/* * Copyright (c) 2016, BayLibre, SAS. All rights reserved. * Author: Neil Armstrong * * Copyright (c) 2010, Code Aurora Forum. All rights reserved. * * Driver for Semtech SX150X I2C GPIO Expanders * * Author: Gregory Bean * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "core.h" #include "pinconf.h" #include "pinctrl-utils.h" /* The chip models of sx150x */ enum { SX150X_123 = 0, SX150X_456, SX150X_789, }; enum { SX150X_789_REG_MISC_AUTOCLEAR_OFF = 1 << 0, SX150X_MAX_REGISTER = 0xad, SX150X_IRQ_TYPE_EDGE_RISING = 0x1, SX150X_IRQ_TYPE_EDGE_FALLING = 0x2, }; struct sx150x_123_pri { u8 reg_pld_mode; u8 reg_pld_table0; u8 reg_pld_table1; u8 reg_pld_table2; u8 reg_pld_table3; u8 reg_pld_table4; u8 reg_advance; }; struct sx150x_456_pri { u8 reg_pld_mode; u8 reg_pld_table0; u8 reg_pld_table1; u8 reg_pld_table2; u8 reg_pld_table3; u8 reg_pld_table4; u8 reg_advance; }; struct sx150x_789_pri { u8 reg_drain; u8 reg_polarity; u8 reg_clock; u8 reg_misc; u8 reg_reset; u8 ngpios; }; struct sx150x_device_data { u8 model; u8 reg_pullup; u8 reg_pulldn; u8 reg_dir; u8 reg_data; u8 reg_irq_mask; u8 reg_irq_src; u8 reg_sense; u8 ngpios; union { struct sx150x_123_pri x123; struct sx150x_456_pri x456; struct sx150x_789_pri x789; } pri; const struct pinctrl_pin_desc *pins; unsigned int npins; }; struct sx150x_pinctrl { struct device *dev; struct i2c_client *client; struct pinctrl_dev *pctldev; struct pinctrl_desc pinctrl_desc; struct gpio_chip gpio; struct irq_chip irq_chip; struct regmap *regmap; struct { u32 sense; u32 masked; } irq; struct mutex lock; const struct sx150x_device_data *data; }; static const struct pinctrl_pin_desc sx150x_8_pins[] = { PINCTRL_PIN(0, "gpio0"), PINCTRL_PIN(1, "gpio1"), PINCTRL_PIN(2, "gpio2"), PINCTRL_PIN(3, "gpio3"), PINCTRL_PIN(4, "gpio4"), PINCTRL_PIN(5, "gpio5"), PINCTRL_PIN(6, "gpio6"), PINCTRL_PIN(7, "gpio7"), PINCTRL_PIN(8, "oscio"), }; static const struct pinctrl_pin_desc sx150x_16_pins[] = { PINCTRL_PIN(0, "gpio0"), PINCTRL_PIN(1, "gpio1"), PINCTRL_PIN(2, "gpio2"), PINCTRL_PIN(3, "gpio3"), PINCTRL_PIN(4, "gpio4"), PINCTRL_PIN(5, "gpio5"), PINCTRL_PIN(6, "gpio6"), PINCTRL_PIN(7, "gpio7"), PINCTRL_PIN(8, "gpio8"), PINCTRL_PIN(9, "gpio9"), PINCTRL_PIN(10, "gpio10"), PINCTRL_PIN(11, "gpio11"), PINCTRL_PIN(12, "gpio12"), PINCTRL_PIN(13, "gpio13"), PINCTRL_PIN(14, "gpio14"), PINCTRL_PIN(15, "gpio15"), PINCTRL_PIN(16, "oscio"), }; static const struct sx150x_device_data sx1508q_device_data = { .model = SX150X_789, .reg_pullup = 0x03, .reg_pulldn = 0x04, .reg_dir = 0x07, .reg_data = 0x08, .reg_irq_mask = 0x09, .reg_irq_src = 0x0c, .reg_sense = 0x0b, .pri.x789 = { .reg_drain = 0x05, .reg_polarity = 0x06, .reg_clock = 0x0f, .reg_misc = 0x10, .reg_reset = 0x7d, }, .ngpios = 8, .pins = sx150x_8_pins, .npins = ARRAY_SIZE(sx150x_8_pins), }; static const struct sx150x_device_data sx1509q_device_data = { .model = SX150X_789, .reg_pullup = 0x06, .reg_pulldn = 0x08, .reg_dir = 0x0e, .reg_data = 0x10, .reg_irq_mask = 0x12, .reg_irq_src = 0x18, .reg_sense = 0x14, .pri.x789 = { .reg_drain = 0x0a, .reg_polarity = 0x0c, .reg_clock = 0x1e, .reg_misc = 0x1f, .reg_reset = 0x7d, }, .ngpios = 16, .pins = sx150x_16_pins, .npins = ARRAY_SIZE(sx150x_16_pins), }; static const struct sx150x_device_data sx1506q_device_data = { .model = SX150X_456, .reg_pullup = 0x04, .reg_pulldn = 0x06, .reg_dir = 0x02, .reg_data = 0x00, .reg_irq_mask = 0x08, .reg_irq_src = 0x0e, .reg_sense = 0x0a, .pri.x456 = { .reg_pld_mode = 0x20, .reg_pld_table0 = 0x22, .reg_pld_table1 = 0x24, .reg_pld_table2 = 0x26, .reg_pld_table3 = 0x28, .reg_pld_table4 = 0x2a, .reg_advance = 0xad, }, .ngpios = 16, .pins = sx150x_16_pins, .npins = 16, /* oscio not available */ }; static const struct sx150x_device_data sx1502q_device_data = { .model = SX150X_123, .reg_pullup = 0x02, .reg_pulldn = 0x03, .reg_dir = 0x01, .reg_data = 0x00, .reg_irq_mask = 0x05, .reg_irq_src = 0x08, .reg_sense = 0x07, .pri.x123 = { .reg_pld_mode = 0x10, .reg_pld_table0 = 0x11, .reg_pld_table1 = 0x12, .reg_pld_table2 = 0x13, .reg_pld_table3 = 0x14, .reg_pld_table4 = 0x15, .reg_advance = 0xad, }, .ngpios = 8, .pins = sx150x_8_pins, .npins = 8, /* oscio not available */ }; static const struct sx150x_device_data sx1503q_device_data = { .model = SX150X_123, .reg_pullup = 0x04, .reg_pulldn = 0x06, .reg_dir = 0x02, .reg_data = 0x00, .reg_irq_mask = 0x08, .reg_irq_src = 0x0e, .reg_sense = 0x0a, .pri.x123 = { .reg_pld_mode = 0x20, .reg_pld_table0 = 0x22, .reg_pld_table1 = 0x24, .reg_pld_table2 = 0x26, .reg_pld_table3 = 0x28, .reg_pld_table4 = 0x2a, .reg_advance = 0xad, }, .ngpios = 16, .pins = sx150x_16_pins, .npins = 16, /* oscio not available */ }; static int sx150x_pinctrl_get_groups_count(struct pinctrl_dev *pctldev) { return 0; } static const char *sx150x_pinctrl_get_group_name(struct pinctrl_dev *pctldev, unsigned int group) { return NULL; } static int sx150x_pinctrl_get_group_pins(struct pinctrl_dev *pctldev, unsigned int group, const unsigned int **pins, unsigned int *num_pins) { return -ENOTSUPP; } static const struct pinctrl_ops sx150x_pinctrl_ops = { .get_groups_count = sx150x_pinctrl_get_groups_count, .get_group_name = sx150x_pinctrl_get_group_name, .get_group_pins = sx150x_pinctrl_get_group_pins, #ifdef CONFIG_OF .dt_node_to_map = pinconf_generic_dt_node_to_map_pin, .dt_free_map = pinctrl_utils_free_map, #endif }; static bool sx150x_pin_is_oscio(struct sx150x_pinctrl *pctl, unsigned int pin) { if (pin >= pctl->data->npins) return false; /* OSCIO pin is only present in 789 devices */ if (pctl->data->model != SX150X_789) return false; return !strcmp(pctl->data->pins[pin].name, "oscio"); } static int sx150x_gpio_get_direction(struct gpio_chip *chip, unsigned int offset) { struct sx150x_pinctrl *pctl = gpiochip_get_data(chip); unsigned int value; int ret; if (sx150x_pin_is_oscio(pctl, offset)) return false; ret = regmap_read(pctl->regmap, pctl->data->reg_dir, &value); if (ret < 0) return ret; return !!(value & BIT(offset)); } static int sx150x_gpio_get(struct gpio_chip *chip, unsigned int offset) { struct sx150x_pinctrl *pctl = gpiochip_get_data(chip); unsigned int value; int ret; if (sx150x_pin_is_oscio(pctl, offset)) return -EINVAL; ret = regmap_read(pctl->regmap, pctl->data->reg_data, &value); if (ret < 0) return ret; return !!(value & BIT(offset)); } static int sx150x_gpio_set_single_ended(struct gpio_chip *chip, unsigned int offset, enum single_ended_mode mode) { struct sx150x_pinctrl *pctl = gpiochip_get_data(chip); int ret; switch (mode) { case LINE_MODE_PUSH_PULL: if (pctl->data->model != SX150X_789 || sx150x_pin_is_oscio(pctl, offset)) return 0; ret = regmap_write_bits(pctl->regmap, pctl->data->pri.x789.reg_drain, BIT(offset), 0); break; case LINE_MODE_OPEN_DRAIN: if (pctl->data->model != SX150X_789 || sx150x_pin_is_oscio(pctl, offset)) return -ENOTSUPP; ret = regmap_write_bits(pctl->regmap, pctl->data->pri.x789.reg_drain, BIT(offset), BIT(offset)); break; default: ret = -ENOTSUPP; break; } return ret; } static int __sx150x_gpio_set(struct sx150x_pinctrl *pctl, unsigned int offset, int value) { return regmap_write_bits(pctl->regmap, pctl->data->reg_data, BIT(offset), value ? BIT(offset) : 0); } static int sx150x_gpio_oscio_set(struct sx150x_pinctrl *pctl, int value) { return regmap_write(pctl->regmap, pctl->data->pri.x789.reg_clock, (value ? 0x1f : 0x10)); } static void sx150x_gpio_set(struct gpio_chip *chip, unsigned int offset, int value) { struct sx150x_pinctrl *pctl = gpiochip_get_data(chip); if (sx150x_pin_is_oscio(pctl, offset)) sx150x_gpio_oscio_set(pctl, value); else __sx150x_gpio_set(pctl, offset, value); } static int sx150x_gpio_direction_input(struct gpio_chip *chip, unsigned int offset) { struct sx150x_pinctrl *pctl = gpiochip_get_data(chip); if (sx150x_pin_is_oscio(pctl, offset)) return -EINVAL; return regmap_write_bits(pctl->regmap, pctl->data->reg_dir, BIT(offset), BIT(offset)); } static int sx150x_gpio_direction_output(struct gpio_chip *chip, unsigned int offset, int value) { struct sx150x_pinctrl *pctl = gpiochip_get_data(chip); int ret; if (sx150x_pin_is_oscio(pctl, offset)) return sx150x_gpio_oscio_set(pctl, value); ret = __sx150x_gpio_set(pctl, offset, value); if (ret < 0) return ret; return regmap_write_bits(pctl->regmap, pctl->data->reg_dir, BIT(offset), 0); } static void sx150x_irq_mask(struct irq_data *d) { struct sx150x_pinctrl *pctl = gpiochip_get_data(irq_data_get_irq_chip_data(d)); unsigned int n = d->hwirq; pctl->irq.masked |= BIT(n); } static void sx150x_irq_unmask(struct irq_data *d) { struct sx150x_pinctrl *pctl = gpiochip_get_data(irq_data_get_irq_chip_data(d)); unsigned int n = d->hwirq; pctl->irq.masked &= ~BIT(n); } static void sx150x_irq_set_sense(struct sx150x_pinctrl *pctl, unsigned int line, unsigned int sense) { /* * Every interrupt line is represented by two bits shifted * proportionally to the line number */ const unsigned int n = line * 2; const unsigned int mask = ~((SX150X_IRQ_TYPE_EDGE_RISING | SX150X_IRQ_TYPE_EDGE_FALLING) << n); pctl->irq.sense &= mask; pctl->irq.sense |= sense << n; } static int sx150x_irq_set_type(struct irq_data *d, unsigned int flow_type) { struct sx150x_pinctrl *pctl = gpiochip_get_data(irq_data_get_irq_chip_data(d)); unsigned int n, val = 0; if (flow_type & (IRQ_TYPE_LEVEL_HIGH | IRQ_TYPE_LEVEL_LOW)) return -EINVAL; n = d->hwirq; if (flow_type & IRQ_TYPE_EDGE_RISING) val |= SX150X_IRQ_TYPE_EDGE_RISING; if (flow_type & IRQ_TYPE_EDGE_FALLING) val |= SX150X_IRQ_TYPE_EDGE_FALLING; sx150x_irq_set_sense(pctl, n, val); return 0; } static irqreturn_t sx150x_irq_thread_fn(int irq, void *dev_id) { struct sx150x_pinctrl *pctl = (struct sx150x_pinctrl *)dev_id; unsigned long n, status; unsigned int val; int err; err = regmap_read(pctl->regmap, pctl->data->reg_irq_src, &val); if (err < 0) return IRQ_NONE; err = regmap_write(pctl->regmap, pctl->data->reg_irq_src, val); if (err < 0) return IRQ_NONE; status = val; for_each_set_bit(n, &status, pctl->data->ngpios) handle_nested_irq(irq_find_mapping(pctl->gpio.irqdomain, n)); return IRQ_HANDLED; } static void sx150x_irq_bus_lock(struct irq_data *d) { struct sx150x_pinctrl *pctl = gpiochip_get_data(irq_data_get_irq_chip_data(d)); mutex_lock(&pctl->lock); } static void sx150x_irq_bus_sync_unlock(struct irq_data *d) { struct sx150x_pinctrl *pctl = gpiochip_get_data(irq_data_get_irq_chip_data(d)); regmap_write(pctl->regmap, pctl->data->reg_irq_mask, pctl->irq.masked); regmap_write(pctl->regmap, pctl->data->reg_sense, pctl->irq.sense); mutex_unlock(&pctl->lock); } static int sx150x_pinconf_get(struct pinctrl_dev *pctldev, unsigned int pin, unsigned long *config) { struct sx150x_pinctrl *pctl = pinctrl_dev_get_drvdata(pctldev); unsigned int param = pinconf_to_config_param(*config); int ret; u32 arg; unsigned int data; if (sx150x_pin_is_oscio(pctl, pin)) { switch (param) { case PIN_CONFIG_DRIVE_PUSH_PULL: case PIN_CONFIG_OUTPUT: ret = regmap_read(pctl->regmap, pctl->data->pri.x789.reg_clock, &data); if (ret < 0) return ret; if (param == PIN_CONFIG_DRIVE_PUSH_PULL) arg = (data & 0x1f) ? 1 : 0; else { if ((data & 0x1f) == 0x1f) arg = 1; else if ((data & 0x1f) == 0x10) arg = 0; else return -EINVAL; } break; default: return -ENOTSUPP; } goto out; } switch (param) { case PIN_CONFIG_BIAS_PULL_DOWN: ret = regmap_read(pctl->regmap, pctl->data->reg_pulldn, &data); data &= BIT(pin); if (ret < 0) return ret; if (!ret) return -EINVAL; arg = 1; break; case PIN_CONFIG_BIAS_PULL_UP: ret = regmap_read(pctl->regmap, pctl->data->reg_pullup, &data); data &= BIT(pin); if (ret < 0) return ret; if (!ret) return -EINVAL; arg = 1; break; case PIN_CONFIG_DRIVE_OPEN_DRAIN: if (pctl->data->model != SX150X_789) return -ENOTSUPP; ret = regmap_read(pctl->regmap, pctl->data->pri.x789.reg_drain, &data); data &= BIT(pin); if (ret < 0) return ret; if (!data) return -EINVAL; arg = 1; break; case PIN_CONFIG_DRIVE_PUSH_PULL: if (pctl->data->model != SX150X_789) arg = true; else { ret = regmap_read(pctl->regmap, pctl->data->pri.x789.reg_drain, &data); data &= BIT(pin); if (ret < 0) return ret; if (data) return -EINVAL; arg = 1; } break; case PIN_CONFIG_OUTPUT: ret = sx150x_gpio_get_direction(&pctl->gpio, pin); if (ret < 0) return ret; if (ret) return -EINVAL; ret = sx150x_gpio_get(&pctl->gpio, pin); if (ret < 0) return ret; arg = ret; break; default: return -ENOTSUPP; } out: *config = pinconf_to_config_packed(param, arg); return 0; } static int sx150x_pinconf_set(struct pinctrl_dev *pctldev, unsigned int pin, unsigned long *configs, unsigned int num_configs) { struct sx150x_pinctrl *pctl = pinctrl_dev_get_drvdata(pctldev); enum pin_config_param param; u32 arg; int i; int ret; for (i = 0; i < num_configs; i++) { param = pinconf_to_config_param(configs[i]); arg = pinconf_to_config_argument(configs[i]); if (sx150x_pin_is_oscio(pctl, pin)) { if (param == PIN_CONFIG_OUTPUT) { ret = sx150x_gpio_direction_output(&pctl->gpio, pin, arg); if (ret < 0) return ret; continue; } else return -ENOTSUPP; } switch (param) { case PIN_CONFIG_BIAS_PULL_PIN_DEFAULT: case PIN_CONFIG_BIAS_DISABLE: ret = regmap_write_bits(pctl->regmap, pctl->data->reg_pulldn, BIT(pin), 0); if (ret < 0) return ret; ret = regmap_write_bits(pctl->regmap, pctl->data->reg_pullup, BIT(pin), 0); if (ret < 0) return ret; break; case PIN_CONFIG_BIAS_PULL_UP: ret = regmap_write_bits(pctl->regmap, pctl->data->reg_pullup, BIT(pin), BIT(pin)); if (ret < 0) return ret; break; case PIN_CONFIG_BIAS_PULL_DOWN: ret = regmap_write_bits(pctl->regmap, pctl->data->reg_pulldn, BIT(pin), BIT(pin)); if (ret < 0) return ret; break; case PIN_CONFIG_DRIVE_OPEN_DRAIN: ret = sx150x_gpio_set_single_ended(&pctl->gpio, pin, LINE_MODE_OPEN_DRAIN); if (ret < 0) return ret; break; case PIN_CONFIG_DRIVE_PUSH_PULL: ret = sx150x_gpio_set_single_ended(&pctl->gpio, pin, LINE_MODE_PUSH_PULL); if (ret < 0) return ret; break; case PIN_CONFIG_OUTPUT: ret = sx150x_gpio_direction_output(&pctl->gpio, pin, arg); if (ret < 0) return ret; break; default: return -ENOTSUPP; } } /* for each config */ return 0; } static const struct pinconf_ops sx150x_pinconf_ops = { .pin_config_get = sx150x_pinconf_get, .pin_config_set = sx150x_pinconf_set, .is_generic = true, }; static const struct i2c_device_id sx150x_id[] = { {"sx1508q", (kernel_ulong_t) &sx1508q_device_data }, {"sx1509q", (kernel_ulong_t) &sx1509q_device_data }, {"sx1506q", (kernel_ulong_t) &sx1506q_device_data }, {"sx1502q", (kernel_ulong_t) &sx1502q_device_data }, {"sx1503q", (kernel_ulong_t) &sx1503q_device_data }, {} }; static const struct of_device_id sx150x_of_match[] = { { .compatible = "semtech,sx1508q", .data = &sx1508q_device_data }, { .compatible = "semtech,sx1509q", .data = &sx1509q_device_data }, { .compatible = "semtech,sx1506q", .data = &sx1506q_device_data }, { .compatible = "semtech,sx1502q", .data = &sx1502q_device_data }, { .compatible = "semtech,sx1503q", .data = &sx1503q_device_data }, {}, }; static int sx150x_reset(struct sx150x_pinctrl *pctl) { int err; err = i2c_smbus_write_byte_data(pctl->client, pctl->data->pri.x789.reg_reset, 0x12); if (err < 0) return err; err = i2c_smbus_write_byte_data(pctl->client, pctl->data->pri.x789.reg_reset, 0x34); return err; } static int sx150x_init_misc(struct sx150x_pinctrl *pctl) { u8 reg, value; switch (pctl->data->model) { case SX150X_789: reg = pctl->data->pri.x789.reg_misc; value = SX150X_789_REG_MISC_AUTOCLEAR_OFF; break; case SX150X_456: reg = pctl->data->pri.x456.reg_advance; value = 0x00; /* * Only SX1506 has RegAdvanced, SX1504/5 are expected * to initialize this offset to zero */ if (!reg) return 0; break; case SX150X_123: reg = pctl->data->pri.x123.reg_advance; value = 0x00; break; default: WARN(1, "Unknown chip model %d\n", pctl->data->model); return -EINVAL; } return regmap_write(pctl->regmap, reg, value); } static int sx150x_init_hw(struct sx150x_pinctrl *pctl) { const u8 reg[] = { [SX150X_789] = pctl->data->pri.x789.reg_polarity, [SX150X_456] = pctl->data->pri.x456.reg_pld_mode, [SX150X_123] = pctl->data->pri.x123.reg_pld_mode, }; int err; if (pctl->data->model == SX150X_789 && of_property_read_bool(pctl->dev->of_node, "semtech,probe-reset")) { err = sx150x_reset(pctl); if (err < 0) return err; } err = sx150x_init_misc(pctl); if (err < 0) return err; /* Set all pins to work in normal mode */ return regmap_write(pctl->regmap, reg[pctl->data->model], 0); } static int sx150x_regmap_reg_width(struct sx150x_pinctrl *pctl, unsigned int reg) { const struct sx150x_device_data *data = pctl->data; if (reg == data->reg_sense) { /* * RegSense packs two bits of configuration per GPIO, * so we'd need to read twice as many bits as there * are GPIO in our chip */ return 2 * data->ngpios; } else if ((data->model == SX150X_789 && (reg == data->pri.x789.reg_misc || reg == data->pri.x789.reg_clock || reg == data->pri.x789.reg_reset)) || (data->model == SX150X_123 && reg == data->pri.x123.reg_advance) || (data->model == SX150X_456 && reg == data->pri.x456.reg_advance)) { return 8; } else { return data->ngpios; } } static unsigned int sx150x_maybe_swizzle(struct sx150x_pinctrl *pctl, unsigned int reg, unsigned int val) { unsigned int a, b; const struct sx150x_device_data *data = pctl->data; /* * Whereas SX1509 presents RegSense in a simple layout as such: * reg [ f f e e d d c c ] * reg + 1 [ b b a a 9 9 8 8 ] * reg + 2 [ 7 7 6 6 5 5 4 4 ] * reg + 3 [ 3 3 2 2 1 1 0 0 ] * * SX1503 and SX1506 deviate from that data layout, instead storing * thier contents as follows: * * reg [ f f e e d d c c ] * reg + 1 [ 7 7 6 6 5 5 4 4 ] * reg + 2 [ b b a a 9 9 8 8 ] * reg + 3 [ 3 3 2 2 1 1 0 0 ] * * so, taking that into account, we swap two * inner bytes of a 4-byte result */ if (reg == data->reg_sense && data->ngpios == 16 && (data->model == SX150X_123 || data->model == SX150X_456)) { a = val & 0x00ff0000; b = val & 0x0000ff00; val &= 0xff0000ff; val |= b << 8; val |= a >> 8; } return val; } /* * In order to mask the differences between 16 and 8 bit expander * devices we set up a sligthly ficticious regmap that pretends to be * a set of 32-bit (to accomodate RegSenseLow/RegSenseHigh * pair/quartet) registers and transparently reconstructs those * registers via multiple I2C/SMBus reads * * This way the rest of the driver code, interfacing with the chip via * regmap API, can work assuming that each GPIO pin is represented by * a group of bits at an offset proportioan to GPIO number within a * given register. * */ static int sx150x_regmap_reg_read(void *context, unsigned int reg, unsigned int *result) { int ret, n; struct sx150x_pinctrl *pctl = context; struct i2c_client *i2c = pctl->client; const int width = sx150x_regmap_reg_width(pctl, reg); unsigned int idx, val; /* * There are four potential cases coverd by this function: * * 1) 8-pin chip, single configuration bit register * * This is trivial the code below just needs to read: * reg [ 7 6 5 4 3 2 1 0 ] * * 2) 8-pin chip, double configuration bit register (RegSense) * * The read will be done as follows: * reg [ 7 7 6 6 5 5 4 4 ] * reg + 1 [ 3 3 2 2 1 1 0 0 ] * * 3) 16-pin chip, single configuration bit register * * The read will be done as follows: * reg [ f e d c b a 9 8 ] * reg + 1 [ 7 6 5 4 3 2 1 0 ] * * 4) 16-pin chip, double configuration bit register (RegSense) * * The read will be done as follows: * reg [ f f e e d d c c ] * reg + 1 [ b b a a 9 9 8 8 ] * reg + 2 [ 7 7 6 6 5 5 4 4 ] * reg + 3 [ 3 3 2 2 1 1 0 0 ] */ for (n = width, val = 0, idx = reg; n > 0; n -= 8, idx++) { val <<= 8; ret = i2c_smbus_read_byte_data(i2c, idx); if (ret < 0) return ret; val |= ret; } *result = sx150x_maybe_swizzle(pctl, reg, val); return 0; } static int sx150x_regmap_reg_write(void *context, unsigned int reg, unsigned int val) { int ret, n; struct sx150x_pinctrl *pctl = context; struct i2c_client *i2c = pctl->client; const int width = sx150x_regmap_reg_width(pctl, reg); val = sx150x_maybe_swizzle(pctl, reg, val); n = width - 8; do { const u8 byte = (val >> n) & 0xff; ret = i2c_smbus_write_byte_data(i2c, reg, byte); if (ret < 0) return ret; reg++; n -= 8; } while (n >= 0); return 0; } static bool sx150x_reg_volatile(struct device *dev, unsigned int reg) { struct sx150x_pinctrl *pctl = i2c_get_clientdata(to_i2c_client(dev)); return reg == pctl->data->reg_irq_src || reg == pctl->data->reg_data; } const struct regmap_config sx150x_regmap_config = { .reg_bits = 8, .val_bits = 32, .cache_type = REGCACHE_RBTREE, .reg_read = sx150x_regmap_reg_read, .reg_write = sx150x_regmap_reg_write, .max_register = SX150X_MAX_REGISTER, .volatile_reg = sx150x_reg_volatile, }; static int sx150x_probe(struct i2c_client *client, const struct i2c_device_id *id) { static const u32 i2c_funcs = I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_WRITE_WORD_DATA; struct device *dev = &client->dev; struct sx150x_pinctrl *pctl; int ret; if (!i2c_check_functionality(client->adapter, i2c_funcs)) return -ENOSYS; pctl = devm_kzalloc(dev, sizeof(*pctl), GFP_KERNEL); if (!pctl) return -ENOMEM; i2c_set_clientdata(client, pctl); pctl->dev = dev; pctl->client = client; if (dev->of_node) pctl->data = of_device_get_match_data(dev); else pctl->data = (struct sx150x_device_data *)id->driver_data; if (!pctl->data) return -EINVAL; pctl->regmap = devm_regmap_init(dev, NULL, pctl, &sx150x_regmap_config); if (IS_ERR(pctl->regmap)) { ret = PTR_ERR(pctl->regmap); dev_err(dev, "Failed to allocate register map: %d\n", ret); return ret; } mutex_init(&pctl->lock); ret = sx150x_init_hw(pctl); if (ret) return ret; /* Register GPIO controller */ pctl->gpio.label = devm_kstrdup(dev, client->name, GFP_KERNEL); pctl->gpio.base = -1; pctl->gpio.ngpio = pctl->data->npins; pctl->gpio.get_direction = sx150x_gpio_get_direction; pctl->gpio.direction_input = sx150x_gpio_direction_input; pctl->gpio.direction_output = sx150x_gpio_direction_output; pctl->gpio.get = sx150x_gpio_get; pctl->gpio.set = sx150x_gpio_set; pctl->gpio.set_single_ended = sx150x_gpio_set_single_ended; pctl->gpio.parent = dev; #ifdef CONFIG_OF_GPIO pctl->gpio.of_node = dev->of_node; #endif pctl->gpio.can_sleep = true; ret = devm_gpiochip_add_data(dev, &pctl->gpio, pctl); if (ret) return ret; /* Add Interrupt support if an irq is specified */ if (client->irq > 0) { pctl->irq_chip.name = devm_kstrdup(dev, client->name, GFP_KERNEL); pctl->irq_chip.irq_mask = sx150x_irq_mask; pctl->irq_chip.irq_unmask = sx150x_irq_unmask; pctl->irq_chip.irq_set_type = sx150x_irq_set_type; pctl->irq_chip.irq_bus_lock = sx150x_irq_bus_lock; pctl->irq_chip.irq_bus_sync_unlock = sx150x_irq_bus_sync_unlock; pctl->irq.masked = ~0; pctl->irq.sense = 0; /* * Because sx150x_irq_threaded_fn invokes all of the * nested interrrupt handlers via handle_nested_irq, * any "handler" passed to gpiochip_irqchip_add() * below is going to be ignored, so the choice of the * function does not matter that much. * * We set it to handle_bad_irq to avoid confusion, * plus it will be instantly noticeable if it is ever * called (should not happen) */ ret = gpiochip_irqchip_add(&pctl->gpio, &pctl->irq_chip, 0, handle_bad_irq, IRQ_TYPE_NONE); if (ret) { dev_err(dev, "could not connect irqchip to gpiochip\n"); return ret; } ret = devm_request_threaded_irq(dev, client->irq, NULL, sx150x_irq_thread_fn, IRQF_ONESHOT | IRQF_SHARED | IRQF_TRIGGER_FALLING, pctl->irq_chip.name, pctl); if (ret < 0) return ret; } /* Pinctrl_desc */ pctl->pinctrl_desc.name = "sx150x-pinctrl"; pctl->pinctrl_desc.pctlops = &sx150x_pinctrl_ops; pctl->pinctrl_desc.confops = &sx150x_pinconf_ops; pctl->pinctrl_desc.pins = pctl->data->pins; pctl->pinctrl_desc.npins = pctl->data->npins; pctl->pinctrl_desc.owner = THIS_MODULE; pctl->pctldev = pinctrl_register(&pctl->pinctrl_desc, dev, pctl); if (IS_ERR(pctl->pctldev)) { dev_err(dev, "Failed to register pinctrl device\n"); return PTR_ERR(pctl->pctldev); } return 0; } static struct i2c_driver sx150x_driver = { .driver = { .name = "sx150x-pinctrl", .of_match_table = of_match_ptr(sx150x_of_match), }, .probe = sx150x_probe, .id_table = sx150x_id, }; static int __init sx150x_init(void) { return i2c_add_driver(&sx150x_driver); } subsys_initcall(sx150x_init);