/* * EEPROM parser code for mac80211 Prism54 drivers * * Copyright (c) 2006, Michael Wu * Copyright (c) 2007-2009, Christian Lamparter * Copyright 2008, Johannes Berg * * Based on: * - the islsm (softmac prism54) driver, which is: * Copyright 2004-2006 Jean-Baptiste Note , et al. * - stlc45xx driver * Copyright (C) 2008 Nokia Corporation and/or its subsidiary(-ies). * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include "p54.h" #include "eeprom.h" #include "lmac.h" static struct ieee80211_rate p54_bgrates[] = { { .bitrate = 10, .hw_value = 0, }, { .bitrate = 20, .hw_value = 1, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, { .bitrate = 55, .hw_value = 2, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, { .bitrate = 110, .hw_value = 3, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, { .bitrate = 60, .hw_value = 4, }, { .bitrate = 90, .hw_value = 5, }, { .bitrate = 120, .hw_value = 6, }, { .bitrate = 180, .hw_value = 7, }, { .bitrate = 240, .hw_value = 8, }, { .bitrate = 360, .hw_value = 9, }, { .bitrate = 480, .hw_value = 10, }, { .bitrate = 540, .hw_value = 11, }, }; static struct ieee80211_rate p54_arates[] = { { .bitrate = 60, .hw_value = 4, }, { .bitrate = 90, .hw_value = 5, }, { .bitrate = 120, .hw_value = 6, }, { .bitrate = 180, .hw_value = 7, }, { .bitrate = 240, .hw_value = 8, }, { .bitrate = 360, .hw_value = 9, }, { .bitrate = 480, .hw_value = 10, }, { .bitrate = 540, .hw_value = 11, }, }; static struct p54_rssi_db_entry p54_rssi_default = { /* * The defaults are taken from usb-logs of the * vendor driver. So, they should be safe to * use in case we can't get a match from the * rssi <-> dBm conversion database. */ .mul = 130, .add = -398, }; #define CHAN_HAS_CAL BIT(0) #define CHAN_HAS_LIMIT BIT(1) #define CHAN_HAS_CURVE BIT(2) #define CHAN_HAS_ALL (CHAN_HAS_CAL | CHAN_HAS_LIMIT | CHAN_HAS_CURVE) struct p54_channel_entry { u16 freq; u16 data; int index; enum ieee80211_band band; }; struct p54_channel_list { struct p54_channel_entry *channels; size_t entries; size_t max_entries; size_t band_channel_num[IEEE80211_NUM_BANDS]; }; static int p54_get_band_from_freq(u16 freq) { /* FIXME: sync these values with the 802.11 spec */ if ((freq >= 2412) && (freq <= 2484)) return IEEE80211_BAND_2GHZ; if ((freq >= 4920) && (freq <= 5825)) return IEEE80211_BAND_5GHZ; return -1; } static int same_band(u16 freq, u16 freq2) { return p54_get_band_from_freq(freq) == p54_get_band_from_freq(freq2); } static int p54_compare_channels(const void *_a, const void *_b) { const struct p54_channel_entry *a = _a; const struct p54_channel_entry *b = _b; return a->freq - b->freq; } static int p54_compare_rssichan(const void *_a, const void *_b) { const struct p54_rssi_db_entry *a = _a; const struct p54_rssi_db_entry *b = _b; return a->freq - b->freq; } static int p54_fill_band_bitrates(struct ieee80211_hw *dev, struct ieee80211_supported_band *band_entry, enum ieee80211_band band) { /* TODO: generate rate array dynamically */ switch (band) { case IEEE80211_BAND_2GHZ: band_entry->bitrates = p54_bgrates; band_entry->n_bitrates = ARRAY_SIZE(p54_bgrates); break; case IEEE80211_BAND_5GHZ: band_entry->bitrates = p54_arates; band_entry->n_bitrates = ARRAY_SIZE(p54_arates); break; default: return -EINVAL; } return 0; } static int p54_generate_band(struct ieee80211_hw *dev, struct p54_channel_list *list, enum ieee80211_band band) { struct p54_common *priv = dev->priv; struct ieee80211_supported_band *tmp, *old; unsigned int i, j; int ret = -ENOMEM; if ((!list->entries) || (!list->band_channel_num[band])) return -EINVAL; tmp = kzalloc(sizeof(*tmp), GFP_KERNEL); if (!tmp) goto err_out; tmp->channels = kzalloc(sizeof(struct ieee80211_channel) * list->band_channel_num[band], GFP_KERNEL); if (!tmp->channels) goto err_out; ret = p54_fill_band_bitrates(dev, tmp, band); if (ret) goto err_out; for (i = 0, j = 0; (j < list->band_channel_num[band]) && (i < list->entries); i++) { struct p54_channel_entry *chan = &list->channels[i]; if (chan->band != band) continue; if (chan->data != CHAN_HAS_ALL) { wiphy_err(dev->wiphy, "%s%s%s is/are missing for " "channel:%d [%d MHz].\n", (chan->data & CHAN_HAS_CAL ? "" : " [iqauto calibration data]"), (chan->data & CHAN_HAS_LIMIT ? "" : " [output power limits]"), (chan->data & CHAN_HAS_CURVE ? "" : " [curve data]"), chan->index, chan->freq); continue; } tmp->channels[j].band = chan->band; tmp->channels[j].center_freq = chan->freq; j++; } if (j == 0) { wiphy_err(dev->wiphy, "Disabling totally damaged %d GHz band\n", (band == IEEE80211_BAND_2GHZ) ? 2 : 5); ret = -ENODATA; goto err_out; } tmp->n_channels = j; old = priv->band_table[band]; priv->band_table[band] = tmp; if (old) { kfree(old->channels); kfree(old); } return 0; err_out: if (tmp) { kfree(tmp->channels); kfree(tmp); } return ret; } static void p54_update_channel_param(struct p54_channel_list *list, u16 freq, u16 data) { int band, i; /* * usually all lists in the eeprom are mostly sorted. * so it's very likely that the entry we are looking for * is right at the end of the list */ for (i = list->entries; i >= 0; i--) { if (freq == list->channels[i].freq) { list->channels[i].data |= data; break; } } if ((i < 0) && (list->entries < list->max_entries)) { /* entry does not exist yet. Initialize a new one. */ band = p54_get_band_from_freq(freq); /* * filter out frequencies which don't belong into * any supported band. */ if (band < 0) return ; i = list->entries++; list->band_channel_num[band]++; list->channels[i].freq = freq; list->channels[i].data = data; list->channels[i].band = band; list->channels[i].index = ieee80211_frequency_to_channel(freq); /* TODO: parse output_limit and fill max_power */ } } static int p54_generate_channel_lists(struct ieee80211_hw *dev) { struct p54_common *priv = dev->priv; struct p54_channel_list *list; unsigned int i, j, max_channel_num; int ret = 0; u16 freq; if ((priv->iq_autocal_len != priv->curve_data->entries) || (priv->iq_autocal_len != priv->output_limit->entries)) wiphy_err(dev->wiphy, "Unsupported or damaged EEPROM detected. " "You may not be able to use all channels.\n"); max_channel_num = max_t(unsigned int, priv->output_limit->entries, priv->iq_autocal_len); max_channel_num = max_t(unsigned int, max_channel_num, priv->curve_data->entries); list = kzalloc(sizeof(*list), GFP_KERNEL); if (!list) { ret = -ENOMEM; goto free; } list->max_entries = max_channel_num; list->channels = kzalloc(sizeof(struct p54_channel_entry) * max_channel_num, GFP_KERNEL); if (!list->channels) { ret = -ENOMEM; goto free; } for (i = 0; i < max_channel_num; i++) { if (i < priv->iq_autocal_len) { freq = le16_to_cpu(priv->iq_autocal[i].freq); p54_update_channel_param(list, freq, CHAN_HAS_CAL); } if (i < priv->output_limit->entries) { freq = le16_to_cpup((__le16 *) (i * priv->output_limit->entry_size + priv->output_limit->offset + priv->output_limit->data)); p54_update_channel_param(list, freq, CHAN_HAS_LIMIT); } if (i < priv->curve_data->entries) { freq = le16_to_cpup((__le16 *) (i * priv->curve_data->entry_size + priv->curve_data->offset + priv->curve_data->data)); p54_update_channel_param(list, freq, CHAN_HAS_CURVE); } } /* sort the channel list by frequency */ sort(list->channels, list->entries, sizeof(struct p54_channel_entry), p54_compare_channels, NULL); for (i = 0, j = 0; i < IEEE80211_NUM_BANDS; i++) { if (p54_generate_band(dev, list, i) == 0) j++; } if (j == 0) { /* no useable band available. */ ret = -EINVAL; } free: if (list) { kfree(list->channels); kfree(list); } return ret; } static int p54_convert_rev0(struct ieee80211_hw *dev, struct pda_pa_curve_data *curve_data) { struct p54_common *priv = dev->priv; struct p54_pa_curve_data_sample *dst; struct pda_pa_curve_data_sample_rev0 *src; size_t cd_len = sizeof(*curve_data) + (curve_data->points_per_channel*sizeof(*dst) + 2) * curve_data->channels; unsigned int i, j; void *source, *target; priv->curve_data = kmalloc(sizeof(*priv->curve_data) + cd_len, GFP_KERNEL); if (!priv->curve_data) return -ENOMEM; priv->curve_data->entries = curve_data->channels; priv->curve_data->entry_size = sizeof(__le16) + sizeof(*dst) * curve_data->points_per_channel; priv->curve_data->offset = offsetof(struct pda_pa_curve_data, data); priv->curve_data->len = cd_len; memcpy(priv->curve_data->data, curve_data, sizeof(*curve_data)); source = curve_data->data; target = ((struct pda_pa_curve_data *) priv->curve_data->data)->data; for (i = 0; i < curve_data->channels; i++) { __le16 *freq = source; source += sizeof(__le16); *((__le16 *)target) = *freq; target += sizeof(__le16); for (j = 0; j < curve_data->points_per_channel; j++) { dst = target; src = source; dst->rf_power = src->rf_power; dst->pa_detector = src->pa_detector; dst->data_64qam = src->pcv; /* "invent" the points for the other modulations */ #define SUB(x, y) (u8)(((x) - (y)) > (x) ? 0 : (x) - (y)) dst->data_16qam = SUB(src->pcv, 12); dst->data_qpsk = SUB(dst->data_16qam, 12); dst->data_bpsk = SUB(dst->data_qpsk, 12); dst->data_barker = SUB(dst->data_bpsk, 14); #undef SUB target += sizeof(*dst); source += sizeof(*src); } } return 0; } static int p54_convert_rev1(struct ieee80211_hw *dev, struct pda_pa_curve_data *curve_data) { struct p54_common *priv = dev->priv; struct p54_pa_curve_data_sample *dst; struct pda_pa_curve_data_sample_rev1 *src; size_t cd_len = sizeof(*curve_data) + (curve_data->points_per_channel*sizeof(*dst) + 2) * curve_data->channels; unsigned int i, j; void *source, *target; priv->curve_data = kzalloc(cd_len + sizeof(*priv->curve_data), GFP_KERNEL); if (!priv->curve_data) return -ENOMEM; priv->curve_data->entries = curve_data->channels; priv->curve_data->entry_size = sizeof(__le16) + sizeof(*dst) * curve_data->points_per_channel; priv->curve_data->offset = offsetof(struct pda_pa_curve_data, data); priv->curve_data->len = cd_len; memcpy(priv->curve_data->data, curve_data, sizeof(*curve_data)); source = curve_data->data; target = ((struct pda_pa_curve_data *) priv->curve_data->data)->data; for (i = 0; i < curve_data->channels; i++) { __le16 *freq = source; source += sizeof(__le16); *((__le16 *)target) = *freq; target += sizeof(__le16); for (j = 0; j < curve_data->points_per_channel; j++) { memcpy(target, source, sizeof(*src)); target += sizeof(*dst); source += sizeof(*src); } source++; } return 0; } static const char *p54_rf_chips[] = { "INVALID-0", "Duette3", "Duette2", "Frisbee", "Xbow", "Longbow", "INVALID-6", "INVALID-7" }; static int p54_parse_rssical(struct ieee80211_hw *dev, u8 *data, int len, u16 type) { struct p54_common *priv = dev->priv; struct p54_rssi_db_entry *entry; size_t db_len, entries; int offset = 0, i; if (type != PDR_RSSI_LINEAR_APPROXIMATION_EXTENDED) { entries = (type == PDR_RSSI_LINEAR_APPROXIMATION) ? 1 : 2; if (len != sizeof(struct pda_rssi_cal_entry) * entries) { wiphy_err(dev->wiphy, "rssical size mismatch.\n"); goto err_data; } } else { /* * Some devices (Dell 1450 USB, Xbow 5GHz card, etc...) * have an empty two byte header. */ if (*((__le16 *)&data[offset]) == cpu_to_le16(0)) offset += 2; entries = (len - offset) / sizeof(struct pda_rssi_cal_ext_entry); if ((len - offset) % sizeof(struct pda_rssi_cal_ext_entry) || entries <= 0) { wiphy_err(dev->wiphy, "invalid rssi database.\n"); goto err_data; } } db_len = sizeof(*entry) * entries; priv->rssi_db = kzalloc(db_len + sizeof(*priv->rssi_db), GFP_KERNEL); if (!priv->rssi_db) return -ENOMEM; priv->rssi_db->offset = 0; priv->rssi_db->entries = entries; priv->rssi_db->entry_size = sizeof(*entry); priv->rssi_db->len = db_len; entry = (void *)((unsigned long)priv->rssi_db->data + priv->rssi_db->offset); if (type == PDR_RSSI_LINEAR_APPROXIMATION_EXTENDED) { struct pda_rssi_cal_ext_entry *cal = (void *) &data[offset]; for (i = 0; i < entries; i++) { entry[i].freq = le16_to_cpu(cal[i].freq); entry[i].mul = (s16) le16_to_cpu(cal[i].mul); entry[i].add = (s16) le16_to_cpu(cal[i].add); } } else { struct pda_rssi_cal_entry *cal = (void *) &data[offset]; for (i = 0; i < entries; i++) { u16 freq; switch (i) { case IEEE80211_BAND_2GHZ: freq = 2437; break; case IEEE80211_BAND_5GHZ: freq = 5240; break; } entry[i].freq = freq; entry[i].mul = (s16) le16_to_cpu(cal[i].mul); entry[i].add = (s16) le16_to_cpu(cal[i].add); } } /* sort the list by channel frequency */ sort(entry, entries, sizeof(*entry), p54_compare_rssichan, NULL); return 0; err_data: wiphy_err(dev->wiphy, "rssi calibration data packing type:(%x) len:%d.\n", type, len); print_hex_dump_bytes("rssical:", DUMP_PREFIX_NONE, data, len); wiphy_err(dev->wiphy, "please report this issue.\n"); return -EINVAL; } struct p54_rssi_db_entry *p54_rssi_find(struct p54_common *priv, const u16 freq) { struct p54_rssi_db_entry *entry = (void *)(priv->rssi_db->data + priv->rssi_db->offset); int i, found = -1; for (i = 0; i < priv->rssi_db->entries; i++) { if (!same_band(freq, entry[i].freq)) continue; if (found == -1) { found = i; continue; } /* nearest match */ if (abs(freq - entry[i].freq) < abs(freq - entry[found].freq)) { found = i; continue; } else { break; } } return found < 0 ? &p54_rssi_default : &entry[found]; } static void p54_parse_default_country(struct ieee80211_hw *dev, void *data, int len) { struct pda_country *country; if (len != sizeof(*country)) { wiphy_err(dev->wiphy, "found possible invalid default country eeprom entry. (entry size: %d)\n", len); print_hex_dump_bytes("country:", DUMP_PREFIX_NONE, data, len); wiphy_err(dev->wiphy, "please report this issue.\n"); return; } country = (struct pda_country *) data; if (country->flags == PDR_COUNTRY_CERT_CODE_PSEUDO) regulatory_hint(dev->wiphy, country->alpha2); else { /* TODO: * write a shared/common function that converts * "Regulatory domain codes" (802.11-2007 14.8.2.2) * into ISO/IEC 3166-1 alpha2 for regulatory_hint. */ } } static int p54_convert_output_limits(struct ieee80211_hw *dev, u8 *data, size_t len) { struct p54_common *priv = dev->priv; if (len < 2) return -EINVAL; if (data[0] != 0) { wiphy_err(dev->wiphy, "unknown output power db revision:%x\n", data[0]); return -EINVAL; } if (2 + data[1] * sizeof(struct pda_channel_output_limit) > len) return -EINVAL; priv->output_limit = kmalloc(data[1] * sizeof(struct pda_channel_output_limit) + sizeof(*priv->output_limit), GFP_KERNEL); if (!priv->output_limit) return -ENOMEM; priv->output_limit->offset = 0; priv->output_limit->entries = data[1]; priv->output_limit->entry_size = sizeof(struct pda_channel_output_limit); priv->output_limit->len = priv->output_limit->entry_size * priv->output_limit->entries + priv->output_limit->offset; memcpy(priv->output_limit->data, &data[2], data[1] * sizeof(struct pda_channel_output_limit)); return 0; } static struct p54_cal_database *p54_convert_db(struct pda_custom_wrapper *src, size_t total_len) { struct p54_cal_database *dst; size_t payload_len, entries, entry_size, offset; payload_len = le16_to_cpu(src->len); entries = le16_to_cpu(src->entries); entry_size = le16_to_cpu(src->entry_size); offset = le16_to_cpu(src->offset); if (((entries * entry_size + offset) != payload_len) || (payload_len + sizeof(*src) != total_len)) return NULL; dst = kmalloc(sizeof(*dst) + payload_len, GFP_KERNEL); if (!dst) return NULL; dst->entries = entries; dst->entry_size = entry_size; dst->offset = offset; dst->len = payload_len; memcpy(dst->data, src->data, payload_len); return dst; } int p54_parse_eeprom(struct ieee80211_hw *dev, void *eeprom, int len) { struct p54_common *priv = dev->priv; struct eeprom_pda_wrap *wrap; struct pda_entry *entry; unsigned int data_len, entry_len; void *tmp; int err; u8 *end = (u8 *)eeprom + len; u16 synth = 0; u16 crc16 = ~0; wrap = (struct eeprom_pda_wrap *) eeprom; entry = (void *)wrap->data + le16_to_cpu(wrap->len); /* verify that at least the entry length/code fits */ while ((u8 *)entry <= end - sizeof(*entry)) { entry_len = le16_to_cpu(entry->len); data_len = ((entry_len - 1) << 1); /* abort if entry exceeds whole structure */ if ((u8 *)entry + sizeof(*entry) + data_len > end) break; switch (le16_to_cpu(entry->code)) { case PDR_MAC_ADDRESS: if (data_len != ETH_ALEN) break; SET_IEEE80211_PERM_ADDR(dev, entry->data); break; case PDR_PRISM_PA_CAL_OUTPUT_POWER_LIMITS: if (priv->output_limit) break; err = p54_convert_output_limits(dev, entry->data, data_len); if (err) goto err; break; case PDR_PRISM_PA_CAL_CURVE_DATA: { struct pda_pa_curve_data *curve_data = (struct pda_pa_curve_data *)entry->data; if (data_len < sizeof(*curve_data)) { err = -EINVAL; goto err; } switch (curve_data->cal_method_rev) { case 0: err = p54_convert_rev0(dev, curve_data); break; case 1: err = p54_convert_rev1(dev, curve_data); break; default: wiphy_err(dev->wiphy, "unknown curve data revision %d\n", curve_data->cal_method_rev); err = -ENODEV; break; } if (err) goto err; } break; case PDR_PRISM_ZIF_TX_IQ_CALIBRATION: priv->iq_autocal = kmemdup(entry->data, data_len, GFP_KERNEL); if (!priv->iq_autocal) { err = -ENOMEM; goto err; } priv->iq_autocal_len = data_len / sizeof(struct pda_iq_autocal_entry); break; case PDR_DEFAULT_COUNTRY: p54_parse_default_country(dev, entry->data, data_len); break; case PDR_INTERFACE_LIST: tmp = entry->data; while ((u8 *)tmp < entry->data + data_len) { struct exp_if *exp_if = tmp; if (exp_if->if_id == cpu_to_le16(IF_ID_ISL39000)) synth = le16_to_cpu(exp_if->variant); tmp += sizeof(*exp_if); } break; case PDR_HARDWARE_PLATFORM_COMPONENT_ID: if (data_len < 2) break; priv->version = *(u8 *)(entry->data + 1); break; case PDR_RSSI_LINEAR_APPROXIMATION: case PDR_RSSI_LINEAR_APPROXIMATION_DUAL_BAND: case PDR_RSSI_LINEAR_APPROXIMATION_EXTENDED: err = p54_parse_rssical(dev, entry->data, data_len, le16_to_cpu(entry->code)); if (err) goto err; break; case PDR_RSSI_LINEAR_APPROXIMATION_CUSTOMV2: { struct pda_custom_wrapper *pda = (void *) entry->data; __le16 *src; u16 *dst; int i; if (priv->rssi_db || data_len < sizeof(*pda)) break; priv->rssi_db = p54_convert_db(pda, data_len); if (!priv->rssi_db) break; src = (void *) priv->rssi_db->data; dst = (void *) priv->rssi_db->data; for (i = 0; i < priv->rssi_db->entries; i++) *(dst++) = (s16) le16_to_cpu(*(src++)); } break; case PDR_PRISM_PA_CAL_OUTPUT_POWER_LIMITS_CUSTOM: { struct pda_custom_wrapper *pda = (void *) entry->data; if (priv->output_limit || data_len < sizeof(*pda)) break; priv->output_limit = p54_convert_db(pda, data_len); } break; case PDR_PRISM_PA_CAL_CURVE_DATA_CUSTOM: { struct pda_custom_wrapper *pda = (void *) entry->data; if (priv->curve_data || data_len < sizeof(*pda)) break; priv->curve_data = p54_convert_db(pda, data_len); } break; case PDR_END: crc16 = ~crc_ccitt(crc16, (u8 *) entry, sizeof(*entry)); if (crc16 != le16_to_cpup((__le16 *)entry->data)) { wiphy_err(dev->wiphy, "eeprom failed checksum " "test!\n"); err = -ENOMSG; goto err; } else { goto good_eeprom; } break; default: break; } crc16 = crc_ccitt(crc16, (u8 *)entry, (entry_len + 1) * 2); entry = (void *)entry + (entry_len + 1) * 2; } wiphy_err(dev->wiphy, "unexpected end of eeprom data.\n"); err = -ENODATA; goto err; good_eeprom: if (!synth || !priv->iq_autocal || !priv->output_limit || !priv->curve_data) { wiphy_err(dev->wiphy, "not all required entries found in eeprom!\n"); err = -EINVAL; goto err; } err = p54_generate_channel_lists(dev); if (err) goto err; priv->rxhw = synth & PDR_SYNTH_FRONTEND_MASK; if (priv->rxhw == PDR_SYNTH_FRONTEND_XBOW) p54_init_xbow_synth(priv); if (!(synth & PDR_SYNTH_24_GHZ_DISABLED)) dev->wiphy->bands[IEEE80211_BAND_2GHZ] = priv->band_table[IEEE80211_BAND_2GHZ]; if (!(synth & PDR_SYNTH_5_GHZ_DISABLED)) dev->wiphy->bands[IEEE80211_BAND_5GHZ] = priv->band_table[IEEE80211_BAND_5GHZ]; if ((synth & PDR_SYNTH_RX_DIV_MASK) == PDR_SYNTH_RX_DIV_SUPPORTED) priv->rx_diversity_mask = 3; if ((synth & PDR_SYNTH_TX_DIV_MASK) == PDR_SYNTH_TX_DIV_SUPPORTED) priv->tx_diversity_mask = 3; if (!is_valid_ether_addr(dev->wiphy->perm_addr)) { u8 perm_addr[ETH_ALEN]; wiphy_warn(dev->wiphy, "Invalid hwaddr! Using randomly generated MAC addr\n"); random_ether_addr(perm_addr); SET_IEEE80211_PERM_ADDR(dev, perm_addr); } priv->cur_rssi = &p54_rssi_default; wiphy_info(dev->wiphy, "hwaddr %pM, MAC:isl38%02x RF:%s\n", dev->wiphy->perm_addr, priv->version, p54_rf_chips[priv->rxhw]); return 0; err: kfree(priv->iq_autocal); kfree(priv->output_limit); kfree(priv->curve_data); kfree(priv->rssi_db); priv->iq_autocal = NULL; priv->output_limit = NULL; priv->curve_data = NULL; priv->rssi_db = NULL; wiphy_err(dev->wiphy, "eeprom parse failed!\n"); return err; } EXPORT_SYMBOL_GPL(p54_parse_eeprom); int p54_read_eeprom(struct ieee80211_hw *dev) { struct p54_common *priv = dev->priv; size_t eeprom_size = 0x2020, offset = 0, blocksize, maxblocksize; int ret = -ENOMEM; void *eeprom; maxblocksize = EEPROM_READBACK_LEN; if (priv->fw_var >= 0x509) maxblocksize -= 0xc; else maxblocksize -= 0x4; eeprom = kzalloc(eeprom_size, GFP_KERNEL); if (unlikely(!eeprom)) goto free; while (eeprom_size) { blocksize = min(eeprom_size, maxblocksize); ret = p54_download_eeprom(priv, (void *) (eeprom + offset), offset, blocksize); if (unlikely(ret)) goto free; offset += blocksize; eeprom_size -= blocksize; } ret = p54_parse_eeprom(dev, eeprom, offset); free: kfree(eeprom); return ret; } EXPORT_SYMBOL_GPL(p54_read_eeprom);