/* * Copyright (C) 2011-2012 Freescale Semiconductor, Inc. * * The code contained herein is licensed under the GNU General Public * License. You may obtain a copy of the GNU General Public License * Version 2 or later at the following locations: * * http://www.opensource.org/licenses/gpl-license.html * http://www.gnu.org/copyleft/gpl.html */ #include #include #include #include #include #include #include #include #include /* These register offsets are relative to LP (Low Power) range */ #define SNVS_LPCR 0x04 #define SNVS_LPSR 0x18 #define SNVS_LPSRTCMR 0x1c #define SNVS_LPSRTCLR 0x20 #define SNVS_LPTAR 0x24 #define SNVS_LPPGDR 0x30 #define SNVS_LPCR_SRTC_ENV (1 << 0) #define SNVS_LPCR_LPTA_EN (1 << 1) #define SNVS_LPCR_LPWUI_EN (1 << 3) #define SNVS_LPSR_LPTA (1 << 0) #define SNVS_LPPGDR_INIT 0x41736166 #define CNTR_TO_SECS_SH 15 struct snvs_rtc_data { struct rtc_device *rtc; void __iomem *ioaddr; int irq; spinlock_t lock; struct clk *clk; }; static u32 rtc_read_lp_counter(void __iomem *ioaddr) { u64 read1, read2; do { read1 = readl(ioaddr + SNVS_LPSRTCMR); read1 <<= 32; read1 |= readl(ioaddr + SNVS_LPSRTCLR); read2 = readl(ioaddr + SNVS_LPSRTCMR); read2 <<= 32; read2 |= readl(ioaddr + SNVS_LPSRTCLR); } while (read1 != read2); /* Convert 47-bit counter to 32-bit raw second count */ return (u32) (read1 >> CNTR_TO_SECS_SH); } static void rtc_write_sync_lp(void __iomem *ioaddr) { u32 count1, count2, count3; int i; /* Wait for 3 CKIL cycles */ for (i = 0; i < 3; i++) { do { count1 = readl(ioaddr + SNVS_LPSRTCLR); count2 = readl(ioaddr + SNVS_LPSRTCLR); } while (count1 != count2); /* Now wait until counter value changes */ do { do { count2 = readl(ioaddr + SNVS_LPSRTCLR); count3 = readl(ioaddr + SNVS_LPSRTCLR); } while (count2 != count3); } while (count3 == count1); } } static int snvs_rtc_enable(struct snvs_rtc_data *data, bool enable) { unsigned long flags; int timeout = 1000; u32 lpcr; spin_lock_irqsave(&data->lock, flags); lpcr = readl(data->ioaddr + SNVS_LPCR); if (enable) lpcr |= SNVS_LPCR_SRTC_ENV; else lpcr &= ~SNVS_LPCR_SRTC_ENV; writel(lpcr, data->ioaddr + SNVS_LPCR); spin_unlock_irqrestore(&data->lock, flags); while (--timeout) { lpcr = readl(data->ioaddr + SNVS_LPCR); if (enable) { if (lpcr & SNVS_LPCR_SRTC_ENV) break; } else { if (!(lpcr & SNVS_LPCR_SRTC_ENV)) break; } } if (!timeout) return -ETIMEDOUT; return 0; } static int snvs_rtc_read_time(struct device *dev, struct rtc_time *tm) { struct snvs_rtc_data *data = dev_get_drvdata(dev); unsigned long time = rtc_read_lp_counter(data->ioaddr); rtc_time_to_tm(time, tm); return 0; } static int snvs_rtc_set_time(struct device *dev, struct rtc_time *tm) { struct snvs_rtc_data *data = dev_get_drvdata(dev); unsigned long time; rtc_tm_to_time(tm, &time); /* Disable RTC first */ snvs_rtc_enable(data, false); /* Write 32-bit time to 47-bit timer, leaving 15 LSBs blank */ writel(time << CNTR_TO_SECS_SH, data->ioaddr + SNVS_LPSRTCLR); writel(time >> (32 - CNTR_TO_SECS_SH), data->ioaddr + SNVS_LPSRTCMR); /* Enable RTC again */ snvs_rtc_enable(data, true); return 0; } static int snvs_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) { struct snvs_rtc_data *data = dev_get_drvdata(dev); u32 lptar, lpsr; lptar = readl(data->ioaddr + SNVS_LPTAR); rtc_time_to_tm(lptar, &alrm->time); lpsr = readl(data->ioaddr + SNVS_LPSR); alrm->pending = (lpsr & SNVS_LPSR_LPTA) ? 1 : 0; return 0; } static int snvs_rtc_alarm_irq_enable(struct device *dev, unsigned int enable) { struct snvs_rtc_data *data = dev_get_drvdata(dev); u32 lpcr; unsigned long flags; spin_lock_irqsave(&data->lock, flags); lpcr = readl(data->ioaddr + SNVS_LPCR); if (enable) lpcr |= (SNVS_LPCR_LPTA_EN | SNVS_LPCR_LPWUI_EN); else lpcr &= ~(SNVS_LPCR_LPTA_EN | SNVS_LPCR_LPWUI_EN); writel(lpcr, data->ioaddr + SNVS_LPCR); spin_unlock_irqrestore(&data->lock, flags); rtc_write_sync_lp(data->ioaddr); return 0; } static int snvs_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) { struct snvs_rtc_data *data = dev_get_drvdata(dev); struct rtc_time *alrm_tm = &alrm->time; unsigned long time; unsigned long flags; u32 lpcr; rtc_tm_to_time(alrm_tm, &time); spin_lock_irqsave(&data->lock, flags); /* Have to clear LPTA_EN before programming new alarm time in LPTAR */ lpcr = readl(data->ioaddr + SNVS_LPCR); lpcr &= ~SNVS_LPCR_LPTA_EN; writel(lpcr, data->ioaddr + SNVS_LPCR); spin_unlock_irqrestore(&data->lock, flags); writel(time, data->ioaddr + SNVS_LPTAR); /* Clear alarm interrupt status bit */ writel(SNVS_LPSR_LPTA, data->ioaddr + SNVS_LPSR); return snvs_rtc_alarm_irq_enable(dev, alrm->enabled); } static const struct rtc_class_ops snvs_rtc_ops = { .read_time = snvs_rtc_read_time, .set_time = snvs_rtc_set_time, .read_alarm = snvs_rtc_read_alarm, .set_alarm = snvs_rtc_set_alarm, .alarm_irq_enable = snvs_rtc_alarm_irq_enable, }; static irqreturn_t snvs_rtc_irq_handler(int irq, void *dev_id) { struct device *dev = dev_id; struct snvs_rtc_data *data = dev_get_drvdata(dev); u32 lpsr; u32 events = 0; lpsr = readl(data->ioaddr + SNVS_LPSR); if (lpsr & SNVS_LPSR_LPTA) { events |= (RTC_AF | RTC_IRQF); /* RTC alarm should be one-shot */ snvs_rtc_alarm_irq_enable(dev, 0); rtc_update_irq(data->rtc, 1, events); } /* clear interrupt status */ writel(lpsr, data->ioaddr + SNVS_LPSR); return events ? IRQ_HANDLED : IRQ_NONE; } static int snvs_rtc_probe(struct platform_device *pdev) { struct snvs_rtc_data *data; struct resource *res; int ret; data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); data->ioaddr = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(data->ioaddr)) return PTR_ERR(data->ioaddr); data->irq = platform_get_irq(pdev, 0); if (data->irq < 0) return data->irq; data->clk = devm_clk_get(&pdev->dev, "snvs-rtc"); if (IS_ERR(data->clk)) { data->clk = NULL; } else { ret = clk_prepare_enable(data->clk); if (ret) { dev_err(&pdev->dev, "Could not prepare or enable the snvs clock\n"); return ret; } } platform_set_drvdata(pdev, data); spin_lock_init(&data->lock); /* Initialize glitch detect */ writel(SNVS_LPPGDR_INIT, data->ioaddr + SNVS_LPPGDR); /* Clear interrupt status */ writel(0xffffffff, data->ioaddr + SNVS_LPSR); /* Enable RTC */ snvs_rtc_enable(data, true); device_init_wakeup(&pdev->dev, true); ret = devm_request_irq(&pdev->dev, data->irq, snvs_rtc_irq_handler, IRQF_SHARED, "rtc alarm", &pdev->dev); if (ret) { dev_err(&pdev->dev, "failed to request irq %d: %d\n", data->irq, ret); goto error_rtc_device_register; } data->rtc = devm_rtc_device_register(&pdev->dev, pdev->name, &snvs_rtc_ops, THIS_MODULE); if (IS_ERR(data->rtc)) { ret = PTR_ERR(data->rtc); dev_err(&pdev->dev, "failed to register rtc: %d\n", ret); goto error_rtc_device_register; } return 0; error_rtc_device_register: if (data->clk) clk_disable_unprepare(data->clk); return ret; } #ifdef CONFIG_PM_SLEEP static int snvs_rtc_suspend(struct device *dev) { struct snvs_rtc_data *data = dev_get_drvdata(dev); if (device_may_wakeup(dev)) enable_irq_wake(data->irq); if (data->clk) clk_disable_unprepare(data->clk); return 0; } static int snvs_rtc_resume(struct device *dev) { struct snvs_rtc_data *data = dev_get_drvdata(dev); int ret; if (device_may_wakeup(dev)) disable_irq_wake(data->irq); if (data->clk) { ret = clk_prepare_enable(data->clk); if (ret) return ret; } return 0; } static const struct dev_pm_ops snvs_rtc_pm_ops = { .suspend_noirq = snvs_rtc_suspend, .resume_noirq = snvs_rtc_resume, }; #define SNVS_RTC_PM_OPS (&snvs_rtc_pm_ops) #else #define SNVS_RTC_PM_OPS NULL #endif static const struct of_device_id snvs_dt_ids[] = { { .compatible = "fsl,sec-v4.0-mon-rtc-lp", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, snvs_dt_ids); static struct platform_driver snvs_rtc_driver = { .driver = { .name = "snvs_rtc", .pm = SNVS_RTC_PM_OPS, .of_match_table = snvs_dt_ids, }, .probe = snvs_rtc_probe, }; module_platform_driver(snvs_rtc_driver); MODULE_AUTHOR("Freescale Semiconductor, Inc."); MODULE_DESCRIPTION("Freescale SNVS RTC Driver"); MODULE_LICENSE("GPL");