/* * Adaptec AAC series RAID controller driver * (c) Copyright 2001 Red Hat Inc. * * based on the old aacraid driver that is.. * Adaptec aacraid device driver for Linux. * * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "aacraid.h" /* values for inqd_pdt: Peripheral device type in plain English */ #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */ #define INQD_PDT_PROC 0x03 /* Processor device */ #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */ #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */ #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */ #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */ #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */ #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */ /* * Sense codes */ #define SENCODE_NO_SENSE 0x00 #define SENCODE_END_OF_DATA 0x00 #define SENCODE_BECOMING_READY 0x04 #define SENCODE_INIT_CMD_REQUIRED 0x04 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A #define SENCODE_INVALID_COMMAND 0x20 #define SENCODE_LBA_OUT_OF_RANGE 0x21 #define SENCODE_INVALID_CDB_FIELD 0x24 #define SENCODE_LUN_NOT_SUPPORTED 0x25 #define SENCODE_INVALID_PARAM_FIELD 0x26 #define SENCODE_PARAM_NOT_SUPPORTED 0x26 #define SENCODE_PARAM_VALUE_INVALID 0x26 #define SENCODE_RESET_OCCURRED 0x29 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E #define SENCODE_INQUIRY_DATA_CHANGED 0x3F #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39 #define SENCODE_DIAGNOSTIC_FAILURE 0x40 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44 #define SENCODE_INVALID_MESSAGE_ERROR 0x49 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c #define SENCODE_OVERLAPPED_COMMAND 0x4E /* * Additional sense codes */ #define ASENCODE_NO_SENSE 0x00 #define ASENCODE_END_OF_DATA 0x05 #define ASENCODE_BECOMING_READY 0x01 #define ASENCODE_INIT_CMD_REQUIRED 0x02 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00 #define ASENCODE_INVALID_COMMAND 0x00 #define ASENCODE_LBA_OUT_OF_RANGE 0x00 #define ASENCODE_INVALID_CDB_FIELD 0x00 #define ASENCODE_LUN_NOT_SUPPORTED 0x00 #define ASENCODE_INVALID_PARAM_FIELD 0x00 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01 #define ASENCODE_PARAM_VALUE_INVALID 0x02 #define ASENCODE_RESET_OCCURRED 0x00 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00 #define ASENCODE_OVERLAPPED_COMMAND 0x00 #define BYTE0(x) (unsigned char)(x) #define BYTE1(x) (unsigned char)((x) >> 8) #define BYTE2(x) (unsigned char)((x) >> 16) #define BYTE3(x) (unsigned char)((x) >> 24) /*------------------------------------------------------------------------------ * S T R U C T S / T Y P E D E F S *----------------------------------------------------------------------------*/ /* SCSI inquiry data */ struct inquiry_data { u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */ u8 inqd_dtq; /* RMB | Device Type Qualifier */ u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */ u8 inqd_rdf; /* AENC | TrmIOP | Response data format */ u8 inqd_len; /* Additional length (n-4) */ u8 inqd_pad1[2];/* Reserved - must be zero */ u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */ u8 inqd_vid[8]; /* Vendor ID */ u8 inqd_pid[16];/* Product ID */ u8 inqd_prl[4]; /* Product Revision Level */ }; /* * M O D U L E G L O B A L S */ static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* sgmap); static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg); static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg); static int aac_send_srb_fib(struct scsi_cmnd* scsicmd); #ifdef AAC_DETAILED_STATUS_INFO static char *aac_get_status_string(u32 status); #endif /* * Non dasd selection is handled entirely in aachba now */ static int nondasd = -1; static int dacmode = -1; static int commit = -1; module_param(nondasd, int, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices. 0=off, 1=on"); module_param(dacmode, int, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC. 0=off, 1=on"); module_param(commit, int, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the adapter for foreign arrays.\nThis is typically needed in systems that do not have a BIOS. 0=off, 1=on"); int numacb = -1; module_param(numacb, int, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control blocks (FIB) allocated. Valid values are 512 and down. Default is to use suggestion from Firmware."); int acbsize = -1; module_param(acbsize, int, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB) size. Valid values are 512, 2048, 4096 and 8192. Default is to use suggestion from Firmware."); /** * aac_get_config_status - check the adapter configuration * @common: adapter to query * * Query config status, and commit the configuration if needed. */ int aac_get_config_status(struct aac_dev *dev) { int status = 0; struct fib * fibptr; if (!(fibptr = aac_fib_alloc(dev))) return -ENOMEM; aac_fib_init(fibptr); { struct aac_get_config_status *dinfo; dinfo = (struct aac_get_config_status *) fib_data(fibptr); dinfo->command = cpu_to_le32(VM_ContainerConfig); dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS); dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data)); } status = aac_fib_send(ContainerCommand, fibptr, sizeof (struct aac_get_config_status), FsaNormal, 1, 1, NULL, NULL); if (status < 0 ) { printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n"); } else { struct aac_get_config_status_resp *reply = (struct aac_get_config_status_resp *) fib_data(fibptr); dprintk((KERN_WARNING "aac_get_config_status: response=%d status=%d action=%d\n", le32_to_cpu(reply->response), le32_to_cpu(reply->status), le32_to_cpu(reply->data.action))); if ((le32_to_cpu(reply->response) != ST_OK) || (le32_to_cpu(reply->status) != CT_OK) || (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) { printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n"); status = -EINVAL; } } aac_fib_complete(fibptr); /* Send a CT_COMMIT_CONFIG to enable discovery of devices */ if (status >= 0) { if (commit == 1) { struct aac_commit_config * dinfo; aac_fib_init(fibptr); dinfo = (struct aac_commit_config *) fib_data(fibptr); dinfo->command = cpu_to_le32(VM_ContainerConfig); dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG); status = aac_fib_send(ContainerCommand, fibptr, sizeof (struct aac_commit_config), FsaNormal, 1, 1, NULL, NULL); aac_fib_complete(fibptr); } else if (commit == 0) { printk(KERN_WARNING "aac_get_config_status: Foreign device configurations are being ignored\n"); } } aac_fib_free(fibptr); return status; } /** * aac_get_containers - list containers * @common: adapter to probe * * Make a list of all containers on this controller */ int aac_get_containers(struct aac_dev *dev) { struct fsa_dev_info *fsa_dev_ptr; u32 index; int status = 0; struct fib * fibptr; unsigned instance; struct aac_get_container_count *dinfo; struct aac_get_container_count_resp *dresp; int maximum_num_containers = MAXIMUM_NUM_CONTAINERS; instance = dev->scsi_host_ptr->unique_id; if (!(fibptr = aac_fib_alloc(dev))) return -ENOMEM; aac_fib_init(fibptr); dinfo = (struct aac_get_container_count *) fib_data(fibptr); dinfo->command = cpu_to_le32(VM_ContainerConfig); dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT); status = aac_fib_send(ContainerCommand, fibptr, sizeof (struct aac_get_container_count), FsaNormal, 1, 1, NULL, NULL); if (status >= 0) { dresp = (struct aac_get_container_count_resp *)fib_data(fibptr); maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries); aac_fib_complete(fibptr); } if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS) maximum_num_containers = MAXIMUM_NUM_CONTAINERS; fsa_dev_ptr = (struct fsa_dev_info *) kmalloc( sizeof(*fsa_dev_ptr) * maximum_num_containers, GFP_KERNEL); if (!fsa_dev_ptr) { aac_fib_free(fibptr); return -ENOMEM; } memset(fsa_dev_ptr, 0, sizeof(*fsa_dev_ptr) * maximum_num_containers); dev->fsa_dev = fsa_dev_ptr; dev->maximum_num_containers = maximum_num_containers; for (index = 0; index < dev->maximum_num_containers; index++) { struct aac_query_mount *dinfo; struct aac_mount *dresp; fsa_dev_ptr[index].devname[0] = '\0'; aac_fib_init(fibptr); dinfo = (struct aac_query_mount *) fib_data(fibptr); dinfo->command = cpu_to_le32(VM_NameServe); dinfo->count = cpu_to_le32(index); dinfo->type = cpu_to_le32(FT_FILESYS); status = aac_fib_send(ContainerCommand, fibptr, sizeof (struct aac_query_mount), FsaNormal, 1, 1, NULL, NULL); if (status < 0 ) { printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n"); break; } dresp = (struct aac_mount *)fib_data(fibptr); if ((le32_to_cpu(dresp->status) == ST_OK) && (le32_to_cpu(dresp->mnt[0].vol) == CT_NONE)) { dinfo->command = cpu_to_le32(VM_NameServe64); dinfo->count = cpu_to_le32(index); dinfo->type = cpu_to_le32(FT_FILESYS); if (aac_fib_send(ContainerCommand, fibptr, sizeof(struct aac_query_mount), FsaNormal, 1, 1, NULL, NULL) < 0) continue; } else dresp->mnt[0].capacityhigh = 0; dprintk ((KERN_DEBUG "VM_NameServe cid=%d status=%d vol=%d state=%d cap=%llu\n", (int)index, (int)le32_to_cpu(dresp->status), (int)le32_to_cpu(dresp->mnt[0].vol), (int)le32_to_cpu(dresp->mnt[0].state), ((u64)le32_to_cpu(dresp->mnt[0].capacity)) + (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32))); if ((le32_to_cpu(dresp->status) == ST_OK) && (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) && (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) { fsa_dev_ptr[index].valid = 1; fsa_dev_ptr[index].type = le32_to_cpu(dresp->mnt[0].vol); fsa_dev_ptr[index].size = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) + (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32); if (le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) fsa_dev_ptr[index].ro = 1; } aac_fib_complete(fibptr); /* * If there are no more containers, then stop asking. */ if ((index + 1) >= le32_to_cpu(dresp->count)){ break; } } aac_fib_free(fibptr); return status; } static void aac_internal_transfer(struct scsi_cmnd *scsicmd, void *data, unsigned int offset, unsigned int len) { void *buf; unsigned int transfer_len; struct scatterlist *sg = scsicmd->request_buffer; if (scsicmd->use_sg) { buf = kmap_atomic(sg->page, KM_IRQ0) + sg->offset; transfer_len = min(sg->length, len + offset); } else { buf = scsicmd->request_buffer; transfer_len = min(scsicmd->request_bufflen, len + offset); } memcpy(buf + offset, data, transfer_len - offset); if (scsicmd->use_sg) kunmap_atomic(buf - sg->offset, KM_IRQ0); } static void get_container_name_callback(void *context, struct fib * fibptr) { struct aac_get_name_resp * get_name_reply; struct scsi_cmnd * scsicmd; scsicmd = (struct scsi_cmnd *) context; scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL; dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies)); if (fibptr == NULL) BUG(); get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr); /* Failure is irrelevant, using default value instead */ if ((le32_to_cpu(get_name_reply->status) == CT_OK) && (get_name_reply->data[0] != '\0')) { char *sp = get_name_reply->data; sp[sizeof(((struct aac_get_name_resp *)NULL)->data)-1] = '\0'; while (*sp == ' ') ++sp; if (*sp) { char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)]; int count = sizeof(d); char *dp = d; do { *dp++ = (*sp) ? *sp++ : ' '; } while (--count > 0); aac_internal_transfer(scsicmd, d, offsetof(struct inquiry_data, inqd_pid), sizeof(d)); } } scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; aac_fib_complete(fibptr); aac_fib_free(fibptr); scsicmd->scsi_done(scsicmd); } /** * aac_get_container_name - get container name, none blocking. */ static int aac_get_container_name(struct scsi_cmnd * scsicmd, int cid) { int status; struct aac_get_name *dinfo; struct fib * cmd_fibcontext; struct aac_dev * dev; dev = (struct aac_dev *)scsicmd->device->host->hostdata; if (!(cmd_fibcontext = aac_fib_alloc(dev))) return -ENOMEM; aac_fib_init(cmd_fibcontext); dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext); dinfo->command = cpu_to_le32(VM_ContainerConfig); dinfo->type = cpu_to_le32(CT_READ_NAME); dinfo->cid = cpu_to_le32(cid); dinfo->count = cpu_to_le32(sizeof(((struct aac_get_name_resp *)NULL)->data)); status = aac_fib_send(ContainerCommand, cmd_fibcontext, sizeof (struct aac_get_name), FsaNormal, 0, 1, (fib_callback) get_container_name_callback, (void *) scsicmd); /* * Check that the command queued to the controller */ if (status == -EINPROGRESS) { scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; return 0; } printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status); aac_fib_complete(cmd_fibcontext); aac_fib_free(cmd_fibcontext); return -1; } /** * aac_probe_container - query a logical volume * @dev: device to query * @cid: container identifier * * Queries the controller about the given volume. The volume information * is updated in the struct fsa_dev_info structure rather than returned. */ int aac_probe_container(struct aac_dev *dev, int cid) { struct fsa_dev_info *fsa_dev_ptr; int status; struct aac_query_mount *dinfo; struct aac_mount *dresp; struct fib * fibptr; unsigned instance; fsa_dev_ptr = dev->fsa_dev; instance = dev->scsi_host_ptr->unique_id; if (!(fibptr = aac_fib_alloc(dev))) return -ENOMEM; aac_fib_init(fibptr); dinfo = (struct aac_query_mount *)fib_data(fibptr); dinfo->command = cpu_to_le32(VM_NameServe); dinfo->count = cpu_to_le32(cid); dinfo->type = cpu_to_le32(FT_FILESYS); status = aac_fib_send(ContainerCommand, fibptr, sizeof(struct aac_query_mount), FsaNormal, 1, 1, NULL, NULL); if (status < 0) { printk(KERN_WARNING "aacraid: aac_probe_container query failed.\n"); goto error; } dresp = (struct aac_mount *) fib_data(fibptr); if ((le32_to_cpu(dresp->status) == ST_OK) && (le32_to_cpu(dresp->mnt[0].vol) == CT_NONE)) { dinfo->command = cpu_to_le32(VM_NameServe64); dinfo->count = cpu_to_le32(cid); dinfo->type = cpu_to_le32(FT_FILESYS); if (aac_fib_send(ContainerCommand, fibptr, sizeof(struct aac_query_mount), FsaNormal, 1, 1, NULL, NULL) < 0) goto error; } else dresp->mnt[0].capacityhigh = 0; if ((le32_to_cpu(dresp->status) == ST_OK) && (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) && (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) { fsa_dev_ptr[cid].valid = 1; fsa_dev_ptr[cid].type = le32_to_cpu(dresp->mnt[0].vol); fsa_dev_ptr[cid].size = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) + (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32); if (le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) fsa_dev_ptr[cid].ro = 1; } error: aac_fib_complete(fibptr); aac_fib_free(fibptr); return status; } /* Local Structure to set SCSI inquiry data strings */ struct scsi_inq { char vid[8]; /* Vendor ID */ char pid[16]; /* Product ID */ char prl[4]; /* Product Revision Level */ }; /** * InqStrCopy - string merge * @a: string to copy from * @b: string to copy to * * Copy a String from one location to another * without copying \0 */ static void inqstrcpy(char *a, char *b) { while(*a != (char)0) *b++ = *a++; } static char *container_types[] = { "None", "Volume", "Mirror", "Stripe", "RAID5", "SSRW", "SSRO", "Morph", "Legacy", "RAID4", "RAID10", "RAID00", "V-MIRRORS", "PSEUDO R4", "RAID50", "RAID5D", "RAID5D0", "RAID1E", "RAID6", "RAID60", "Unknown" }; /* Function: setinqstr * * Arguments: [1] pointer to void [1] int * * Purpose: Sets SCSI inquiry data strings for vendor, product * and revision level. Allows strings to be set in platform dependant * files instead of in OS dependant driver source. */ static void setinqstr(struct aac_dev *dev, void *data, int tindex) { struct scsi_inq *str; str = (struct scsi_inq *)(data); /* cast data to scsi inq block */ memset(str, ' ', sizeof(*str)); if (dev->supplement_adapter_info.AdapterTypeText[0]) { char * cp = dev->supplement_adapter_info.AdapterTypeText; int c = sizeof(str->vid); while (*cp && *cp != ' ' && --c) ++cp; c = *cp; *cp = '\0'; inqstrcpy (dev->supplement_adapter_info.AdapterTypeText, str->vid); *cp = c; while (*cp && *cp != ' ') ++cp; while (*cp == ' ') ++cp; /* last six chars reserved for vol type */ c = 0; if (strlen(cp) > sizeof(str->pid)) { c = cp[sizeof(str->pid)]; cp[sizeof(str->pid)] = '\0'; } inqstrcpy (cp, str->pid); if (c) cp[sizeof(str->pid)] = c; } else { struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype); inqstrcpy (mp->vname, str->vid); /* last six chars reserved for vol type */ inqstrcpy (mp->model, str->pid); } if (tindex < (sizeof(container_types)/sizeof(char *))){ char *findit = str->pid; for ( ; *findit != ' '; findit++); /* walk till we find a space */ /* RAID is superfluous in the context of a RAID device */ if (memcmp(findit-4, "RAID", 4) == 0) *(findit -= 4) = ' '; if (((findit - str->pid) + strlen(container_types[tindex])) < (sizeof(str->pid) + sizeof(str->prl))) inqstrcpy (container_types[tindex], findit + 1); } inqstrcpy ("V1.0", str->prl); } static void set_sense(u8 *sense_buf, u8 sense_key, u8 sense_code, u8 a_sense_code, u8 incorrect_length, u8 bit_pointer, u16 field_pointer, u32 residue) { sense_buf[0] = 0xF0; /* Sense data valid, err code 70h (current error) */ sense_buf[1] = 0; /* Segment number, always zero */ if (incorrect_length) { sense_buf[2] = sense_key | 0x20;/* Set ILI bit | sense key */ sense_buf[3] = BYTE3(residue); sense_buf[4] = BYTE2(residue); sense_buf[5] = BYTE1(residue); sense_buf[6] = BYTE0(residue); } else sense_buf[2] = sense_key; /* Sense key */ if (sense_key == ILLEGAL_REQUEST) sense_buf[7] = 10; /* Additional sense length */ else sense_buf[7] = 6; /* Additional sense length */ sense_buf[12] = sense_code; /* Additional sense code */ sense_buf[13] = a_sense_code; /* Additional sense code qualifier */ if (sense_key == ILLEGAL_REQUEST) { sense_buf[15] = 0; if (sense_code == SENCODE_INVALID_PARAM_FIELD) sense_buf[15] = 0x80;/* Std sense key specific field */ /* Illegal parameter is in the parameter block */ if (sense_code == SENCODE_INVALID_CDB_FIELD) sense_buf[15] = 0xc0;/* Std sense key specific field */ /* Illegal parameter is in the CDB block */ sense_buf[15] |= bit_pointer; sense_buf[16] = field_pointer >> 8; /* MSB */ sense_buf[17] = field_pointer; /* LSB */ } } int aac_get_adapter_info(struct aac_dev* dev) { struct fib* fibptr; int rcode; u32 tmp; struct aac_adapter_info *info; struct aac_bus_info *command; struct aac_bus_info_response *bus_info; if (!(fibptr = aac_fib_alloc(dev))) return -ENOMEM; aac_fib_init(fibptr); info = (struct aac_adapter_info *) fib_data(fibptr); memset(info,0,sizeof(*info)); rcode = aac_fib_send(RequestAdapterInfo, fibptr, sizeof(*info), FsaNormal, -1, 1, /* First `interrupt' command uses special wait */ NULL, NULL); if (rcode < 0) { aac_fib_complete(fibptr); aac_fib_free(fibptr); return rcode; } memcpy(&dev->adapter_info, info, sizeof(*info)); if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) { struct aac_supplement_adapter_info * info; aac_fib_init(fibptr); info = (struct aac_supplement_adapter_info *) fib_data(fibptr); memset(info,0,sizeof(*info)); rcode = aac_fib_send(RequestSupplementAdapterInfo, fibptr, sizeof(*info), FsaNormal, 1, 1, NULL, NULL); if (rcode >= 0) memcpy(&dev->supplement_adapter_info, info, sizeof(*info)); } /* * GetBusInfo */ aac_fib_init(fibptr); bus_info = (struct aac_bus_info_response *) fib_data(fibptr); memset(bus_info, 0, sizeof(*bus_info)); command = (struct aac_bus_info *)bus_info; command->Command = cpu_to_le32(VM_Ioctl); command->ObjType = cpu_to_le32(FT_DRIVE); command->MethodId = cpu_to_le32(1); command->CtlCmd = cpu_to_le32(GetBusInfo); rcode = aac_fib_send(ContainerCommand, fibptr, sizeof (*bus_info), FsaNormal, 1, 1, NULL, NULL); if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) { dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus); dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount); } tmp = le32_to_cpu(dev->adapter_info.kernelrev); printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n", dev->name, dev->id, tmp>>24, (tmp>>16)&0xff, tmp&0xff, le32_to_cpu(dev->adapter_info.kernelbuild), (int)sizeof(dev->supplement_adapter_info.BuildDate), dev->supplement_adapter_info.BuildDate); tmp = le32_to_cpu(dev->adapter_info.monitorrev); printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n", dev->name, dev->id, tmp>>24,(tmp>>16)&0xff,tmp&0xff, le32_to_cpu(dev->adapter_info.monitorbuild)); tmp = le32_to_cpu(dev->adapter_info.biosrev); printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n", dev->name, dev->id, tmp>>24,(tmp>>16)&0xff,tmp&0xff, le32_to_cpu(dev->adapter_info.biosbuild)); if (le32_to_cpu(dev->adapter_info.serial[0]) != 0xBAD0) printk(KERN_INFO "%s%d: serial %x\n", dev->name, dev->id, le32_to_cpu(dev->adapter_info.serial[0])); dev->nondasd_support = 0; dev->raid_scsi_mode = 0; if(dev->adapter_info.options & AAC_OPT_NONDASD){ dev->nondasd_support = 1; } /* * If the firmware supports ROMB RAID/SCSI mode and we are currently * in RAID/SCSI mode, set the flag. For now if in this mode we will * force nondasd support on. If we decide to allow the non-dasd flag * additional changes changes will have to be made to support * RAID/SCSI. the function aac_scsi_cmd in this module will have to be * changed to support the new dev->raid_scsi_mode flag instead of * leaching off of the dev->nondasd_support flag. Also in linit.c the * function aac_detect will have to be modified where it sets up the * max number of channels based on the aac->nondasd_support flag only. */ if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) && (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) { dev->nondasd_support = 1; dev->raid_scsi_mode = 1; } if (dev->raid_scsi_mode != 0) printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n", dev->name, dev->id); if(nondasd != -1) { dev->nondasd_support = (nondasd!=0); } if(dev->nondasd_support != 0){ printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id); } dev->dac_support = 0; if( (sizeof(dma_addr_t) > 4) && (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)){ printk(KERN_INFO "%s%d: 64bit support enabled.\n", dev->name, dev->id); dev->dac_support = 1; } if(dacmode != -1) { dev->dac_support = (dacmode!=0); } if(dev->dac_support != 0) { if (!pci_set_dma_mask(dev->pdev, DMA_64BIT_MASK) && !pci_set_consistent_dma_mask(dev->pdev, DMA_64BIT_MASK)) { printk(KERN_INFO"%s%d: 64 Bit DAC enabled\n", dev->name, dev->id); } else if (!pci_set_dma_mask(dev->pdev, DMA_32BIT_MASK) && !pci_set_consistent_dma_mask(dev->pdev, DMA_32BIT_MASK)) { printk(KERN_INFO"%s%d: DMA mask set failed, 64 Bit DAC disabled\n", dev->name, dev->id); dev->dac_support = 0; } else { printk(KERN_WARNING"%s%d: No suitable DMA available.\n", dev->name, dev->id); rcode = -ENOMEM; } } /* * 57 scatter gather elements */ if (!(dev->raw_io_interface)) { dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size - sizeof(struct aac_fibhdr) - sizeof(struct aac_write) + sizeof(struct sgentry)) / sizeof(struct sgentry); if (dev->dac_support) { /* * 38 scatter gather elements */ dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size - sizeof(struct aac_fibhdr) - sizeof(struct aac_write64) + sizeof(struct sgentry64)) / sizeof(struct sgentry64); } dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT; if(!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) { /* * Worst case size that could cause sg overflow when * we break up SG elements that are larger than 64KB. * Would be nice if we could tell the SCSI layer what * the maximum SG element size can be. Worst case is * (sg_tablesize-1) 4KB elements with one 64KB * element. * 32bit -> 468 or 238KB 64bit -> 424 or 212KB */ dev->scsi_host_ptr->max_sectors = (dev->scsi_host_ptr->sg_tablesize * 8) + 112; } } aac_fib_complete(fibptr); aac_fib_free(fibptr); return rcode; } static void io_callback(void *context, struct fib * fibptr) { struct aac_dev *dev; struct aac_read_reply *readreply; struct scsi_cmnd *scsicmd; u32 cid; scsicmd = (struct scsi_cmnd *) context; scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL; dev = (struct aac_dev *)scsicmd->device->host->hostdata; cid = scmd_id(scsicmd); if (nblank(dprintk(x))) { u64 lba; switch (scsicmd->cmnd[0]) { case WRITE_6: case READ_6: lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; break; case WRITE_16: case READ_16: lba = ((u64)scsicmd->cmnd[2] << 56) | ((u64)scsicmd->cmnd[3] << 48) | ((u64)scsicmd->cmnd[4] << 40) | ((u64)scsicmd->cmnd[5] << 32) | ((u64)scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16) | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; break; case WRITE_12: case READ_12: lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; break; default: lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; break; } printk(KERN_DEBUG "io_callback[cpu %d]: lba = %llu, t = %ld.\n", smp_processor_id(), (unsigned long long)lba, jiffies); } if (fibptr == NULL) BUG(); if(scsicmd->use_sg) pci_unmap_sg(dev->pdev, (struct scatterlist *)scsicmd->buffer, scsicmd->use_sg, scsicmd->sc_data_direction); else if(scsicmd->request_bufflen) pci_unmap_single(dev->pdev, scsicmd->SCp.dma_handle, scsicmd->request_bufflen, scsicmd->sc_data_direction); readreply = (struct aac_read_reply *)fib_data(fibptr); if (le32_to_cpu(readreply->status) == ST_OK) scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; else { #ifdef AAC_DETAILED_STATUS_INFO printk(KERN_WARNING "io_callback: io failed, status = %d\n", le32_to_cpu(readreply->status)); #endif scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; set_sense((u8 *) &dev->fsa_dev[cid].sense_data, HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0, 0, 0); memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer)) ? sizeof(scsicmd->sense_buffer) : sizeof(dev->fsa_dev[cid].sense_data)); } aac_fib_complete(fibptr); aac_fib_free(fibptr); scsicmd->scsi_done(scsicmd); } static int aac_read(struct scsi_cmnd * scsicmd, int cid) { u64 lba; u32 count; int status; u16 fibsize; struct aac_dev *dev; struct fib * cmd_fibcontext; dev = (struct aac_dev *)scsicmd->device->host->hostdata; /* * Get block address and transfer length */ switch (scsicmd->cmnd[0]) { case READ_6: dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", cid)); lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; count = scsicmd->cmnd[4]; if (count == 0) count = 256; break; case READ_16: dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", cid)); lba = ((u64)scsicmd->cmnd[2] << 56) | ((u64)scsicmd->cmnd[3] << 48) | ((u64)scsicmd->cmnd[4] << 40) | ((u64)scsicmd->cmnd[5] << 32) | ((u64)scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16) | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) | (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13]; break; case READ_12: dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", cid)); lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16) | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; break; default: dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", cid)); lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; break; } dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n", smp_processor_id(), (unsigned long long)lba, jiffies)); if ((!(dev->raw_io_interface) || !(dev->raw_io_64)) && (lba & 0xffffffff00000000LL)) { dprintk((KERN_DEBUG "aac_read: Illegal lba\n")); scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; set_sense((u8 *) &dev->fsa_dev[cid].sense_data, HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0, 0, 0); memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer)) ? sizeof(scsicmd->sense_buffer) : sizeof(dev->fsa_dev[cid].sense_data)); scsicmd->scsi_done(scsicmd); return 0; } /* * Alocate and initialize a Fib */ if (!(cmd_fibcontext = aac_fib_alloc(dev))) { return -1; } aac_fib_init(cmd_fibcontext); if (dev->raw_io_interface) { struct aac_raw_io *readcmd; readcmd = (struct aac_raw_io *) fib_data(cmd_fibcontext); readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff)); readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); readcmd->count = cpu_to_le32(count<<9); readcmd->cid = cpu_to_le16(cid); readcmd->flags = cpu_to_le16(1); readcmd->bpTotal = 0; readcmd->bpComplete = 0; aac_build_sgraw(scsicmd, &readcmd->sg); fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(readcmd->sg.count) - 1) * sizeof (struct sgentryraw)); if (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr))) BUG(); /* * Now send the Fib to the adapter */ status = aac_fib_send(ContainerRawIo, cmd_fibcontext, fibsize, FsaNormal, 0, 1, (fib_callback) io_callback, (void *) scsicmd); } else if (dev->dac_support == 1) { struct aac_read64 *readcmd; readcmd = (struct aac_read64 *) fib_data(cmd_fibcontext); readcmd->command = cpu_to_le32(VM_CtHostRead64); readcmd->cid = cpu_to_le16(cid); readcmd->sector_count = cpu_to_le16(count); readcmd->block = cpu_to_le32((u32)(lba&0xffffffff)); readcmd->pad = 0; readcmd->flags = 0; aac_build_sg64(scsicmd, &readcmd->sg); fibsize = sizeof(struct aac_read64) + ((le32_to_cpu(readcmd->sg.count) - 1) * sizeof (struct sgentry64)); BUG_ON (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr))); /* * Now send the Fib to the adapter */ status = aac_fib_send(ContainerCommand64, cmd_fibcontext, fibsize, FsaNormal, 0, 1, (fib_callback) io_callback, (void *) scsicmd); } else { struct aac_read *readcmd; readcmd = (struct aac_read *) fib_data(cmd_fibcontext); readcmd->command = cpu_to_le32(VM_CtBlockRead); readcmd->cid = cpu_to_le32(cid); readcmd->block = cpu_to_le32((u32)(lba&0xffffffff)); readcmd->count = cpu_to_le32(count * 512); aac_build_sg(scsicmd, &readcmd->sg); fibsize = sizeof(struct aac_read) + ((le32_to_cpu(readcmd->sg.count) - 1) * sizeof (struct sgentry)); BUG_ON (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr))); /* * Now send the Fib to the adapter */ status = aac_fib_send(ContainerCommand, cmd_fibcontext, fibsize, FsaNormal, 0, 1, (fib_callback) io_callback, (void *) scsicmd); } /* * Check that the command queued to the controller */ if (status == -EINPROGRESS) { scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; return 0; } printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status); /* * For some reason, the Fib didn't queue, return QUEUE_FULL */ scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL; scsicmd->scsi_done(scsicmd); aac_fib_complete(cmd_fibcontext); aac_fib_free(cmd_fibcontext); return 0; } static int aac_write(struct scsi_cmnd * scsicmd, int cid) { u64 lba; u32 count; int status; u16 fibsize; struct aac_dev *dev; struct fib * cmd_fibcontext; dev = (struct aac_dev *)scsicmd->device->host->hostdata; /* * Get block address and transfer length */ if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */ { lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; count = scsicmd->cmnd[4]; if (count == 0) count = 256; } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */ dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", cid)); lba = ((u64)scsicmd->cmnd[2] << 56) | ((u64)scsicmd->cmnd[3] << 48) | ((u64)scsicmd->cmnd[4] << 40) | ((u64)scsicmd->cmnd[5] << 32) | ((u64)scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16) | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) | (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13]; } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */ dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", cid)); lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16) | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; } else { dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", cid)); lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; } dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n", smp_processor_id(), (unsigned long long)lba, jiffies)); if ((!(dev->raw_io_interface) || !(dev->raw_io_64)) && (lba & 0xffffffff00000000LL)) { dprintk((KERN_DEBUG "aac_write: Illegal lba\n")); scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; set_sense((u8 *) &dev->fsa_dev[cid].sense_data, HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0, 0, 0); memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer)) ? sizeof(scsicmd->sense_buffer) : sizeof(dev->fsa_dev[cid].sense_data)); scsicmd->scsi_done(scsicmd); return 0; } /* * Allocate and initialize a Fib then setup a BlockWrite command */ if (!(cmd_fibcontext = aac_fib_alloc(dev))) { scsicmd->result = DID_ERROR << 16; scsicmd->scsi_done(scsicmd); return 0; } aac_fib_init(cmd_fibcontext); if (dev->raw_io_interface) { struct aac_raw_io *writecmd; writecmd = (struct aac_raw_io *) fib_data(cmd_fibcontext); writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff)); writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); writecmd->count = cpu_to_le32(count<<9); writecmd->cid = cpu_to_le16(cid); writecmd->flags = 0; writecmd->bpTotal = 0; writecmd->bpComplete = 0; aac_build_sgraw(scsicmd, &writecmd->sg); fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(writecmd->sg.count) - 1) * sizeof (struct sgentryraw)); if (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr))) BUG(); /* * Now send the Fib to the adapter */ status = aac_fib_send(ContainerRawIo, cmd_fibcontext, fibsize, FsaNormal, 0, 1, (fib_callback) io_callback, (void *) scsicmd); } else if (dev->dac_support == 1) { struct aac_write64 *writecmd; writecmd = (struct aac_write64 *) fib_data(cmd_fibcontext); writecmd->command = cpu_to_le32(VM_CtHostWrite64); writecmd->cid = cpu_to_le16(cid); writecmd->sector_count = cpu_to_le16(count); writecmd->block = cpu_to_le32((u32)(lba&0xffffffff)); writecmd->pad = 0; writecmd->flags = 0; aac_build_sg64(scsicmd, &writecmd->sg); fibsize = sizeof(struct aac_write64) + ((le32_to_cpu(writecmd->sg.count) - 1) * sizeof (struct sgentry64)); BUG_ON (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr))); /* * Now send the Fib to the adapter */ status = aac_fib_send(ContainerCommand64, cmd_fibcontext, fibsize, FsaNormal, 0, 1, (fib_callback) io_callback, (void *) scsicmd); } else { struct aac_write *writecmd; writecmd = (struct aac_write *) fib_data(cmd_fibcontext); writecmd->command = cpu_to_le32(VM_CtBlockWrite); writecmd->cid = cpu_to_le32(cid); writecmd->block = cpu_to_le32((u32)(lba&0xffffffff)); writecmd->count = cpu_to_le32(count * 512); writecmd->sg.count = cpu_to_le32(1); /* ->stable is not used - it did mean which type of write */ aac_build_sg(scsicmd, &writecmd->sg); fibsize = sizeof(struct aac_write) + ((le32_to_cpu(writecmd->sg.count) - 1) * sizeof (struct sgentry)); BUG_ON (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr))); /* * Now send the Fib to the adapter */ status = aac_fib_send(ContainerCommand, cmd_fibcontext, fibsize, FsaNormal, 0, 1, (fib_callback) io_callback, (void *) scsicmd); } /* * Check that the command queued to the controller */ if (status == -EINPROGRESS) { scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; return 0; } printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status); /* * For some reason, the Fib didn't queue, return QUEUE_FULL */ scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL; scsicmd->scsi_done(scsicmd); aac_fib_complete(cmd_fibcontext); aac_fib_free(cmd_fibcontext); return 0; } static void synchronize_callback(void *context, struct fib *fibptr) { struct aac_synchronize_reply *synchronizereply; struct scsi_cmnd *cmd; cmd = context; cmd->SCp.phase = AAC_OWNER_MIDLEVEL; dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies)); BUG_ON(fibptr == NULL); synchronizereply = fib_data(fibptr); if (le32_to_cpu(synchronizereply->status) == CT_OK) cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; else { struct scsi_device *sdev = cmd->device; struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata; u32 cid = sdev_id(sdev); printk(KERN_WARNING "synchronize_callback: synchronize failed, status = %d\n", le32_to_cpu(synchronizereply->status)); cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; set_sense((u8 *)&dev->fsa_dev[cid].sense_data, HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0, 0, 0); memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data, min(sizeof(dev->fsa_dev[cid].sense_data), sizeof(cmd->sense_buffer))); } aac_fib_complete(fibptr); aac_fib_free(fibptr); cmd->scsi_done(cmd); } static int aac_synchronize(struct scsi_cmnd *scsicmd, int cid) { int status; struct fib *cmd_fibcontext; struct aac_synchronize *synchronizecmd; struct scsi_cmnd *cmd; struct scsi_device *sdev = scsicmd->device; int active = 0; unsigned long flags; /* * Wait for all outstanding queued commands to complete to this * specific target (block). */ spin_lock_irqsave(&sdev->list_lock, flags); list_for_each_entry(cmd, &sdev->cmd_list, list) if (cmd != scsicmd && cmd->SCp.phase == AAC_OWNER_FIRMWARE) { ++active; break; } spin_unlock_irqrestore(&sdev->list_lock, flags); /* * Yield the processor (requeue for later) */ if (active) return SCSI_MLQUEUE_DEVICE_BUSY; /* * Allocate and initialize a Fib */ if (!(cmd_fibcontext = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) return SCSI_MLQUEUE_HOST_BUSY; aac_fib_init(cmd_fibcontext); synchronizecmd = fib_data(cmd_fibcontext); synchronizecmd->command = cpu_to_le32(VM_ContainerConfig); synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE); synchronizecmd->cid = cpu_to_le32(cid); synchronizecmd->count = cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data)); /* * Now send the Fib to the adapter */ status = aac_fib_send(ContainerCommand, cmd_fibcontext, sizeof(struct aac_synchronize), FsaNormal, 0, 1, (fib_callback)synchronize_callback, (void *)scsicmd); /* * Check that the command queued to the controller */ if (status == -EINPROGRESS) { scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; return 0; } printk(KERN_WARNING "aac_synchronize: aac_fib_send failed with status: %d.\n", status); aac_fib_complete(cmd_fibcontext); aac_fib_free(cmd_fibcontext); return SCSI_MLQUEUE_HOST_BUSY; } /** * aac_scsi_cmd() - Process SCSI command * @scsicmd: SCSI command block * * Emulate a SCSI command and queue the required request for the * aacraid firmware. */ int aac_scsi_cmd(struct scsi_cmnd * scsicmd) { u32 cid = 0; struct Scsi_Host *host = scsicmd->device->host; struct aac_dev *dev = (struct aac_dev *)host->hostdata; struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev; /* * If the bus, id or lun is out of range, return fail * Test does not apply to ID 16, the pseudo id for the controller * itself. */ if (scmd_id(scsicmd) != host->this_id) { if ((scmd_channel(scsicmd) == CONTAINER_CHANNEL)) { if((scmd_id(scsicmd) >= dev->maximum_num_containers) || (scsicmd->device->lun != 0)) { scsicmd->result = DID_NO_CONNECT << 16; scsicmd->scsi_done(scsicmd); return 0; } cid = scmd_id(scsicmd); /* * If the target container doesn't exist, it may have * been newly created */ if ((fsa_dev_ptr[cid].valid & 1) == 0) { switch (scsicmd->cmnd[0]) { case SERVICE_ACTION_IN: if (!(dev->raw_io_interface) || !(dev->raw_io_64) || ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) break; case INQUIRY: case READ_CAPACITY: case TEST_UNIT_READY: spin_unlock_irq(host->host_lock); aac_probe_container(dev, cid); if ((fsa_dev_ptr[cid].valid & 1) == 0) fsa_dev_ptr[cid].valid = 0; spin_lock_irq(host->host_lock); if (fsa_dev_ptr[cid].valid == 0) { scsicmd->result = DID_NO_CONNECT << 16; scsicmd->scsi_done(scsicmd); return 0; } default: break; } } /* * If the target container still doesn't exist, * return failure */ if (fsa_dev_ptr[cid].valid == 0) { scsicmd->result = DID_BAD_TARGET << 16; scsicmd->scsi_done(scsicmd); return 0; } } else { /* check for physical non-dasd devices */ if(dev->nondasd_support == 1){ return aac_send_srb_fib(scsicmd); } else { scsicmd->result = DID_NO_CONNECT << 16; scsicmd->scsi_done(scsicmd); return 0; } } } /* * else Command for the controller itself */ else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */ (scsicmd->cmnd[0] != TEST_UNIT_READY)) { dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0])); scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; set_sense((u8 *) &dev->fsa_dev[cid].sense_data, ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND, ASENCODE_INVALID_COMMAND, 0, 0, 0, 0); memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer)) ? sizeof(scsicmd->sense_buffer) : sizeof(dev->fsa_dev[cid].sense_data)); scsicmd->scsi_done(scsicmd); return 0; } /* Handle commands here that don't really require going out to the adapter */ switch (scsicmd->cmnd[0]) { case INQUIRY: { struct inquiry_data inq_data; dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", scmd_id(scsicmd))); memset(&inq_data, 0, sizeof (struct inquiry_data)); inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */ inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */ inq_data.inqd_len = 31; /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */ inq_data.inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */ /* * Set the Vendor, Product, and Revision Level * see: .c i.e. aac.c */ if (scmd_id(scsicmd) == host->this_id) { setinqstr(dev, (void *) (inq_data.inqd_vid), (sizeof(container_types)/sizeof(char *))); inq_data.inqd_pdt = INQD_PDT_PROC; /* Processor device */ aac_internal_transfer(scsicmd, &inq_data, 0, sizeof(inq_data)); scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; scsicmd->scsi_done(scsicmd); return 0; } setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type); inq_data.inqd_pdt = INQD_PDT_DA; /* Direct/random access device */ aac_internal_transfer(scsicmd, &inq_data, 0, sizeof(inq_data)); return aac_get_container_name(scsicmd, cid); } case SERVICE_ACTION_IN: if (!(dev->raw_io_interface) || !(dev->raw_io_64) || ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) break; { u64 capacity; char cp[13]; dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n")); capacity = fsa_dev_ptr[cid].size - 1; cp[0] = (capacity >> 56) & 0xff; cp[1] = (capacity >> 48) & 0xff; cp[2] = (capacity >> 40) & 0xff; cp[3] = (capacity >> 32) & 0xff; cp[4] = (capacity >> 24) & 0xff; cp[5] = (capacity >> 16) & 0xff; cp[6] = (capacity >> 8) & 0xff; cp[7] = (capacity >> 0) & 0xff; cp[8] = 0; cp[9] = 0; cp[10] = 2; cp[11] = 0; cp[12] = 0; aac_internal_transfer(scsicmd, cp, 0, min_t(size_t, scsicmd->cmnd[13], sizeof(cp))); if (sizeof(cp) < scsicmd->cmnd[13]) { unsigned int len, offset = sizeof(cp); memset(cp, 0, offset); do { len = min_t(size_t, scsicmd->cmnd[13] - offset, sizeof(cp)); aac_internal_transfer(scsicmd, cp, offset, len); } while ((offset += len) < scsicmd->cmnd[13]); } /* Do not cache partition table for arrays */ scsicmd->device->removable = 1; scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; scsicmd->scsi_done(scsicmd); return 0; } case READ_CAPACITY: { u32 capacity; char cp[8]; dprintk((KERN_DEBUG "READ CAPACITY command.\n")); if (fsa_dev_ptr[cid].size <= 0x100000000ULL) capacity = fsa_dev_ptr[cid].size - 1; else capacity = (u32)-1; cp[0] = (capacity >> 24) & 0xff; cp[1] = (capacity >> 16) & 0xff; cp[2] = (capacity >> 8) & 0xff; cp[3] = (capacity >> 0) & 0xff; cp[4] = 0; cp[5] = 0; cp[6] = 2; cp[7] = 0; aac_internal_transfer(scsicmd, cp, 0, sizeof(cp)); /* Do not cache partition table for arrays */ scsicmd->device->removable = 1; scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; scsicmd->scsi_done(scsicmd); return 0; } case MODE_SENSE: { char mode_buf[4]; dprintk((KERN_DEBUG "MODE SENSE command.\n")); mode_buf[0] = 3; /* Mode data length */ mode_buf[1] = 0; /* Medium type - default */ mode_buf[2] = 0; /* Device-specific param, bit 8: 0/1 = write enabled/protected */ mode_buf[3] = 0; /* Block descriptor length */ aac_internal_transfer(scsicmd, mode_buf, 0, sizeof(mode_buf)); scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; scsicmd->scsi_done(scsicmd); return 0; } case MODE_SENSE_10: { char mode_buf[8]; dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n")); mode_buf[0] = 0; /* Mode data length (MSB) */ mode_buf[1] = 6; /* Mode data length (LSB) */ mode_buf[2] = 0; /* Medium type - default */ mode_buf[3] = 0; /* Device-specific param, bit 8: 0/1 = write enabled/protected */ mode_buf[4] = 0; /* reserved */ mode_buf[5] = 0; /* reserved */ mode_buf[6] = 0; /* Block descriptor length (MSB) */ mode_buf[7] = 0; /* Block descriptor length (LSB) */ aac_internal_transfer(scsicmd, mode_buf, 0, sizeof(mode_buf)); scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; scsicmd->scsi_done(scsicmd); return 0; } case REQUEST_SENSE: dprintk((KERN_DEBUG "REQUEST SENSE command.\n")); memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, sizeof (struct sense_data)); memset(&dev->fsa_dev[cid].sense_data, 0, sizeof (struct sense_data)); scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; scsicmd->scsi_done(scsicmd); return 0; case ALLOW_MEDIUM_REMOVAL: dprintk((KERN_DEBUG "LOCK command.\n")); if (scsicmd->cmnd[4]) fsa_dev_ptr[cid].locked = 1; else fsa_dev_ptr[cid].locked = 0; scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; scsicmd->scsi_done(scsicmd); return 0; /* * These commands are all No-Ops */ case TEST_UNIT_READY: case RESERVE: case RELEASE: case REZERO_UNIT: case REASSIGN_BLOCKS: case SEEK_10: case START_STOP: scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; scsicmd->scsi_done(scsicmd); return 0; } switch (scsicmd->cmnd[0]) { case READ_6: case READ_10: case READ_12: case READ_16: /* * Hack to keep track of ordinal number of the device that * corresponds to a container. Needed to convert * containers to /dev/sd device names */ if (scsicmd->request->rq_disk) strlcpy(fsa_dev_ptr[cid].devname, scsicmd->request->rq_disk->disk_name, min(sizeof(fsa_dev_ptr[cid].devname), sizeof(scsicmd->request->rq_disk->disk_name) + 1)); return aac_read(scsicmd, cid); case WRITE_6: case WRITE_10: case WRITE_12: case WRITE_16: return aac_write(scsicmd, cid); case SYNCHRONIZE_CACHE: /* Issue FIB to tell Firmware to flush it's cache */ return aac_synchronize(scsicmd, cid); default: /* * Unhandled commands */ dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", scsicmd->cmnd[0])); scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; set_sense((u8 *) &dev->fsa_dev[cid].sense_data, ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND, ASENCODE_INVALID_COMMAND, 0, 0, 0, 0); memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer)) ? sizeof(scsicmd->sense_buffer) : sizeof(dev->fsa_dev[cid].sense_data)); scsicmd->scsi_done(scsicmd); return 0; } } static int query_disk(struct aac_dev *dev, void __user *arg) { struct aac_query_disk qd; struct fsa_dev_info *fsa_dev_ptr; fsa_dev_ptr = dev->fsa_dev; if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk))) return -EFAULT; if (qd.cnum == -1) qd.cnum = qd.id; else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1)) { if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers) return -EINVAL; qd.instance = dev->scsi_host_ptr->host_no; qd.bus = 0; qd.id = CONTAINER_TO_ID(qd.cnum); qd.lun = CONTAINER_TO_LUN(qd.cnum); } else return -EINVAL; qd.valid = fsa_dev_ptr[qd.cnum].valid; qd.locked = fsa_dev_ptr[qd.cnum].locked; qd.deleted = fsa_dev_ptr[qd.cnum].deleted; if (fsa_dev_ptr[qd.cnum].devname[0] == '\0') qd.unmapped = 1; else qd.unmapped = 0; strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname, min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1)); if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk))) return -EFAULT; return 0; } static int force_delete_disk(struct aac_dev *dev, void __user *arg) { struct aac_delete_disk dd; struct fsa_dev_info *fsa_dev_ptr; fsa_dev_ptr = dev->fsa_dev; if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk))) return -EFAULT; if (dd.cnum >= dev->maximum_num_containers) return -EINVAL; /* * Mark this container as being deleted. */ fsa_dev_ptr[dd.cnum].deleted = 1; /* * Mark the container as no longer valid */ fsa_dev_ptr[dd.cnum].valid = 0; return 0; } static int delete_disk(struct aac_dev *dev, void __user *arg) { struct aac_delete_disk dd; struct fsa_dev_info *fsa_dev_ptr; fsa_dev_ptr = dev->fsa_dev; if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk))) return -EFAULT; if (dd.cnum >= dev->maximum_num_containers) return -EINVAL; /* * If the container is locked, it can not be deleted by the API. */ if (fsa_dev_ptr[dd.cnum].locked) return -EBUSY; else { /* * Mark the container as no longer being valid. */ fsa_dev_ptr[dd.cnum].valid = 0; fsa_dev_ptr[dd.cnum].devname[0] = '\0'; return 0; } } int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg) { switch (cmd) { case FSACTL_QUERY_DISK: return query_disk(dev, arg); case FSACTL_DELETE_DISK: return delete_disk(dev, arg); case FSACTL_FORCE_DELETE_DISK: return force_delete_disk(dev, arg); case FSACTL_GET_CONTAINERS: return aac_get_containers(dev); default: return -ENOTTY; } } /** * * aac_srb_callback * @context: the context set in the fib - here it is scsi cmd * @fibptr: pointer to the fib * * Handles the completion of a scsi command to a non dasd device * */ static void aac_srb_callback(void *context, struct fib * fibptr) { struct aac_dev *dev; struct aac_srb_reply *srbreply; struct scsi_cmnd *scsicmd; scsicmd = (struct scsi_cmnd *) context; scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL; dev = (struct aac_dev *)scsicmd->device->host->hostdata; if (fibptr == NULL) BUG(); srbreply = (struct aac_srb_reply *) fib_data(fibptr); scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */ /* * Calculate resid for sg */ scsicmd->resid = scsicmd->request_bufflen - le32_to_cpu(srbreply->data_xfer_length); if(scsicmd->use_sg) pci_unmap_sg(dev->pdev, (struct scatterlist *)scsicmd->buffer, scsicmd->use_sg, scsicmd->sc_data_direction); else if(scsicmd->request_bufflen) pci_unmap_single(dev->pdev, scsicmd->SCp.dma_handle, scsicmd->request_bufflen, scsicmd->sc_data_direction); /* * First check the fib status */ if (le32_to_cpu(srbreply->status) != ST_OK){ int len; printk(KERN_WARNING "aac_srb_callback: srb failed, status = %d\n", le32_to_cpu(srbreply->status)); len = (le32_to_cpu(srbreply->sense_data_size) > sizeof(scsicmd->sense_buffer)) ? sizeof(scsicmd->sense_buffer) : le32_to_cpu(srbreply->sense_data_size); scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; memcpy(scsicmd->sense_buffer, srbreply->sense_data, len); } /* * Next check the srb status */ switch( (le32_to_cpu(srbreply->srb_status))&0x3f){ case SRB_STATUS_ERROR_RECOVERY: case SRB_STATUS_PENDING: case SRB_STATUS_SUCCESS: scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; break; case SRB_STATUS_DATA_OVERRUN: switch(scsicmd->cmnd[0]){ case READ_6: case WRITE_6: case READ_10: case WRITE_10: case READ_12: case WRITE_12: case READ_16: case WRITE_16: if(le32_to_cpu(srbreply->data_xfer_length) < scsicmd->underflow ) { printk(KERN_WARNING"aacraid: SCSI CMD underflow\n"); } else { printk(KERN_WARNING"aacraid: SCSI CMD Data Overrun\n"); } scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8; break; case INQUIRY: { scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; break; } default: scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; break; } break; case SRB_STATUS_ABORTED: scsicmd->result = DID_ABORT << 16 | ABORT << 8; break; case SRB_STATUS_ABORT_FAILED: // Not sure about this one - but assuming the hba was trying to abort for some reason scsicmd->result = DID_ERROR << 16 | ABORT << 8; break; case SRB_STATUS_PARITY_ERROR: scsicmd->result = DID_PARITY << 16 | MSG_PARITY_ERROR << 8; break; case SRB_STATUS_NO_DEVICE: case SRB_STATUS_INVALID_PATH_ID: case SRB_STATUS_INVALID_TARGET_ID: case SRB_STATUS_INVALID_LUN: case SRB_STATUS_SELECTION_TIMEOUT: scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8; break; case SRB_STATUS_COMMAND_TIMEOUT: case SRB_STATUS_TIMEOUT: scsicmd->result = DID_TIME_OUT << 16 | COMMAND_COMPLETE << 8; break; case SRB_STATUS_BUSY: scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8; break; case SRB_STATUS_BUS_RESET: scsicmd->result = DID_RESET << 16 | COMMAND_COMPLETE << 8; break; case SRB_STATUS_MESSAGE_REJECTED: scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8; break; case SRB_STATUS_REQUEST_FLUSHED: case SRB_STATUS_ERROR: case SRB_STATUS_INVALID_REQUEST: case SRB_STATUS_REQUEST_SENSE_FAILED: case SRB_STATUS_NO_HBA: case SRB_STATUS_UNEXPECTED_BUS_FREE: case SRB_STATUS_PHASE_SEQUENCE_FAILURE: case SRB_STATUS_BAD_SRB_BLOCK_LENGTH: case SRB_STATUS_DELAYED_RETRY: case SRB_STATUS_BAD_FUNCTION: case SRB_STATUS_NOT_STARTED: case SRB_STATUS_NOT_IN_USE: case SRB_STATUS_FORCE_ABORT: case SRB_STATUS_DOMAIN_VALIDATION_FAIL: default: #ifdef AAC_DETAILED_STATUS_INFO printk("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x - scsi status 0x%x\n", le32_to_cpu(srbreply->srb_status) & 0x3F, aac_get_status_string( le32_to_cpu(srbreply->srb_status) & 0x3F), scsicmd->cmnd[0], le32_to_cpu(srbreply->scsi_status)); #endif scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8; break; } if (le32_to_cpu(srbreply->scsi_status) == 0x02 ){ // Check Condition int len; scsicmd->result |= SAM_STAT_CHECK_CONDITION; len = (le32_to_cpu(srbreply->sense_data_size) > sizeof(scsicmd->sense_buffer)) ? sizeof(scsicmd->sense_buffer) : le32_to_cpu(srbreply->sense_data_size); #ifdef AAC_DETAILED_STATUS_INFO printk(KERN_WARNING "aac_srb_callback: check condition, status = %d len=%d\n", le32_to_cpu(srbreply->status), len); #endif memcpy(scsicmd->sense_buffer, srbreply->sense_data, len); } /* * OR in the scsi status (already shifted up a bit) */ scsicmd->result |= le32_to_cpu(srbreply->scsi_status); aac_fib_complete(fibptr); aac_fib_free(fibptr); scsicmd->scsi_done(scsicmd); } /** * * aac_send_scb_fib * @scsicmd: the scsi command block * * This routine will form a FIB and fill in the aac_srb from the * scsicmd passed in. */ static int aac_send_srb_fib(struct scsi_cmnd* scsicmd) { struct fib* cmd_fibcontext; struct aac_dev* dev; int status; struct aac_srb *srbcmd; u16 fibsize; u32 flag; u32 timeout; dev = (struct aac_dev *)scsicmd->device->host->hostdata; if (scmd_id(scsicmd) >= dev->maximum_num_physicals || scsicmd->device->lun > 7) { scsicmd->result = DID_NO_CONNECT << 16; scsicmd->scsi_done(scsicmd); return 0; } switch(scsicmd->sc_data_direction){ case DMA_TO_DEVICE: flag = SRB_DataOut; break; case DMA_BIDIRECTIONAL: flag = SRB_DataIn | SRB_DataOut; break; case DMA_FROM_DEVICE: flag = SRB_DataIn; break; case DMA_NONE: default: /* shuts up some versions of gcc */ flag = SRB_NoDataXfer; break; } /* * Allocate and initialize a Fib then setup a BlockWrite command */ if (!(cmd_fibcontext = aac_fib_alloc(dev))) { return -1; } aac_fib_init(cmd_fibcontext); srbcmd = (struct aac_srb*) fib_data(cmd_fibcontext); srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scmd_channel(scsicmd))); srbcmd->id = cpu_to_le32(scmd_id(scsicmd)); srbcmd->lun = cpu_to_le32(scsicmd->device->lun); srbcmd->flags = cpu_to_le32(flag); timeout = scsicmd->timeout_per_command/HZ; if(timeout == 0){ timeout = 1; } srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds srbcmd->retry_limit = 0; /* Obsolete parameter */ srbcmd->cdb_size = cpu_to_le32(scsicmd->cmd_len); if( dev->dac_support == 1 ) { aac_build_sg64(scsicmd, (struct sgmap64*) &srbcmd->sg); srbcmd->count = cpu_to_le32(scsicmd->request_bufflen); memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); memcpy(srbcmd->cdb, scsicmd->cmnd, scsicmd->cmd_len); /* * Build Scatter/Gather list */ fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) + ((le32_to_cpu(srbcmd->sg.count) & 0xff) * sizeof (struct sgentry64)); BUG_ON (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr))); /* * Now send the Fib to the adapter */ status = aac_fib_send(ScsiPortCommand64, cmd_fibcontext, fibsize, FsaNormal, 0, 1, (fib_callback) aac_srb_callback, (void *) scsicmd); } else { aac_build_sg(scsicmd, (struct sgmap*)&srbcmd->sg); srbcmd->count = cpu_to_le32(scsicmd->request_bufflen); memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); memcpy(srbcmd->cdb, scsicmd->cmnd, scsicmd->cmd_len); /* * Build Scatter/Gather list */ fibsize = sizeof (struct aac_srb) + (((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) * sizeof (struct sgentry)); BUG_ON (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr))); /* * Now send the Fib to the adapter */ status = aac_fib_send(ScsiPortCommand, cmd_fibcontext, fibsize, FsaNormal, 0, 1, (fib_callback) aac_srb_callback, (void *) scsicmd); } /* * Check that the command queued to the controller */ if (status == -EINPROGRESS) { scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; return 0; } printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status); aac_fib_complete(cmd_fibcontext); aac_fib_free(cmd_fibcontext); return -1; } static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* psg) { struct aac_dev *dev; unsigned long byte_count = 0; dev = (struct aac_dev *)scsicmd->device->host->hostdata; // Get rid of old data psg->count = 0; psg->sg[0].addr = 0; psg->sg[0].count = 0; if (scsicmd->use_sg) { struct scatterlist *sg; int i; int sg_count; sg = (struct scatterlist *) scsicmd->request_buffer; sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg, scsicmd->sc_data_direction); psg->count = cpu_to_le32(sg_count); for (i = 0; i < sg_count; i++) { psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg)); psg->sg[i].count = cpu_to_le32(sg_dma_len(sg)); byte_count += sg_dma_len(sg); sg++; } /* hba wants the size to be exact */ if(byte_count > scsicmd->request_bufflen){ u32 temp = le32_to_cpu(psg->sg[i-1].count) - (byte_count - scsicmd->request_bufflen); psg->sg[i-1].count = cpu_to_le32(temp); byte_count = scsicmd->request_bufflen; } /* Check for command underflow */ if(scsicmd->underflow && (byte_count < scsicmd->underflow)){ printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", byte_count, scsicmd->underflow); } } else if(scsicmd->request_bufflen) { dma_addr_t addr; addr = pci_map_single(dev->pdev, scsicmd->request_buffer, scsicmd->request_bufflen, scsicmd->sc_data_direction); psg->count = cpu_to_le32(1); psg->sg[0].addr = cpu_to_le32(addr); psg->sg[0].count = cpu_to_le32(scsicmd->request_bufflen); scsicmd->SCp.dma_handle = addr; byte_count = scsicmd->request_bufflen; } return byte_count; } static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg) { struct aac_dev *dev; unsigned long byte_count = 0; u64 addr; dev = (struct aac_dev *)scsicmd->device->host->hostdata; // Get rid of old data psg->count = 0; psg->sg[0].addr[0] = 0; psg->sg[0].addr[1] = 0; psg->sg[0].count = 0; if (scsicmd->use_sg) { struct scatterlist *sg; int i; int sg_count; sg = (struct scatterlist *) scsicmd->request_buffer; sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg, scsicmd->sc_data_direction); for (i = 0; i < sg_count; i++) { int count = sg_dma_len(sg); addr = sg_dma_address(sg); psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff); psg->sg[i].addr[1] = cpu_to_le32(addr>>32); psg->sg[i].count = cpu_to_le32(count); byte_count += count; sg++; } psg->count = cpu_to_le32(sg_count); /* hba wants the size to be exact */ if(byte_count > scsicmd->request_bufflen){ u32 temp = le32_to_cpu(psg->sg[i-1].count) - (byte_count - scsicmd->request_bufflen); psg->sg[i-1].count = cpu_to_le32(temp); byte_count = scsicmd->request_bufflen; } /* Check for command underflow */ if(scsicmd->underflow && (byte_count < scsicmd->underflow)){ printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", byte_count, scsicmd->underflow); } } else if(scsicmd->request_bufflen) { scsicmd->SCp.dma_handle = pci_map_single(dev->pdev, scsicmd->request_buffer, scsicmd->request_bufflen, scsicmd->sc_data_direction); addr = scsicmd->SCp.dma_handle; psg->count = cpu_to_le32(1); psg->sg[0].addr[0] = cpu_to_le32(addr & 0xffffffff); psg->sg[0].addr[1] = cpu_to_le32(addr >> 32); psg->sg[0].count = cpu_to_le32(scsicmd->request_bufflen); byte_count = scsicmd->request_bufflen; } return byte_count; } static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg) { struct Scsi_Host *host = scsicmd->device->host; struct aac_dev *dev = (struct aac_dev *)host->hostdata; unsigned long byte_count = 0; // Get rid of old data psg->count = 0; psg->sg[0].next = 0; psg->sg[0].prev = 0; psg->sg[0].addr[0] = 0; psg->sg[0].addr[1] = 0; psg->sg[0].count = 0; psg->sg[0].flags = 0; if (scsicmd->use_sg) { struct scatterlist *sg; int i; int sg_count; sg = (struct scatterlist *) scsicmd->request_buffer; sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg, scsicmd->sc_data_direction); for (i = 0; i < sg_count; i++) { int count = sg_dma_len(sg); u64 addr = sg_dma_address(sg); psg->sg[i].next = 0; psg->sg[i].prev = 0; psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32)); psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff)); psg->sg[i].count = cpu_to_le32(count); psg->sg[i].flags = 0; byte_count += count; sg++; } psg->count = cpu_to_le32(sg_count); /* hba wants the size to be exact */ if(byte_count > scsicmd->request_bufflen){ u32 temp = le32_to_cpu(psg->sg[i-1].count) - (byte_count - scsicmd->request_bufflen); psg->sg[i-1].count = cpu_to_le32(temp); byte_count = scsicmd->request_bufflen; } /* Check for command underflow */ if(scsicmd->underflow && (byte_count < scsicmd->underflow)){ printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", byte_count, scsicmd->underflow); } } else if(scsicmd->request_bufflen) { int count; u64 addr; scsicmd->SCp.dma_handle = pci_map_single(dev->pdev, scsicmd->request_buffer, scsicmd->request_bufflen, scsicmd->sc_data_direction); addr = scsicmd->SCp.dma_handle; count = scsicmd->request_bufflen; psg->count = cpu_to_le32(1); psg->sg[0].next = 0; psg->sg[0].prev = 0; psg->sg[0].addr[1] = cpu_to_le32((u32)(addr>>32)); psg->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff)); psg->sg[0].count = cpu_to_le32(count); psg->sg[0].flags = 0; byte_count = scsicmd->request_bufflen; } return byte_count; } #ifdef AAC_DETAILED_STATUS_INFO struct aac_srb_status_info { u32 status; char *str; }; static struct aac_srb_status_info srb_status_info[] = { { SRB_STATUS_PENDING, "Pending Status"}, { SRB_STATUS_SUCCESS, "Success"}, { SRB_STATUS_ABORTED, "Aborted Command"}, { SRB_STATUS_ABORT_FAILED, "Abort Failed"}, { SRB_STATUS_ERROR, "Error Event"}, { SRB_STATUS_BUSY, "Device Busy"}, { SRB_STATUS_INVALID_REQUEST, "Invalid Request"}, { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"}, { SRB_STATUS_NO_DEVICE, "No Device"}, { SRB_STATUS_TIMEOUT, "Timeout"}, { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"}, { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"}, { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"}, { SRB_STATUS_BUS_RESET, "Bus Reset"}, { SRB_STATUS_PARITY_ERROR, "Parity Error"}, { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"}, { SRB_STATUS_NO_HBA, "No HBA"}, { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"}, { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"}, { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"}, { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"}, { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"}, { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"}, { SRB_STATUS_INVALID_LUN, "Invalid LUN"}, { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"}, { SRB_STATUS_BAD_FUNCTION, "Bad Function"}, { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"}, { SRB_STATUS_NOT_STARTED, "Not Started"}, { SRB_STATUS_NOT_IN_USE, "Not In Use"}, { SRB_STATUS_FORCE_ABORT, "Force Abort"}, { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"}, { 0xff, "Unknown Error"} }; char *aac_get_status_string(u32 status) { int i; for(i=0; i < (sizeof(srb_status_info)/sizeof(struct aac_srb_status_info)); i++ ){ if(srb_status_info[i].status == status){ return srb_status_info[i].str; } } return "Bad Status Code"; } #endif