case 115200: cflag |= B115200; break; case 9600: default: cflag |= B9600; /* * Set this to a sane value to prevent a divide error. */ baud = 9600; break; } switch(bits) { case 7: cflag |= CS7; break; default: case 8: cflag |= CS8; break; } switch(parity) { case 'o': case 'O': cflag |= PARODD; break; case 'e': case 'E': cflag |= PARENB; break; } co->cflag = cflag; spin_lock_irqsave(&zs_lock, flags); /* * Set up the baud rate generator. */ brg = BPS_TO_BRG(baud, zs_parms->clock / clk_divisor); info->zs_channel->curregs[R12] = (brg & 255); info->zs_channel->curregs[R13] = ((brg >> 8) & 255); /* * Set byte size and parity. */ if (bits == 7) { info->zs_channel->curregs[R3] |= Rx7; info->zs_channel->curregs[R5] |= Tx7; } else { info->zs_channel->curregs[R3] |= Rx8; info->zs_channel->curregs[R5] |= Tx8; } if (cflag & PARENB) { info->zs_channel->curregs[R4] |= PAR_ENA; } if (!(cflag & PARODD)) { info->zs_channel->curregs[R4] |= PAR_EVEN; } info->zs_channel->curregs[R4] |= SB1; /* * Turn on RTS and DTR. */ zs_rtsdtr(info, RTS | DTR, 1); /* * Finally, enable sequencing. */ info->zs_channel->curregs[R3] |= RxENABLE; info->zs_channel->curregs[R5] |= TxENAB; /* * Clear the interrupt registers. */ write_zsreg(info->zs_channel, R0, ERR_RES); write_zsreg(info->zs_channel, R0, RES_H_IUS); /* * Load up the new values. */ load_zsregs(info->zs_channel, info->zs_channel->curregs); /* Save the current value of RR0 */ info->read_reg_zero = read_zsreg(info->zs_channel, R0); zs_soft[co->index].clk_divisor = clk_divisor; zs_soft[co->index].zs_baud = get_zsbaud(&zs_soft[co->index]); spin_unlock_irqrestore(&zs_lock, flags); return 0; } static struct console sercons = { .name = "ttyS", .write = serial_console_write, .device = serial_console_device, .setup = serial_console_setup, .flags = CON_PRINTBUFFER, .index = -1, }; /* * Register console. */ void __init zs_serial_console_init(void) { register_console(&sercons); } #endif /* ifdef CONFIG_SERIAL_DEC_CONSOLE */ #ifdef CONFIG_KGDB struct dec_zschannel *zs_kgdbchan; static unsigned char scc_inittab[] = { 9, 0x80, /* reset A side (CHRA) */ 13, 0, /* set baud rate divisor */ 12, 1, 14, 1, /* baud rate gen enable, src=rtxc (BRENABL) */ 11, 0x50, /* clocks = br gen (RCBR | TCBR) */ 5, 0x6a, /* tx 8 bits, assert RTS (Tx8 | TxENAB | RTS) */ 4, 0x44, /* x16 clock, 1 stop (SB1 | X16CLK)*/ 3, 0xc1, /* rx enable, 8 bits (RxENABLE | Rx8)*/ }; /* These are for receiving and sending characters under the kgdb * source level kernel debugger. */ void putDebugChar(char kgdb_char) { struct dec_zschannel *chan = zs_kgdbchan; while ((read_zsreg(chan, 0) & Tx_BUF_EMP) == 0) RECOVERY_DELAY; write_zsdata(chan, kgdb_char); } char getDebugChar(void) { struct dec_zschannel *chan = zs_kgdbchan; while((read_zsreg(chan, 0) & Rx_CH_AV) == 0) eieio(); /*barrier();*/ return read_zsdata(chan); } void kgdb_interruptible(int yes) { struct dec_zschannel *chan = zs_kgdbchan; int one, nine; nine = read_zsreg(chan, 9); if (yes == 1) { one = EXT_INT_ENAB|RxINT_ALL; nine |= MIE; printk("turning serial ints on\n"); } else { one = RxINT_DISAB; nine &= ~MIE; printk("turning serial ints off\n"); } write_zsreg(chan, 1, one); write_zsreg(chan, 9, nine); } static int kgdbhook_init_channel(void *handle) { return 0; } static void kgdbhook_init_info(void *handle) { } static void kgdbhook_rx_char(void *handle, unsigned char ch, unsigned char fl) { struct dec_serial *info = handle; if (fl != TTY_NORMAL) return; if (ch == 0x03 || ch == '$') breakpoint(); } /* This sets up the serial port we're using, and turns on * interrupts for that channel, so kgdb is usable once we're done. */ static inline void kgdb_chaninit(struct dec_zschannel *ms, int intson, int bps) { int brg; int i, x; volatile char *sccc = ms->control; brg = BPS_TO_BRG(bps, zs_parms->clock/16); printk("setting bps on kgdb line to %d [brg=%x]\n", bps, brg); for (i = 20000; i != 0; --i) { x = *sccc; eieio(); } for (i = 0; i < sizeof(scc_inittab); ++i) { write_zsreg(ms, scc_inittab[i], scc_inittab[i+1]); i++; } } /* This is called at boot time to prime the kgdb serial debugging * serial line. The 'tty_num' argument is 0 for /dev/ttya and 1 * for /dev/ttyb which is determined in setup_arch() from the * boot command line flags. */ struct dec_serial_hook zs_kgdbhook = { .init_channel = kgdbhook_init_channel, .init_info = kgdbhook_init_info, .rx_char = kgdbhook_rx_char, .cflags = B38400 | CS8 | CLOCAL, } void __init zs_kgdb_hook(int tty_num) { /* Find out how many Z8530 SCCs we have */ if (zs_chain == 0) probe_sccs(); zs_soft[tty_num].zs_channel = &zs_channels[tty_num]; zs_kgdbchan = zs_soft[tty_num].zs_channel; zs_soft[tty_num].change_needed = 0; zs_soft[tty_num].clk_divisor = 16; zs_soft[tty_num].zs_baud = 38400; zs_soft[tty_num].hook = &zs_kgdbhook; /* This runs kgdb */ /* Turn on transmitter/receiver at 8-bits/char */ kgdb_chaninit(zs_soft[tty_num].zs_channel, 1, 38400); printk("KGDB: on channel %d initialized\n", tty_num); set_debug_traps(); /* init stub */ } #endif /* ifdef CONFIG_KGDB */