/* * Driver for Allwinner sun4i Pulse Width Modulation Controller * * Copyright (C) 2014 Alexandre Belloni * * Licensed under GPLv2. */ #include #include #include #include #include #include #include #include #include #include #include #include #define PWM_CTRL_REG 0x0 #define PWM_CH_PRD_BASE 0x4 #define PWM_CH_PRD_OFFSET 0x4 #define PWM_CH_PRD(ch) (PWM_CH_PRD_BASE + PWM_CH_PRD_OFFSET * (ch)) #define PWMCH_OFFSET 15 #define PWM_PRESCAL_MASK GENMASK(3, 0) #define PWM_PRESCAL_OFF 0 #define PWM_EN BIT(4) #define PWM_ACT_STATE BIT(5) #define PWM_CLK_GATING BIT(6) #define PWM_MODE BIT(7) #define PWM_PULSE BIT(8) #define PWM_BYPASS BIT(9) #define PWM_RDY_BASE 28 #define PWM_RDY_OFFSET 1 #define PWM_RDY(ch) BIT(PWM_RDY_BASE + PWM_RDY_OFFSET * (ch)) #define PWM_PRD(prd) (((prd) - 1) << 16) #define PWM_PRD_MASK GENMASK(15, 0) #define PWM_DTY_MASK GENMASK(15, 0) #define BIT_CH(bit, chan) ((bit) << ((chan) * PWMCH_OFFSET)) static const u32 prescaler_table[] = { 120, 180, 240, 360, 480, 0, 0, 0, 12000, 24000, 36000, 48000, 72000, 0, 0, 0, /* Actually 1 but tested separately */ }; struct sun4i_pwm_data { bool has_prescaler_bypass; bool has_rdy; }; struct sun4i_pwm_chip { struct pwm_chip chip; struct clk *clk; void __iomem *base; spinlock_t ctrl_lock; const struct sun4i_pwm_data *data; }; static inline struct sun4i_pwm_chip *to_sun4i_pwm_chip(struct pwm_chip *chip) { return container_of(chip, struct sun4i_pwm_chip, chip); } static inline u32 sun4i_pwm_readl(struct sun4i_pwm_chip *chip, unsigned long offset) { return readl(chip->base + offset); } static inline void sun4i_pwm_writel(struct sun4i_pwm_chip *chip, u32 val, unsigned long offset) { writel(val, chip->base + offset); } static int sun4i_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm, int duty_ns, int period_ns) { struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip); u32 prd, dty, val, clk_gate; u64 clk_rate, div = 0; unsigned int prescaler = 0; int err; clk_rate = clk_get_rate(sun4i_pwm->clk); if (sun4i_pwm->data->has_prescaler_bypass) { /* First, test without any prescaler when available */ prescaler = PWM_PRESCAL_MASK; /* * When not using any prescaler, the clock period in nanoseconds * is not an integer so round it half up instead of * truncating to get less surprising values. */ div = clk_rate * period_ns + NSEC_PER_SEC/2; do_div(div, NSEC_PER_SEC); if (div - 1 > PWM_PRD_MASK) prescaler = 0; } if (prescaler == 0) { /* Go up from the first divider */ for (prescaler = 0; prescaler < PWM_PRESCAL_MASK; prescaler++) { if (!prescaler_table[prescaler]) continue; div = clk_rate; do_div(div, prescaler_table[prescaler]); div = div * period_ns; do_div(div, NSEC_PER_SEC); if (div - 1 <= PWM_PRD_MASK) break; } if (div - 1 > PWM_PRD_MASK) { dev_err(chip->dev, "period exceeds the maximum value\n"); return -EINVAL; } } prd = div; div *= duty_ns; do_div(div, period_ns); dty = div; err = clk_prepare_enable(sun4i_pwm->clk); if (err) { dev_err(chip->dev, "failed to enable PWM clock\n"); return err; } spin_lock(&sun4i_pwm->ctrl_lock); val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG); if (sun4i_pwm->data->has_rdy && (val & PWM_RDY(pwm->hwpwm))) { spin_unlock(&sun4i_pwm->ctrl_lock); clk_disable_unprepare(sun4i_pwm->clk); return -EBUSY; } clk_gate = val & BIT_CH(PWM_CLK_GATING, pwm->hwpwm); if (clk_gate) { val &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm); sun4i_pwm_writel(sun4i_pwm, val, PWM_CTRL_REG); } val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG); val &= ~BIT_CH(PWM_PRESCAL_MASK, pwm->hwpwm); val |= BIT_CH(prescaler, pwm->hwpwm); sun4i_pwm_writel(sun4i_pwm, val, PWM_CTRL_REG); val = (dty & PWM_DTY_MASK) | PWM_PRD(prd); sun4i_pwm_writel(sun4i_pwm, val, PWM_CH_PRD(pwm->hwpwm)); if (clk_gate) { val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG); val |= clk_gate; sun4i_pwm_writel(sun4i_pwm, val, PWM_CTRL_REG); } spin_unlock(&sun4i_pwm->ctrl_lock); clk_disable_unprepare(sun4i_pwm->clk); return 0; } static int sun4i_pwm_set_polarity(struct pwm_chip *chip, struct pwm_device *pwm, enum pwm_polarity polarity) { struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip); u32 val; int ret; ret = clk_prepare_enable(sun4i_pwm->clk); if (ret) { dev_err(chip->dev, "failed to enable PWM clock\n"); return ret; } spin_lock(&sun4i_pwm->ctrl_lock); val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG); if (polarity != PWM_POLARITY_NORMAL) val &= ~BIT_CH(PWM_ACT_STATE, pwm->hwpwm); else val |= BIT_CH(PWM_ACT_STATE, pwm->hwpwm); sun4i_pwm_writel(sun4i_pwm, val, PWM_CTRL_REG); spin_unlock(&sun4i_pwm->ctrl_lock); clk_disable_unprepare(sun4i_pwm->clk); return 0; } static int sun4i_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm) { struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip); u32 val; int ret; ret = clk_prepare_enable(sun4i_pwm->clk); if (ret) { dev_err(chip->dev, "failed to enable PWM clock\n"); return ret; } spin_lock(&sun4i_pwm->ctrl_lock); val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG); val |= BIT_CH(PWM_EN, pwm->hwpwm); val |= BIT_CH(PWM_CLK_GATING, pwm->hwpwm); sun4i_pwm_writel(sun4i_pwm, val, PWM_CTRL_REG); spin_unlock(&sun4i_pwm->ctrl_lock); return 0; } static void sun4i_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm) { struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip); u32 val; spin_lock(&sun4i_pwm->ctrl_lock); val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG); val &= ~BIT_CH(PWM_EN, pwm->hwpwm); val &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm); sun4i_pwm_writel(sun4i_pwm, val, PWM_CTRL_REG); spin_unlock(&sun4i_pwm->ctrl_lock); clk_disable_unprepare(sun4i_pwm->clk); } static const struct pwm_ops sun4i_pwm_ops = { .config = sun4i_pwm_config, .set_polarity = sun4i_pwm_set_polarity, .enable = sun4i_pwm_enable, .disable = sun4i_pwm_disable, .owner = THIS_MODULE, }; static const struct sun4i_pwm_data sun4i_pwm_data_a10 = { .has_prescaler_bypass = false, .has_rdy = false, }; static const struct sun4i_pwm_data sun4i_pwm_data_a20 = { .has_prescaler_bypass = true, .has_rdy = true, }; static const struct of_device_id sun4i_pwm_dt_ids[] = { { .compatible = "allwinner,sun4i-a10-pwm", .data = &sun4i_pwm_data_a10, }, { .compatible = "allwinner,sun7i-a20-pwm", .data = &sun4i_pwm_data_a20, }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, sun4i_pwm_dt_ids); static int sun4i_pwm_probe(struct platform_device *pdev) { struct sun4i_pwm_chip *pwm; struct resource *res; u32 val; int i, ret; const struct of_device_id *match; match = of_match_device(sun4i_pwm_dt_ids, &pdev->dev); pwm = devm_kzalloc(&pdev->dev, sizeof(*pwm), GFP_KERNEL); if (!pwm) return -ENOMEM; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); pwm->base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(pwm->base)) return PTR_ERR(pwm->base); pwm->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(pwm->clk)) return PTR_ERR(pwm->clk); pwm->chip.dev = &pdev->dev; pwm->chip.ops = &sun4i_pwm_ops; pwm->chip.base = -1; pwm->chip.npwm = 2; pwm->chip.can_sleep = true; pwm->chip.of_xlate = of_pwm_xlate_with_flags; pwm->chip.of_pwm_n_cells = 3; pwm->data = match->data; spin_lock_init(&pwm->ctrl_lock); ret = pwmchip_add(&pwm->chip); if (ret < 0) { dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret); return ret; } platform_set_drvdata(pdev, pwm); ret = clk_prepare_enable(pwm->clk); if (ret) { dev_err(&pdev->dev, "failed to enable PWM clock\n"); goto clk_error; } val = sun4i_pwm_readl(pwm, PWM_CTRL_REG); for (i = 0; i < pwm->chip.npwm; i++) if (!(val & BIT_CH(PWM_ACT_STATE, i))) pwm->chip.pwms[i].polarity = PWM_POLARITY_INVERSED; clk_disable_unprepare(pwm->clk); return 0; clk_error: pwmchip_remove(&pwm->chip); return ret; } static int sun4i_pwm_remove(struct platform_device *pdev) { struct sun4i_pwm_chip *pwm = platform_get_drvdata(pdev); return pwmchip_remove(&pwm->chip); } static struct platform_driver sun4i_pwm_driver = { .driver = { .name = "sun4i-pwm", .of_match_table = sun4i_pwm_dt_ids, }, .probe = sun4i_pwm_probe, .remove = sun4i_pwm_remove, }; module_platform_driver(sun4i_pwm_driver); MODULE_ALIAS("platform:sun4i-pwm"); MODULE_AUTHOR("Alexandre Belloni "); MODULE_DESCRIPTION("Allwinner sun4i PWM driver"); MODULE_LICENSE("GPL v2");