/* * Sonics Silicon Backplane PCI-Hostbus related functions. * * Copyright (C) 2005-2006 Michael Buesch * Copyright (C) 2005 Martin Langer * Copyright (C) 2005 Stefano Brivio * Copyright (C) 2005 Danny van Dyk * Copyright (C) 2005 Andreas Jaggi * * Derived from the Broadcom 4400 device driver. * Copyright (C) 2002 David S. Miller (davem@redhat.com) * Fixed by Pekka Pietikainen (pp@ee.oulu.fi) * Copyright (C) 2006 Broadcom Corporation. * * Licensed under the GNU/GPL. See COPYING for details. */ #include #include #include #include #include #include "ssb_private.h" /* Define the following to 1 to enable a printk on each coreswitch. */ #define SSB_VERBOSE_PCICORESWITCH_DEBUG 0 /* Lowlevel coreswitching */ int ssb_pci_switch_coreidx(struct ssb_bus *bus, u8 coreidx) { int err; int attempts = 0; u32 cur_core; while (1) { err = pci_write_config_dword(bus->host_pci, SSB_BAR0_WIN, (coreidx * SSB_CORE_SIZE) + SSB_ENUM_BASE); if (err) goto error; err = pci_read_config_dword(bus->host_pci, SSB_BAR0_WIN, &cur_core); if (err) goto error; cur_core = (cur_core - SSB_ENUM_BASE) / SSB_CORE_SIZE; if (cur_core == coreidx) break; if (attempts++ > SSB_BAR0_MAX_RETRIES) goto error; udelay(10); } return 0; error: ssb_err("Failed to switch to core %u\n", coreidx); return -ENODEV; } int ssb_pci_switch_core(struct ssb_bus *bus, struct ssb_device *dev) { int err; unsigned long flags; #if SSB_VERBOSE_PCICORESWITCH_DEBUG ssb_info("Switching to %s core, index %d\n", ssb_core_name(dev->id.coreid), dev->core_index); #endif spin_lock_irqsave(&bus->bar_lock, flags); err = ssb_pci_switch_coreidx(bus, dev->core_index); if (!err) bus->mapped_device = dev; spin_unlock_irqrestore(&bus->bar_lock, flags); return err; } /* Enable/disable the on board crystal oscillator and/or PLL. */ int ssb_pci_xtal(struct ssb_bus *bus, u32 what, int turn_on) { int err; u32 in, out, outenable; u16 pci_status; if (bus->bustype != SSB_BUSTYPE_PCI) return 0; err = pci_read_config_dword(bus->host_pci, SSB_GPIO_IN, &in); if (err) goto err_pci; err = pci_read_config_dword(bus->host_pci, SSB_GPIO_OUT, &out); if (err) goto err_pci; err = pci_read_config_dword(bus->host_pci, SSB_GPIO_OUT_ENABLE, &outenable); if (err) goto err_pci; outenable |= what; if (turn_on) { /* Avoid glitching the clock if GPRS is already using it. * We can't actually read the state of the PLLPD so we infer it * by the value of XTAL_PU which *is* readable via gpioin. */ if (!(in & SSB_GPIO_XTAL)) { if (what & SSB_GPIO_XTAL) { /* Turn the crystal on */ out |= SSB_GPIO_XTAL; if (what & SSB_GPIO_PLL) out |= SSB_GPIO_PLL; err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT, out); if (err) goto err_pci; err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT_ENABLE, outenable); if (err) goto err_pci; msleep(1); } if (what & SSB_GPIO_PLL) { /* Turn the PLL on */ out &= ~SSB_GPIO_PLL; err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT, out); if (err) goto err_pci; msleep(5); } } err = pci_read_config_word(bus->host_pci, PCI_STATUS, &pci_status); if (err) goto err_pci; pci_status &= ~PCI_STATUS_SIG_TARGET_ABORT; err = pci_write_config_word(bus->host_pci, PCI_STATUS, pci_status); if (err) goto err_pci; } else { if (what & SSB_GPIO_XTAL) { /* Turn the crystal off */ out &= ~SSB_GPIO_XTAL; } if (what & SSB_GPIO_PLL) { /* Turn the PLL off */ out |= SSB_GPIO_PLL; } err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT, out); if (err) goto err_pci; err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT_ENABLE, outenable); if (err) goto err_pci; } out: return err; err_pci: printk(KERN_ERR PFX "Error: ssb_pci_xtal() could not access PCI config space!\n"); err = -EBUSY; goto out; } /* Get the word-offset for a SSB_SPROM_XXX define. */ #define SPOFF(offset) ((offset) / sizeof(u16)) /* Helper to extract some _offset, which is one of the SSB_SPROM_XXX defines. */ #define SPEX16(_outvar, _offset, _mask, _shift) \ out->_outvar = ((in[SPOFF(_offset)] & (_mask)) >> (_shift)) #define SPEX32(_outvar, _offset, _mask, _shift) \ out->_outvar = ((((u32)in[SPOFF((_offset)+2)] << 16 | \ in[SPOFF(_offset)]) & (_mask)) >> (_shift)) #define SPEX(_outvar, _offset, _mask, _shift) \ SPEX16(_outvar, _offset, _mask, _shift) #define SPEX_ARRAY8(_field, _offset, _mask, _shift) \ do { \ SPEX(_field[0], _offset + 0, _mask, _shift); \ SPEX(_field[1], _offset + 2, _mask, _shift); \ SPEX(_field[2], _offset + 4, _mask, _shift); \ SPEX(_field[3], _offset + 6, _mask, _shift); \ SPEX(_field[4], _offset + 8, _mask, _shift); \ SPEX(_field[5], _offset + 10, _mask, _shift); \ SPEX(_field[6], _offset + 12, _mask, _shift); \ SPEX(_field[7], _offset + 14, _mask, _shift); \ } while (0) static inline u8 ssb_crc8(u8 crc, u8 data) { /* Polynomial: x^8 + x^7 + x^6 + x^4 + x^2 + 1 */ static const u8 t[] = { 0x00, 0xF7, 0xB9, 0x4E, 0x25, 0xD2, 0x9C, 0x6B, 0x4A, 0xBD, 0xF3, 0x04, 0x6F, 0x98, 0xD6, 0x21, 0x94, 0x63, 0x2D, 0xDA, 0xB1, 0x46, 0x08, 0xFF, 0xDE, 0x29, 0x67, 0x90, 0xFB, 0x0C, 0x42, 0xB5, 0x7F, 0x88, 0xC6, 0x31, 0x5A, 0xAD, 0xE3, 0x14, 0x35, 0xC2, 0x8C, 0x7B, 0x10, 0xE7, 0xA9, 0x5E, 0xEB, 0x1C, 0x52, 0xA5, 0xCE, 0x39, 0x77, 0x80, 0xA1, 0x56, 0x18, 0xEF, 0x84, 0x73, 0x3D, 0xCA, 0xFE, 0x09, 0x47, 0xB0, 0xDB, 0x2C, 0x62, 0x95, 0xB4, 0x43, 0x0D, 0xFA, 0x91, 0x66, 0x28, 0xDF, 0x6A, 0x9D, 0xD3, 0x24, 0x4F, 0xB8, 0xF6, 0x01, 0x20, 0xD7, 0x99, 0x6E, 0x05, 0xF2, 0xBC, 0x4B, 0x81, 0x76, 0x38, 0xCF, 0xA4, 0x53, 0x1D, 0xEA, 0xCB, 0x3C, 0x72, 0x85, 0xEE, 0x19, 0x57, 0xA0, 0x15, 0xE2, 0xAC, 0x5B, 0x30, 0xC7, 0x89, 0x7E, 0x5F, 0xA8, 0xE6, 0x11, 0x7A, 0x8D, 0xC3, 0x34, 0xAB, 0x5C, 0x12, 0xE5, 0x8E, 0x79, 0x37, 0xC0, 0xE1, 0x16, 0x58, 0xAF, 0xC4, 0x33, 0x7D, 0x8A, 0x3F, 0xC8, 0x86, 0x71, 0x1A, 0xED, 0xA3, 0x54, 0x75, 0x82, 0xCC, 0x3B, 0x50, 0xA7, 0xE9, 0x1E, 0xD4, 0x23, 0x6D, 0x9A, 0xF1, 0x06, 0x48, 0xBF, 0x9E, 0x69, 0x27, 0xD0, 0xBB, 0x4C, 0x02, 0xF5, 0x40, 0xB7, 0xF9, 0x0E, 0x65, 0x92, 0xDC, 0x2B, 0x0A, 0xFD, 0xB3, 0x44, 0x2F, 0xD8, 0x96, 0x61, 0x55, 0xA2, 0xEC, 0x1B, 0x70, 0x87, 0xC9, 0x3E, 0x1F, 0xE8, 0xA6, 0x51, 0x3A, 0xCD, 0x83, 0x74, 0xC1, 0x36, 0x78, 0x8F, 0xE4, 0x13, 0x5D, 0xAA, 0x8B, 0x7C, 0x32, 0xC5, 0xAE, 0x59, 0x17, 0xE0, 0x2A, 0xDD, 0x93, 0x64, 0x0F, 0xF8, 0xB6, 0x41, 0x60, 0x97, 0xD9, 0x2E, 0x45, 0xB2, 0xFC, 0x0B, 0xBE, 0x49, 0x07, 0xF0, 0x9B, 0x6C, 0x22, 0xD5, 0xF4, 0x03, 0x4D, 0xBA, 0xD1, 0x26, 0x68, 0x9F, }; return t[crc ^ data]; } static void sprom_get_mac(char *mac, const u16 *in) { int i; for (i = 0; i < 3; i++) { *mac++ = in[i] >> 8; *mac++ = in[i]; } } static u8 ssb_sprom_crc(const u16 *sprom, u16 size) { int word; u8 crc = 0xFF; for (word = 0; word < size - 1; word++) { crc = ssb_crc8(crc, sprom[word] & 0x00FF); crc = ssb_crc8(crc, (sprom[word] & 0xFF00) >> 8); } crc = ssb_crc8(crc, sprom[size - 1] & 0x00FF); crc ^= 0xFF; return crc; } static int sprom_check_crc(const u16 *sprom, size_t size) { u8 crc; u8 expected_crc; u16 tmp; crc = ssb_sprom_crc(sprom, size); tmp = sprom[size - 1] & SSB_SPROM_REVISION_CRC; expected_crc = tmp >> SSB_SPROM_REVISION_CRC_SHIFT; if (crc != expected_crc) return -EPROTO; return 0; } static int sprom_do_read(struct ssb_bus *bus, u16 *sprom) { int i; for (i = 0; i < bus->sprom_size; i++) sprom[i] = ioread16(bus->mmio + bus->sprom_offset + (i * 2)); return 0; } static int sprom_do_write(struct ssb_bus *bus, const u16 *sprom) { struct pci_dev *pdev = bus->host_pci; int i, err; u32 spromctl; u16 size = bus->sprom_size; ssb_notice("Writing SPROM. Do NOT turn off the power! Please stand by...\n"); err = pci_read_config_dword(pdev, SSB_SPROMCTL, &spromctl); if (err) goto err_ctlreg; spromctl |= SSB_SPROMCTL_WE; err = pci_write_config_dword(pdev, SSB_SPROMCTL, spromctl); if (err) goto err_ctlreg; ssb_notice("[ 0%%"); msleep(500); for (i = 0; i < size; i++) { if (i == size / 4) ssb_cont("25%%"); else if (i == size / 2) ssb_cont("50%%"); else if (i == (size * 3) / 4) ssb_cont("75%%"); else if (i % 2) ssb_cont("."); writew(sprom[i], bus->mmio + bus->sprom_offset + (i * 2)); mmiowb(); msleep(20); } err = pci_read_config_dword(pdev, SSB_SPROMCTL, &spromctl); if (err) goto err_ctlreg; spromctl &= ~SSB_SPROMCTL_WE; err = pci_write_config_dword(pdev, SSB_SPROMCTL, spromctl); if (err) goto err_ctlreg; msleep(500); ssb_cont("100%% ]\n"); ssb_notice("SPROM written\n"); return 0; err_ctlreg: ssb_err("Could not access SPROM control register.\n"); return err; } static s8 sprom_extract_antgain(u8 sprom_revision, const u16 *in, u16 offset, u16 mask, u16 shift) { u16 v; u8 gain; v = in[SPOFF(offset)]; gain = (v & mask) >> shift; if (gain == 0xFF) gain = 2; /* If unset use 2dBm */ if (sprom_revision == 1) { /* Convert to Q5.2 */ gain <<= 2; } else { /* Q5.2 Fractional part is stored in 0xC0 */ gain = ((gain & 0xC0) >> 6) | ((gain & 0x3F) << 2); } return (s8)gain; } static void sprom_extract_r23(struct ssb_sprom *out, const u16 *in) { SPEX(boardflags_hi, SSB_SPROM2_BFLHI, 0xFFFF, 0); SPEX(opo, SSB_SPROM2_OPO, SSB_SPROM2_OPO_VALUE, 0); SPEX(pa1lob0, SSB_SPROM2_PA1LOB0, 0xFFFF, 0); SPEX(pa1lob1, SSB_SPROM2_PA1LOB1, 0xFFFF, 0); SPEX(pa1lob2, SSB_SPROM2_PA1LOB2, 0xFFFF, 0); SPEX(pa1hib0, SSB_SPROM2_PA1HIB0, 0xFFFF, 0); SPEX(pa1hib1, SSB_SPROM2_PA1HIB1, 0xFFFF, 0); SPEX(pa1hib2, SSB_SPROM2_PA1HIB2, 0xFFFF, 0); SPEX(maxpwr_ah, SSB_SPROM2_MAXP_A, SSB_SPROM2_MAXP_A_HI, 0); SPEX(maxpwr_al, SSB_SPROM2_MAXP_A, SSB_SPROM2_MAXP_A_LO, SSB_SPROM2_MAXP_A_LO_SHIFT); } static void sprom_extract_r123(struct ssb_sprom *out, const u16 *in) { u16 loc[3]; if (out->revision == 3) /* rev 3 moved MAC */ loc[0] = SSB_SPROM3_IL0MAC; else { loc[0] = SSB_SPROM1_IL0MAC; loc[1] = SSB_SPROM1_ET0MAC; loc[2] = SSB_SPROM1_ET1MAC; } sprom_get_mac(out->il0mac, &in[SPOFF(loc[0])]); if (out->revision < 3) { /* only rev 1-2 have et0, et1 */ sprom_get_mac(out->et0mac, &in[SPOFF(loc[1])]); sprom_get_mac(out->et1mac, &in[SPOFF(loc[2])]); } SPEX(et0phyaddr, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET0A, 0); SPEX(et1phyaddr, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET1A, SSB_SPROM1_ETHPHY_ET1A_SHIFT); SPEX(et0mdcport, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET0M, 14); SPEX(et1mdcport, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET1M, 15); SPEX(board_rev, SSB_SPROM1_BINF, SSB_SPROM1_BINF_BREV, 0); SPEX(board_type, SSB_SPROM1_SPID, 0xFFFF, 0); if (out->revision == 1) SPEX(country_code, SSB_SPROM1_BINF, SSB_SPROM1_BINF_CCODE, SSB_SPROM1_BINF_CCODE_SHIFT); SPEX(ant_available_a, SSB_SPROM1_BINF, SSB_SPROM1_BINF_ANTA, SSB_SPROM1_BINF_ANTA_SHIFT); SPEX(ant_available_bg, SSB_SPROM1_BINF, SSB_SPROM1_BINF_ANTBG, SSB_SPROM1_BINF_ANTBG_SHIFT); SPEX(pa0b0, SSB_SPROM1_PA0B0, 0xFFFF, 0); SPEX(pa0b1, SSB_SPROM1_PA0B1, 0xFFFF, 0); SPEX(pa0b2, SSB_SPROM1_PA0B2, 0xFFFF, 0); SPEX(pa1b0, SSB_SPROM1_PA1B0, 0xFFFF, 0); SPEX(pa1b1, SSB_SPROM1_PA1B1, 0xFFFF, 0); SPEX(pa1b2, SSB_SPROM1_PA1B2, 0xFFFF, 0); SPEX(gpio0, SSB_SPROM1_GPIOA, SSB_SPROM1_GPIOA_P0, 0); SPEX(gpio1, SSB_SPROM1_GPIOA, SSB_SPROM1_GPIOA_P1, SSB_SPROM1_GPIOA_P1_SHIFT); SPEX(gpio2, SSB_SPROM1_GPIOB, SSB_SPROM1_GPIOB_P2, 0); SPEX(gpio3, SSB_SPROM1_GPIOB, SSB_SPROM1_GPIOB_P3, SSB_SPROM1_GPIOB_P3_SHIFT); SPEX(maxpwr_a, SSB_SPROM1_MAXPWR, SSB_SPROM1_MAXPWR_A, SSB_SPROM1_MAXPWR_A_SHIFT); SPEX(maxpwr_bg, SSB_SPROM1_MAXPWR, SSB_SPROM1_MAXPWR_BG, 0); SPEX(itssi_a, SSB_SPROM1_ITSSI, SSB_SPROM1_ITSSI_A, SSB_SPROM1_ITSSI_A_SHIFT); SPEX(itssi_bg, SSB_SPROM1_ITSSI, SSB_SPROM1_ITSSI_BG, 0); SPEX(boardflags_lo, SSB_SPROM1_BFLLO, 0xFFFF, 0); SPEX(alpha2[0], SSB_SPROM1_CCODE, 0xff00, 8); SPEX(alpha2[1], SSB_SPROM1_CCODE, 0x00ff, 0); /* Extract the antenna gain values. */ out->antenna_gain.a0 = sprom_extract_antgain(out->revision, in, SSB_SPROM1_AGAIN, SSB_SPROM1_AGAIN_BG, SSB_SPROM1_AGAIN_BG_SHIFT); out->antenna_gain.a1 = sprom_extract_antgain(out->revision, in, SSB_SPROM1_AGAIN, SSB_SPROM1_AGAIN_A, SSB_SPROM1_AGAIN_A_SHIFT); if (out->revision >= 2) sprom_extract_r23(out, in); } /* Revs 4 5 and 8 have partially shared layout */ static void sprom_extract_r458(struct ssb_sprom *out, const u16 *in) { SPEX(txpid2g[0], SSB_SPROM4_TXPID2G01, SSB_SPROM4_TXPID2G0, SSB_SPROM4_TXPID2G0_SHIFT); SPEX(txpid2g[1], SSB_SPROM4_TXPID2G01, SSB_SPROM4_TXPID2G1, SSB_SPROM4_TXPID2G1_SHIFT); SPEX(txpid2g[2], SSB_SPROM4_TXPID2G23, SSB_SPROM4_TXPID2G2, SSB_SPROM4_TXPID2G2_SHIFT); SPEX(txpid2g[3], SSB_SPROM4_TXPID2G23, SSB_SPROM4_TXPID2G3, SSB_SPROM4_TXPID2G3_SHIFT); SPEX(txpid5gl[0], SSB_SPROM4_TXPID5GL01, SSB_SPROM4_TXPID5GL0, SSB_SPROM4_TXPID5GL0_SHIFT); SPEX(txpid5gl[1], SSB_SPROM4_TXPID5GL01, SSB_SPROM4_TXPID5GL1, SSB_SPROM4_TXPID5GL1_SHIFT); SPEX(txpid5gl[2], SSB_SPROM4_TXPID5GL23, SSB_SPROM4_TXPID5GL2, SSB_SPROM4_TXPID5GL2_SHIFT); SPEX(txpid5gl[3], SSB_SPROM4_TXPID5GL23, SSB_SPROM4_TXPID5GL3, SSB_SPROM4_TXPID5GL3_SHIFT); SPEX(txpid5g[0], SSB_SPROM4_TXPID5G01, SSB_SPROM4_TXPID5G0, SSB_SPROM4_TXPID5G0_SHIFT); SPEX(txpid5g[1], SSB_SPROM4_TXPID5G01, SSB_SPROM4_TXPID5G1, SSB_SPROM4_TXPID5G1_SHIFT); SPEX(txpid5g[2], SSB_SPROM4_TXPID5G23, SSB_SPROM4_TXPID5G2, SSB_SPROM4_TXPID5G2_SHIFT); SPEX(txpid5g[3], SSB_SPROM4_TXPID5G23, SSB_SPROM4_TXPID5G3, SSB_SPROM4_TXPID5G3_SHIFT); SPEX(txpid5gh[0], SSB_SPROM4_TXPID5GH01, SSB_SPROM4_TXPID5GH0, SSB_SPROM4_TXPID5GH0_SHIFT); SPEX(txpid5gh[1], SSB_SPROM4_TXPID5GH01, SSB_SPROM4_TXPID5GH1, SSB_SPROM4_TXPID5GH1_SHIFT); SPEX(txpid5gh[2], SSB_SPROM4_TXPID5GH23, SSB_SPROM4_TXPID5GH2, SSB_SPROM4_TXPID5GH2_SHIFT); SPEX(txpid5gh[3], SSB_SPROM4_TXPID5GH23, SSB_SPROM4_TXPID5GH3, SSB_SPROM4_TXPID5GH3_SHIFT); } static void sprom_extract_r45(struct ssb_sprom *out, const u16 *in) { static const u16 pwr_info_offset[] = { SSB_SPROM4_PWR_INFO_CORE0, SSB_SPROM4_PWR_INFO_CORE1, SSB_SPROM4_PWR_INFO_CORE2, SSB_SPROM4_PWR_INFO_CORE3 }; u16 il0mac_offset; int i; BUILD_BUG_ON(ARRAY_SIZE(pwr_info_offset) != ARRAY_SIZE(out->core_pwr_info)); if (out->revision == 4) il0mac_offset = SSB_SPROM4_IL0MAC; else il0mac_offset = SSB_SPROM5_IL0MAC; sprom_get_mac(out->il0mac, &in[SPOFF(il0mac_offset)]); SPEX(et0phyaddr, SSB_SPROM4_ETHPHY, SSB_SPROM4_ETHPHY_ET0A, 0); SPEX(et1phyaddr, SSB_SPROM4_ETHPHY, SSB_SPROM4_ETHPHY_ET1A, SSB_SPROM4_ETHPHY_ET1A_SHIFT); SPEX(board_rev, SSB_SPROM4_BOARDREV, 0xFFFF, 0); SPEX(board_type, SSB_SPROM1_SPID, 0xFFFF, 0); if (out->revision == 4) { SPEX(alpha2[0], SSB_SPROM4_CCODE, 0xff00, 8); SPEX(alpha2[1], SSB_SPROM4_CCODE, 0x00ff, 0); SPEX(boardflags_lo, SSB_SPROM4_BFLLO, 0xFFFF, 0); SPEX(boardflags_hi, SSB_SPROM4_BFLHI, 0xFFFF, 0); SPEX(boardflags2_lo, SSB_SPROM4_BFL2LO, 0xFFFF, 0); SPEX(boardflags2_hi, SSB_SPROM4_BFL2HI, 0xFFFF, 0); } else { SPEX(alpha2[0], SSB_SPROM5_CCODE, 0xff00, 8); SPEX(alpha2[1], SSB_SPROM5_CCODE, 0x00ff, 0); SPEX(boardflags_lo, SSB_SPROM5_BFLLO, 0xFFFF, 0); SPEX(boardflags_hi, SSB_SPROM5_BFLHI, 0xFFFF, 0); SPEX(boardflags2_lo, SSB_SPROM5_BFL2LO, 0xFFFF, 0); SPEX(boardflags2_hi, SSB_SPROM5_BFL2HI, 0xFFFF, 0); } SPEX(ant_available_a, SSB_SPROM4_ANTAVAIL, SSB_SPROM4_ANTAVAIL_A, SSB_SPROM4_ANTAVAIL_A_SHIFT); SPEX(ant_available_bg, SSB_SPROM4_ANTAVAIL, SSB_SPROM4_ANTAVAIL_BG, SSB_SPROM4_ANTAVAIL_BG_SHIFT); SPEX(maxpwr_bg, SSB_SPROM4_MAXP_BG, SSB_SPROM4_MAXP_BG_MASK, 0); SPEX(itssi_bg, SSB_SPROM4_MAXP_BG, SSB_SPROM4_ITSSI_BG, SSB_SPROM4_ITSSI_BG_SHIFT); SPEX(maxpwr_a, SSB_SPROM4_MAXP_A, SSB_SPROM4_MAXP_A_MASK, 0); SPEX(itssi_a, SSB_SPROM4_MAXP_A, SSB_SPROM4_ITSSI_A, SSB_SPROM4_ITSSI_A_SHIFT); if (out->revision == 4) { SPEX(gpio0, SSB_SPROM4_GPIOA, SSB_SPROM4_GPIOA_P0, 0); SPEX(gpio1, SSB_SPROM4_GPIOA, SSB_SPROM4_GPIOA_P1, SSB_SPROM4_GPIOA_P1_SHIFT); SPEX(gpio2, SSB_SPROM4_GPIOB, SSB_SPROM4_GPIOB_P2, 0); SPEX(gpio3, SSB_SPROM4_GPIOB, SSB_SPROM4_GPIOB_P3, SSB_SPROM4_GPIOB_P3_SHIFT); } else { SPEX(gpio0, SSB_SPROM5_GPIOA, SSB_SPROM5_GPIOA_P0, 0); SPEX(gpio1, SSB_SPROM5_GPIOA, SSB_SPROM5_GPIOA_P1, SSB_SPROM5_GPIOA_P1_SHIFT); SPEX(gpio2, SSB_SPROM5_GPIOB, SSB_SPROM5_GPIOB_P2, 0); SPEX(gpio3, SSB_SPROM5_GPIOB, SSB_SPROM5_GPIOB_P3, SSB_SPROM5_GPIOB_P3_SHIFT); } /* Extract the antenna gain values. */ out->antenna_gain.a0 = sprom_extract_antgain(out->revision, in, SSB_SPROM4_AGAIN01, SSB_SPROM4_AGAIN0, SSB_SPROM4_AGAIN0_SHIFT); out->antenna_gain.a1 = sprom_extract_antgain(out->revision, in, SSB_SPROM4_AGAIN01, SSB_SPROM4_AGAIN1, SSB_SPROM4_AGAIN1_SHIFT); out->antenna_gain.a2 = sprom_extract_antgain(out->revision, in, SSB_SPROM4_AGAIN23, SSB_SPROM4_AGAIN2, SSB_SPROM4_AGAIN2_SHIFT); out->antenna_gain.a3 = sprom_extract_antgain(out->revision, in, SSB_SPROM4_AGAIN23, SSB_SPROM4_AGAIN3, SSB_SPROM4_AGAIN3_SHIFT); /* Extract cores power info info */ for (i = 0; i < ARRAY_SIZE(pwr_info_offset); i++) { u16 o = pwr_info_offset[i]; SPEX(core_pwr_info[i].itssi_2g, o + SSB_SPROM4_2G_MAXP_ITSSI, SSB_SPROM4_2G_ITSSI, SSB_SPROM4_2G_ITSSI_SHIFT); SPEX(core_pwr_info[i].maxpwr_2g, o + SSB_SPROM4_2G_MAXP_ITSSI, SSB_SPROM4_2G_MAXP, 0); SPEX(core_pwr_info[i].pa_2g[0], o + SSB_SPROM4_2G_PA_0, ~0, 0); SPEX(core_pwr_info[i].pa_2g[1], o + SSB_SPROM4_2G_PA_1, ~0, 0); SPEX(core_pwr_info[i].pa_2g[2], o + SSB_SPROM4_2G_PA_2, ~0, 0); SPEX(core_pwr_info[i].pa_2g[3], o + SSB_SPROM4_2G_PA_3, ~0, 0); SPEX(core_pwr_info[i].itssi_5g, o + SSB_SPROM4_5G_MAXP_ITSSI, SSB_SPROM4_5G_ITSSI, SSB_SPROM4_5G_ITSSI_SHIFT); SPEX(core_pwr_info[i].maxpwr_5g, o + SSB_SPROM4_5G_MAXP_ITSSI, SSB_SPROM4_5G_MAXP, 0); SPEX(core_pwr_info[i].maxpwr_5gh, o + SSB_SPROM4_5GHL_MAXP, SSB_SPROM4_5GH_MAXP, 0); SPEX(core_pwr_info[i].maxpwr_5gl, o + SSB_SPROM4_5GHL_MAXP, SSB_SPROM4_5GL_MAXP, SSB_SPROM4_5GL_MAXP_SHIFT); SPEX(core_pwr_info[i].pa_5gl[0], o + SSB_SPROM4_5GL_PA_0, ~0, 0); SPEX(core_pwr_info[i].pa_5gl[1], o + SSB_SPROM4_5GL_PA_1, ~0, 0); SPEX(core_pwr_info[i].pa_5gl[2], o + SSB_SPROM4_5GL_PA_2, ~0, 0); SPEX(core_pwr_info[i].pa_5gl[3], o + SSB_SPROM4_5GL_PA_3, ~0, 0); SPEX(core_pwr_info[i].pa_5g[0], o + SSB_SPROM4_5G_PA_0, ~0, 0); SPEX(core_pwr_info[i].pa_5g[1], o + SSB_SPROM4_5G_PA_1, ~0, 0); SPEX(core_pwr_info[i].pa_5g[2], o + SSB_SPROM4_5G_PA_2, ~0, 0); SPEX(core_pwr_info[i].pa_5g[3], o + SSB_SPROM4_5G_PA_3, ~0, 0); SPEX(core_pwr_info[i].pa_5gh[0], o + SSB_SPROM4_5GH_PA_0, ~0, 0); SPEX(core_pwr_info[i].pa_5gh[1], o + SSB_SPROM4_5GH_PA_1, ~0, 0); SPEX(core_pwr_info[i].pa_5gh[2], o + SSB_SPROM4_5GH_PA_2, ~0, 0); SPEX(core_pwr_info[i].pa_5gh[3], o + SSB_SPROM4_5GH_PA_3, ~0, 0); } sprom_extract_r458(out, in); /* TODO - get remaining rev 4 stuff needed */ } static void sprom_extract_r8(struct ssb_sprom *out, const u16 *in) { int i; u16 o; u16 pwr_info_offset[] = { SSB_SROM8_PWR_INFO_CORE0, SSB_SROM8_PWR_INFO_CORE1, SSB_SROM8_PWR_INFO_CORE2, SSB_SROM8_PWR_INFO_CORE3 }; BUILD_BUG_ON(ARRAY_SIZE(pwr_info_offset) != ARRAY_SIZE(out->core_pwr_info)); /* extract the MAC address */ sprom_get_mac(out->il0mac, &in[SPOFF(SSB_SPROM8_IL0MAC)]); SPEX(board_rev, SSB_SPROM8_BOARDREV, 0xFFFF, 0); SPEX(board_type, SSB_SPROM1_SPID, 0xFFFF, 0); SPEX(alpha2[0], SSB_SPROM8_CCODE, 0xff00, 8); SPEX(alpha2[1], SSB_SPROM8_CCODE, 0x00ff, 0); SPEX(boardflags_lo, SSB_SPROM8_BFLLO, 0xFFFF, 0); SPEX(boardflags_hi, SSB_SPROM8_BFLHI, 0xFFFF, 0); SPEX(boardflags2_lo, SSB_SPROM8_BFL2LO, 0xFFFF, 0); SPEX(boardflags2_hi, SSB_SPROM8_BFL2HI, 0xFFFF, 0); SPEX(ant_available_a, SSB_SPROM8_ANTAVAIL, SSB_SPROM8_ANTAVAIL_A, SSB_SPROM8_ANTAVAIL_A_SHIFT); SPEX(ant_available_bg, SSB_SPROM8_ANTAVAIL, SSB_SPROM8_ANTAVAIL_BG, SSB_SPROM8_ANTAVAIL_BG_SHIFT); SPEX(maxpwr_bg, SSB_SPROM8_MAXP_BG, SSB_SPROM8_MAXP_BG_MASK, 0); SPEX(itssi_bg, SSB_SPROM8_MAXP_BG, SSB_SPROM8_ITSSI_BG, SSB_SPROM8_ITSSI_BG_SHIFT); SPEX(maxpwr_a, SSB_SPROM8_MAXP_A, SSB_SPROM8_MAXP_A_MASK, 0); SPEX(itssi_a, SSB_SPROM8_MAXP_A, SSB_SPROM8_ITSSI_A, SSB_SPROM8_ITSSI_A_SHIFT); SPEX(maxpwr_ah, SSB_SPROM8_MAXP_AHL, SSB_SPROM8_MAXP_AH_MASK, 0); SPEX(maxpwr_al, SSB_SPROM8_MAXP_AHL, SSB_SPROM8_MAXP_AL_MASK, SSB_SPROM8_MAXP_AL_SHIFT); SPEX(gpio0, SSB_SPROM8_GPIOA, SSB_SPROM8_GPIOA_P0, 0); SPEX(gpio1, SSB_SPROM8_GPIOA, SSB_SPROM8_GPIOA_P1, SSB_SPROM8_GPIOA_P1_SHIFT); SPEX(gpio2, SSB_SPROM8_GPIOB, SSB_SPROM8_GPIOB_P2, 0); SPEX(gpio3, SSB_SPROM8_GPIOB, SSB_SPROM8_GPIOB_P3, SSB_SPROM8_GPIOB_P3_SHIFT); SPEX(tri2g, SSB_SPROM8_TRI25G, SSB_SPROM8_TRI2G, 0); SPEX(tri5g, SSB_SPROM8_TRI25G, SSB_SPROM8_TRI5G, SSB_SPROM8_TRI5G_SHIFT); SPEX(tri5gl, SSB_SPROM8_TRI5GHL, SSB_SPROM8_TRI5GL, 0); SPEX(tri5gh, SSB_SPROM8_TRI5GHL, SSB_SPROM8_TRI5GH, SSB_SPROM8_TRI5GH_SHIFT); SPEX(rxpo2g, SSB_SPROM8_RXPO, SSB_SPROM8_RXPO2G, 0); SPEX(rxpo5g, SSB_SPROM8_RXPO, SSB_SPROM8_RXPO5G, SSB_SPROM8_RXPO5G_SHIFT); SPEX(rssismf2g, SSB_SPROM8_RSSIPARM2G, SSB_SPROM8_RSSISMF2G, 0); SPEX(rssismc2g, SSB_SPROM8_RSSIPARM2G, SSB_SPROM8_RSSISMC2G, SSB_SPROM8_RSSISMC2G_SHIFT); SPEX(rssisav2g, SSB_SPROM8_RSSIPARM2G, SSB_SPROM8_RSSISAV2G, SSB_SPROM8_RSSISAV2G_SHIFT); SPEX(bxa2g, SSB_SPROM8_RSSIPARM2G, SSB_SPROM8_BXA2G, SSB_SPROM8_BXA2G_SHIFT); SPEX(rssismf5g, SSB_SPROM8_RSSIPARM5G, SSB_SPROM8_RSSISMF5G, 0); SPEX(rssismc5g, SSB_SPROM8_RSSIPARM5G, SSB_SPROM8_RSSISMC5G, SSB_SPROM8_RSSISMC5G_SHIFT); SPEX(rssisav5g, SSB_SPROM8_RSSIPARM5G, SSB_SPROM8_RSSISAV5G, SSB_SPROM8_RSSISAV5G_SHIFT); SPEX(bxa5g, SSB_SPROM8_RSSIPARM5G, SSB_SPROM8_BXA5G, SSB_SPROM8_BXA5G_SHIFT); SPEX(pa0b0, SSB_SPROM8_PA0B0, 0xFFFF, 0); SPEX(pa0b1, SSB_SPROM8_PA0B1, 0xFFFF, 0); SPEX(pa0b2, SSB_SPROM8_PA0B2, 0xFFFF, 0); SPEX(pa1b0, SSB_SPROM8_PA1B0, 0xFFFF, 0); SPEX(pa1b1, SSB_SPROM8_PA1B1, 0xFFFF, 0); SPEX(pa1b2, SSB_SPROM8_PA1B2, 0xFFFF, 0); SPEX(pa1lob0, SSB_SPROM8_PA1LOB0, 0xFFFF, 0); SPEX(pa1lob1, SSB_SPROM8_PA1LOB1, 0xFFFF, 0); SPEX(pa1lob2, SSB_SPROM8_PA1LOB2, 0xFFFF, 0); SPEX(pa1hib0, SSB_SPROM8_PA1HIB0, 0xFFFF, 0); SPEX(pa1hib1, SSB_SPROM8_PA1HIB1, 0xFFFF, 0); SPEX(pa1hib2, SSB_SPROM8_PA1HIB2, 0xFFFF, 0); SPEX(cck2gpo, SSB_SPROM8_CCK2GPO, 0xFFFF, 0); SPEX32(ofdm2gpo, SSB_SPROM8_OFDM2GPO, 0xFFFFFFFF, 0); SPEX32(ofdm5glpo, SSB_SPROM8_OFDM5GLPO, 0xFFFFFFFF, 0); SPEX32(ofdm5gpo, SSB_SPROM8_OFDM5GPO, 0xFFFFFFFF, 0); SPEX32(ofdm5ghpo, SSB_SPROM8_OFDM5GHPO, 0xFFFFFFFF, 0); /* Extract the antenna gain values. */ out->antenna_gain.a0 = sprom_extract_antgain(out->revision, in, SSB_SPROM8_AGAIN01, SSB_SPROM8_AGAIN0, SSB_SPROM8_AGAIN0_SHIFT); out->antenna_gain.a1 = sprom_extract_antgain(out->revision, in, SSB_SPROM8_AGAIN01, SSB_SPROM8_AGAIN1, SSB_SPROM8_AGAIN1_SHIFT); out->antenna_gain.a2 = sprom_extract_antgain(out->revision, in, SSB_SPROM8_AGAIN23, SSB_SPROM8_AGAIN2, SSB_SPROM8_AGAIN2_SHIFT); out->antenna_gain.a3 = sprom_extract_antgain(out->revision, in, SSB_SPROM8_AGAIN23, SSB_SPROM8_AGAIN3, SSB_SPROM8_AGAIN3_SHIFT); /* Extract cores power info info */ for (i = 0; i < ARRAY_SIZE(pwr_info_offset); i++) { o = pwr_info_offset[i]; SPEX(core_pwr_info[i].itssi_2g, o + SSB_SROM8_2G_MAXP_ITSSI, SSB_SPROM8_2G_ITSSI, SSB_SPROM8_2G_ITSSI_SHIFT); SPEX(core_pwr_info[i].maxpwr_2g, o + SSB_SROM8_2G_MAXP_ITSSI, SSB_SPROM8_2G_MAXP, 0); SPEX(core_pwr_info[i].pa_2g[0], o + SSB_SROM8_2G_PA_0, ~0, 0); SPEX(core_pwr_info[i].pa_2g[1], o + SSB_SROM8_2G_PA_1, ~0, 0); SPEX(core_pwr_info[i].pa_2g[2], o + SSB_SROM8_2G_PA_2, ~0, 0); SPEX(core_pwr_info[i].itssi_5g, o + SSB_SROM8_5G_MAXP_ITSSI, SSB_SPROM8_5G_ITSSI, SSB_SPROM8_5G_ITSSI_SHIFT); SPEX(core_pwr_info[i].maxpwr_5g, o + SSB_SROM8_5G_MAXP_ITSSI, SSB_SPROM8_5G_MAXP, 0); SPEX(core_pwr_info[i].maxpwr_5gh, o + SSB_SPROM8_5GHL_MAXP, SSB_SPROM8_5GH_MAXP, 0); SPEX(core_pwr_info[i].maxpwr_5gl, o + SSB_SPROM8_5GHL_MAXP, SSB_SPROM8_5GL_MAXP, SSB_SPROM8_5GL_MAXP_SHIFT); SPEX(core_pwr_info[i].pa_5gl[0], o + SSB_SROM8_5GL_PA_0, ~0, 0); SPEX(core_pwr_info[i].pa_5gl[1], o + SSB_SROM8_5GL_PA_1, ~0, 0); SPEX(core_pwr_info[i].pa_5gl[2], o + SSB_SROM8_5GL_PA_2, ~0, 0); SPEX(core_pwr_info[i].pa_5g[0], o + SSB_SROM8_5G_PA_0, ~0, 0); SPEX(core_pwr_info[i].pa_5g[1], o + SSB_SROM8_5G_PA_1, ~0, 0); SPEX(core_pwr_info[i].pa_5g[2], o + SSB_SROM8_5G_PA_2, ~0, 0); SPEX(core_pwr_info[i].pa_5gh[0], o + SSB_SROM8_5GH_PA_0, ~0, 0); SPEX(core_pwr_info[i].pa_5gh[1], o + SSB_SROM8_5GH_PA_1, ~0, 0); SPEX(core_pwr_info[i].pa_5gh[2], o + SSB_SROM8_5GH_PA_2, ~0, 0); } /* Extract FEM info */ SPEX(fem.ghz2.tssipos, SSB_SPROM8_FEM2G, SSB_SROM8_FEM_TSSIPOS, SSB_SROM8_FEM_TSSIPOS_SHIFT); SPEX(fem.ghz2.extpa_gain, SSB_SPROM8_FEM2G, SSB_SROM8_FEM_EXTPA_GAIN, SSB_SROM8_FEM_EXTPA_GAIN_SHIFT); SPEX(fem.ghz2.pdet_range, SSB_SPROM8_FEM2G, SSB_SROM8_FEM_PDET_RANGE, SSB_SROM8_FEM_PDET_RANGE_SHIFT); SPEX(fem.ghz2.tr_iso, SSB_SPROM8_FEM2G, SSB_SROM8_FEM_TR_ISO, SSB_SROM8_FEM_TR_ISO_SHIFT); SPEX(fem.ghz2.antswlut, SSB_SPROM8_FEM2G, SSB_SROM8_FEM_ANTSWLUT, SSB_SROM8_FEM_ANTSWLUT_SHIFT); SPEX(fem.ghz5.tssipos, SSB_SPROM8_FEM5G, SSB_SROM8_FEM_TSSIPOS, SSB_SROM8_FEM_TSSIPOS_SHIFT); SPEX(fem.ghz5.extpa_gain, SSB_SPROM8_FEM5G, SSB_SROM8_FEM_EXTPA_GAIN, SSB_SROM8_FEM_EXTPA_GAIN_SHIFT); SPEX(fem.ghz5.pdet_range, SSB_SPROM8_FEM5G, SSB_SROM8_FEM_PDET_RANGE, SSB_SROM8_FEM_PDET_RANGE_SHIFT); SPEX(fem.ghz5.tr_iso, SSB_SPROM8_FEM5G, SSB_SROM8_FEM_TR_ISO, SSB_SROM8_FEM_TR_ISO_SHIFT); SPEX(fem.ghz5.antswlut, SSB_SPROM8_FEM5G, SSB_SROM8_FEM_ANTSWLUT, SSB_SROM8_FEM_ANTSWLUT_SHIFT); SPEX(leddc_on_time, SSB_SPROM8_LEDDC, SSB_SPROM8_LEDDC_ON, SSB_SPROM8_LEDDC_ON_SHIFT); SPEX(leddc_off_time, SSB_SPROM8_LEDDC, SSB_SPROM8_LEDDC_OFF, SSB_SPROM8_LEDDC_OFF_SHIFT); SPEX(txchain, SSB_SPROM8_TXRXC, SSB_SPROM8_TXRXC_TXCHAIN, SSB_SPROM8_TXRXC_TXCHAIN_SHIFT); SPEX(rxchain, SSB_SPROM8_TXRXC, SSB_SPROM8_TXRXC_RXCHAIN, SSB_SPROM8_TXRXC_RXCHAIN_SHIFT); SPEX(antswitch, SSB_SPROM8_TXRXC, SSB_SPROM8_TXRXC_SWITCH, SSB_SPROM8_TXRXC_SWITCH_SHIFT); SPEX(opo, SSB_SPROM8_OFDM2GPO, 0x00ff, 0); SPEX_ARRAY8(mcs2gpo, SSB_SPROM8_2G_MCSPO, ~0, 0); SPEX_ARRAY8(mcs5gpo, SSB_SPROM8_5G_MCSPO, ~0, 0); SPEX_ARRAY8(mcs5glpo, SSB_SPROM8_5GL_MCSPO, ~0, 0); SPEX_ARRAY8(mcs5ghpo, SSB_SPROM8_5GH_MCSPO, ~0, 0); SPEX(rawtempsense, SSB_SPROM8_RAWTS, SSB_SPROM8_RAWTS_RAWTEMP, SSB_SPROM8_RAWTS_RAWTEMP_SHIFT); SPEX(measpower, SSB_SPROM8_RAWTS, SSB_SPROM8_RAWTS_MEASPOWER, SSB_SPROM8_RAWTS_MEASPOWER_SHIFT); SPEX(tempsense_slope, SSB_SPROM8_OPT_CORRX, SSB_SPROM8_OPT_CORRX_TEMP_SLOPE, SSB_SPROM8_OPT_CORRX_TEMP_SLOPE_SHIFT); SPEX(tempcorrx, SSB_SPROM8_OPT_CORRX, SSB_SPROM8_OPT_CORRX_TEMPCORRX, SSB_SPROM8_OPT_CORRX_TEMPCORRX_SHIFT); SPEX(tempsense_option, SSB_SPROM8_OPT_CORRX, SSB_SPROM8_OPT_CORRX_TEMP_OPTION, SSB_SPROM8_OPT_CORRX_TEMP_OPTION_SHIFT); SPEX(freqoffset_corr, SSB_SPROM8_HWIQ_IQSWP, SSB_SPROM8_HWIQ_IQSWP_FREQ_CORR, SSB_SPROM8_HWIQ_IQSWP_FREQ_CORR_SHIFT); SPEX(iqcal_swp_dis, SSB_SPROM8_HWIQ_IQSWP, SSB_SPROM8_HWIQ_IQSWP_IQCAL_SWP, SSB_SPROM8_HWIQ_IQSWP_IQCAL_SWP_SHIFT); SPEX(hw_iqcal_en, SSB_SPROM8_HWIQ_IQSWP, SSB_SPROM8_HWIQ_IQSWP_HW_IQCAL, SSB_SPROM8_HWIQ_IQSWP_HW_IQCAL_SHIFT); SPEX(bw40po, SSB_SPROM8_BW40PO, ~0, 0); SPEX(cddpo, SSB_SPROM8_CDDPO, ~0, 0); SPEX(stbcpo, SSB_SPROM8_STBCPO, ~0, 0); SPEX(bwduppo, SSB_SPROM8_BWDUPPO, ~0, 0); SPEX(tempthresh, SSB_SPROM8_THERMAL, SSB_SPROM8_THERMAL_TRESH, SSB_SPROM8_THERMAL_TRESH_SHIFT); SPEX(tempoffset, SSB_SPROM8_THERMAL, SSB_SPROM8_THERMAL_OFFSET, SSB_SPROM8_THERMAL_OFFSET_SHIFT); SPEX(phycal_tempdelta, SSB_SPROM8_TEMPDELTA, SSB_SPROM8_TEMPDELTA_PHYCAL, SSB_SPROM8_TEMPDELTA_PHYCAL_SHIFT); SPEX(temps_period, SSB_SPROM8_TEMPDELTA, SSB_SPROM8_TEMPDELTA_PERIOD, SSB_SPROM8_TEMPDELTA_PERIOD_SHIFT); SPEX(temps_hysteresis, SSB_SPROM8_TEMPDELTA, SSB_SPROM8_TEMPDELTA_HYSTERESIS, SSB_SPROM8_TEMPDELTA_HYSTERESIS_SHIFT); sprom_extract_r458(out, in); /* TODO - get remaining rev 8 stuff needed */ } static int sprom_extract(struct ssb_bus *bus, struct ssb_sprom *out, const u16 *in, u16 size) { memset(out, 0, sizeof(*out)); out->revision = in[size - 1] & 0x00FF; ssb_dbg("SPROM revision %d detected\n", out->revision); memset(out->et0mac, 0xFF, 6); /* preset et0 and et1 mac */ memset(out->et1mac, 0xFF, 6); if ((bus->chip_id & 0xFF00) == 0x4400) { /* Workaround: The BCM44XX chip has a stupid revision * number stored in the SPROM. * Always extract r1. */ out->revision = 1; ssb_dbg("SPROM treated as revision %d\n", out->revision); } switch (out->revision) { case 1: case 2: case 3: sprom_extract_r123(out, in); break; case 4: case 5: sprom_extract_r45(out, in); break; case 8: sprom_extract_r8(out, in); break; default: ssb_warn("Unsupported SPROM revision %d detected. Will extract v1\n", out->revision); out->revision = 1; sprom_extract_r123(out, in); } if (out->boardflags_lo == 0xFFFF) out->boardflags_lo = 0; /* per specs */ if (out->boardflags_hi == 0xFFFF) out->boardflags_hi = 0; /* per specs */ return 0; } static int ssb_pci_sprom_get(struct ssb_bus *bus, struct ssb_sprom *sprom) { int err; u16 *buf; if (!ssb_is_sprom_available(bus)) { ssb_err("No SPROM available!\n"); return -ENODEV; } if (bus->chipco.dev) { /* can be unavailable! */ /* * get SPROM offset: SSB_SPROM_BASE1 except for * chipcommon rev >= 31 or chip ID is 0x4312 and * chipcommon status & 3 == 2 */ if (bus->chipco.dev->id.revision >= 31) bus->sprom_offset = SSB_SPROM_BASE31; else if (bus->chip_id == 0x4312 && (bus->chipco.status & 0x03) == 2) bus->sprom_offset = SSB_SPROM_BASE31; else bus->sprom_offset = SSB_SPROM_BASE1; } else { bus->sprom_offset = SSB_SPROM_BASE1; } ssb_dbg("SPROM offset is 0x%x\n", bus->sprom_offset); buf = kcalloc(SSB_SPROMSIZE_WORDS_R123, sizeof(u16), GFP_KERNEL); if (!buf) return -ENOMEM; bus->sprom_size = SSB_SPROMSIZE_WORDS_R123; sprom_do_read(bus, buf); err = sprom_check_crc(buf, bus->sprom_size); if (err) { /* try for a 440 byte SPROM - revision 4 and higher */ kfree(buf); buf = kcalloc(SSB_SPROMSIZE_WORDS_R4, sizeof(u16), GFP_KERNEL); if (!buf) return -ENOMEM; bus->sprom_size = SSB_SPROMSIZE_WORDS_R4; sprom_do_read(bus, buf); err = sprom_check_crc(buf, bus->sprom_size); if (err) { /* All CRC attempts failed. * Maybe there is no SPROM on the device? * Now we ask the arch code if there is some sprom * available for this device in some other storage */ err = ssb_fill_sprom_with_fallback(bus, sprom); if (err) { ssb_warn("WARNING: Using fallback SPROM failed (err %d)\n", err); } else { ssb_dbg("Using SPROM revision %d provided by platform\n", sprom->revision); err = 0; goto out_free; } ssb_warn("WARNING: Invalid SPROM CRC (corrupt SPROM)\n"); } } err = sprom_extract(bus, sprom, buf, bus->sprom_size); out_free: kfree(buf); return err; } static void ssb_pci_get_boardinfo(struct ssb_bus *bus, struct ssb_boardinfo *bi) { bi->vendor = bus->host_pci->subsystem_vendor; bi->type = bus->host_pci->subsystem_device; } int ssb_pci_get_invariants(struct ssb_bus *bus, struct ssb_init_invariants *iv) { int err; err = ssb_pci_sprom_get(bus, &iv->sprom); if (err) goto out; ssb_pci_get_boardinfo(bus, &iv->boardinfo); out: return err; } #ifdef CONFIG_SSB_DEBUG static int ssb_pci_assert_buspower(struct ssb_bus *bus) { if (likely(bus->powered_up)) return 0; printk(KERN_ERR PFX "FATAL ERROR: Bus powered down " "while accessing PCI MMIO space\n"); if (bus->power_warn_count <= 10) { bus->power_warn_count++; dump_stack(); } return -ENODEV; } #else /* DEBUG */ static inline int ssb_pci_assert_buspower(struct ssb_bus *bus) { return 0; } #endif /* DEBUG */ static u8 ssb_pci_read8(struct ssb_device *dev, u16 offset) { struct ssb_bus *bus = dev->bus; if (unlikely(ssb_pci_assert_buspower(bus))) return 0xFF; if (unlikely(bus->mapped_device != dev)) { if (unlikely(ssb_pci_switch_core(bus, dev))) return 0xFF; } return ioread8(bus->mmio + offset); } static u16 ssb_pci_read16(struct ssb_device *dev, u16 offset) { struct ssb_bus *bus = dev->bus; if (unlikely(ssb_pci_assert_buspower(bus))) return 0xFFFF; if (unlikely(bus->mapped_device != dev)) { if (unlikely(ssb_pci_switch_core(bus, dev))) return 0xFFFF; } return ioread16(bus->mmio + offset); } static u32 ssb_pci_read32(struct ssb_device *dev, u16 offset) { struct ssb_bus *bus = dev->bus; if (unlikely(ssb_pci_assert_buspower(bus))) return 0xFFFFFFFF; if (unlikely(bus->mapped_device != dev)) { if (unlikely(ssb_pci_switch_core(bus, dev))) return 0xFFFFFFFF; } return ioread32(bus->mmio + offset); } #ifdef CONFIG_SSB_BLOCKIO static void ssb_pci_block_read(struct ssb_device *dev, void *buffer, size_t count, u16 offset, u8 reg_width) { struct ssb_bus *bus = dev->bus; void __iomem *addr = bus->mmio + offset; if (unlikely(ssb_pci_assert_buspower(bus))) goto error; if (unlikely(bus->mapped_device != dev)) { if (unlikely(ssb_pci_switch_core(bus, dev))) goto error; } switch (reg_width) { case sizeof(u8): ioread8_rep(addr, buffer, count); break; case sizeof(u16): SSB_WARN_ON(count & 1); ioread16_rep(addr, buffer, count >> 1); break; case sizeof(u32): SSB_WARN_ON(count & 3); ioread32_rep(addr, buffer, count >> 2); break; default: SSB_WARN_ON(1); } return; error: memset(buffer, 0xFF, count); } #endif /* CONFIG_SSB_BLOCKIO */ static void ssb_pci_write8(struct ssb_device *dev, u16 offset, u8 value) { struct ssb_bus *bus = dev->bus; if (unlikely(ssb_pci_assert_buspower(bus))) return; if (unlikely(bus->mapped_device != dev)) { if (unlikely(ssb_pci_switch_core(bus, dev))) return; } iowrite8(value, bus->mmio + offset); } static void ssb_pci_write16(struct ssb_device *dev, u16 offset, u16 value) { struct ssb_bus *bus = dev->bus; if (unlikely(ssb_pci_assert_buspower(bus))) return; if (unlikely(bus->mapped_device != dev)) { if (unlikely(ssb_pci_switch_core(bus, dev))) return; } iowrite16(value, bus->mmio + offset); } static void ssb_pci_write32(struct ssb_device *dev, u16 offset, u32 value) { struct ssb_bus *bus = dev->bus; if (unlikely(ssb_pci_assert_buspower(bus))) return; if (unlikely(bus->mapped_device != dev)) { if (unlikely(ssb_pci_switch_core(bus, dev))) return; } iowrite32(value, bus->mmio + offset); } #ifdef CONFIG_SSB_BLOCKIO static void ssb_pci_block_write(struct ssb_device *dev, const void *buffer, size_t count, u16 offset, u8 reg_width) { struct ssb_bus *bus = dev->bus; void __iomem *addr = bus->mmio + offset; if (unlikely(ssb_pci_assert_buspower(bus))) return; if (unlikely(bus->mapped_device != dev)) { if (unlikely(ssb_pci_switch_core(bus, dev))) return; } switch (reg_width) { case sizeof(u8): iowrite8_rep(addr, buffer, count); break; case sizeof(u16): SSB_WARN_ON(count & 1); iowrite16_rep(addr, buffer, count >> 1); break; case sizeof(u32): SSB_WARN_ON(count & 3); iowrite32_rep(addr, buffer, count >> 2); break; default: SSB_WARN_ON(1); } } #endif /* CONFIG_SSB_BLOCKIO */ /* Not "static", as it's used in main.c */ const struct ssb_bus_ops ssb_pci_ops = { .read8 = ssb_pci_read8, .read16 = ssb_pci_read16, .read32 = ssb_pci_read32, .write8 = ssb_pci_write8, .write16 = ssb_pci_write16, .write32 = ssb_pci_write32, #ifdef CONFIG_SSB_BLOCKIO .block_read = ssb_pci_block_read, .block_write = ssb_pci_block_write, #endif }; static ssize_t ssb_pci_attr_sprom_show(struct device *pcidev, struct device_attribute *attr, char *buf) { struct pci_dev *pdev = container_of(pcidev, struct pci_dev, dev); struct ssb_bus *bus; bus = ssb_pci_dev_to_bus(pdev); if (!bus) return -ENODEV; return ssb_attr_sprom_show(bus, buf, sprom_do_read); } static ssize_t ssb_pci_attr_sprom_store(struct device *pcidev, struct device_attribute *attr, const char *buf, size_t count) { struct pci_dev *pdev = container_of(pcidev, struct pci_dev, dev); struct ssb_bus *bus; bus = ssb_pci_dev_to_bus(pdev); if (!bus) return -ENODEV; return ssb_attr_sprom_store(bus, buf, count, sprom_check_crc, sprom_do_write); } static DEVICE_ATTR(ssb_sprom, 0600, ssb_pci_attr_sprom_show, ssb_pci_attr_sprom_store); void ssb_pci_exit(struct ssb_bus *bus) { struct pci_dev *pdev; if (bus->bustype != SSB_BUSTYPE_PCI) return; pdev = bus->host_pci; device_remove_file(&pdev->dev, &dev_attr_ssb_sprom); } int ssb_pci_init(struct ssb_bus *bus) { struct pci_dev *pdev; int err; if (bus->bustype != SSB_BUSTYPE_PCI) return 0; pdev = bus->host_pci; mutex_init(&bus->sprom_mutex); err = device_create_file(&pdev->dev, &dev_attr_ssb_sprom); if (err) goto out; out: return err; }