/* * Copyright (c) 2005-2011 Atheros Communications Inc. * Copyright (c) 2011-2013 Qualcomm Atheros, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include "core.h" #include "htc.h" #include "debug.h" #include "wmi.h" #include "mac.h" #include "testmode.h" /* MAIN WMI cmd track */ static struct wmi_cmd_map wmi_cmd_map = { .init_cmdid = WMI_INIT_CMDID, .start_scan_cmdid = WMI_START_SCAN_CMDID, .stop_scan_cmdid = WMI_STOP_SCAN_CMDID, .scan_chan_list_cmdid = WMI_SCAN_CHAN_LIST_CMDID, .scan_sch_prio_tbl_cmdid = WMI_SCAN_SCH_PRIO_TBL_CMDID, .pdev_set_regdomain_cmdid = WMI_PDEV_SET_REGDOMAIN_CMDID, .pdev_set_channel_cmdid = WMI_PDEV_SET_CHANNEL_CMDID, .pdev_set_param_cmdid = WMI_PDEV_SET_PARAM_CMDID, .pdev_pktlog_enable_cmdid = WMI_PDEV_PKTLOG_ENABLE_CMDID, .pdev_pktlog_disable_cmdid = WMI_PDEV_PKTLOG_DISABLE_CMDID, .pdev_set_wmm_params_cmdid = WMI_PDEV_SET_WMM_PARAMS_CMDID, .pdev_set_ht_cap_ie_cmdid = WMI_PDEV_SET_HT_CAP_IE_CMDID, .pdev_set_vht_cap_ie_cmdid = WMI_PDEV_SET_VHT_CAP_IE_CMDID, .pdev_set_dscp_tid_map_cmdid = WMI_PDEV_SET_DSCP_TID_MAP_CMDID, .pdev_set_quiet_mode_cmdid = WMI_PDEV_SET_QUIET_MODE_CMDID, .pdev_green_ap_ps_enable_cmdid = WMI_PDEV_GREEN_AP_PS_ENABLE_CMDID, .pdev_get_tpc_config_cmdid = WMI_PDEV_GET_TPC_CONFIG_CMDID, .pdev_set_base_macaddr_cmdid = WMI_PDEV_SET_BASE_MACADDR_CMDID, .vdev_create_cmdid = WMI_VDEV_CREATE_CMDID, .vdev_delete_cmdid = WMI_VDEV_DELETE_CMDID, .vdev_start_request_cmdid = WMI_VDEV_START_REQUEST_CMDID, .vdev_restart_request_cmdid = WMI_VDEV_RESTART_REQUEST_CMDID, .vdev_up_cmdid = WMI_VDEV_UP_CMDID, .vdev_stop_cmdid = WMI_VDEV_STOP_CMDID, .vdev_down_cmdid = WMI_VDEV_DOWN_CMDID, .vdev_set_param_cmdid = WMI_VDEV_SET_PARAM_CMDID, .vdev_install_key_cmdid = WMI_VDEV_INSTALL_KEY_CMDID, .peer_create_cmdid = WMI_PEER_CREATE_CMDID, .peer_delete_cmdid = WMI_PEER_DELETE_CMDID, .peer_flush_tids_cmdid = WMI_PEER_FLUSH_TIDS_CMDID, .peer_set_param_cmdid = WMI_PEER_SET_PARAM_CMDID, .peer_assoc_cmdid = WMI_PEER_ASSOC_CMDID, .peer_add_wds_entry_cmdid = WMI_PEER_ADD_WDS_ENTRY_CMDID, .peer_remove_wds_entry_cmdid = WMI_PEER_REMOVE_WDS_ENTRY_CMDID, .peer_mcast_group_cmdid = WMI_PEER_MCAST_GROUP_CMDID, .bcn_tx_cmdid = WMI_BCN_TX_CMDID, .pdev_send_bcn_cmdid = WMI_PDEV_SEND_BCN_CMDID, .bcn_tmpl_cmdid = WMI_BCN_TMPL_CMDID, .bcn_filter_rx_cmdid = WMI_BCN_FILTER_RX_CMDID, .prb_req_filter_rx_cmdid = WMI_PRB_REQ_FILTER_RX_CMDID, .mgmt_tx_cmdid = WMI_MGMT_TX_CMDID, .prb_tmpl_cmdid = WMI_PRB_TMPL_CMDID, .addba_clear_resp_cmdid = WMI_ADDBA_CLEAR_RESP_CMDID, .addba_send_cmdid = WMI_ADDBA_SEND_CMDID, .addba_status_cmdid = WMI_ADDBA_STATUS_CMDID, .delba_send_cmdid = WMI_DELBA_SEND_CMDID, .addba_set_resp_cmdid = WMI_ADDBA_SET_RESP_CMDID, .send_singleamsdu_cmdid = WMI_SEND_SINGLEAMSDU_CMDID, .sta_powersave_mode_cmdid = WMI_STA_POWERSAVE_MODE_CMDID, .sta_powersave_param_cmdid = WMI_STA_POWERSAVE_PARAM_CMDID, .sta_mimo_ps_mode_cmdid = WMI_STA_MIMO_PS_MODE_CMDID, .pdev_dfs_enable_cmdid = WMI_PDEV_DFS_ENABLE_CMDID, .pdev_dfs_disable_cmdid = WMI_PDEV_DFS_DISABLE_CMDID, .roam_scan_mode = WMI_ROAM_SCAN_MODE, .roam_scan_rssi_threshold = WMI_ROAM_SCAN_RSSI_THRESHOLD, .roam_scan_period = WMI_ROAM_SCAN_PERIOD, .roam_scan_rssi_change_threshold = WMI_ROAM_SCAN_RSSI_CHANGE_THRESHOLD, .roam_ap_profile = WMI_ROAM_AP_PROFILE, .ofl_scan_add_ap_profile = WMI_ROAM_AP_PROFILE, .ofl_scan_remove_ap_profile = WMI_OFL_SCAN_REMOVE_AP_PROFILE, .ofl_scan_period = WMI_OFL_SCAN_PERIOD, .p2p_dev_set_device_info = WMI_P2P_DEV_SET_DEVICE_INFO, .p2p_dev_set_discoverability = WMI_P2P_DEV_SET_DISCOVERABILITY, .p2p_go_set_beacon_ie = WMI_P2P_GO_SET_BEACON_IE, .p2p_go_set_probe_resp_ie = WMI_P2P_GO_SET_PROBE_RESP_IE, .p2p_set_vendor_ie_data_cmdid = WMI_P2P_SET_VENDOR_IE_DATA_CMDID, .ap_ps_peer_param_cmdid = WMI_AP_PS_PEER_PARAM_CMDID, .ap_ps_peer_uapsd_coex_cmdid = WMI_AP_PS_PEER_UAPSD_COEX_CMDID, .peer_rate_retry_sched_cmdid = WMI_PEER_RATE_RETRY_SCHED_CMDID, .wlan_profile_trigger_cmdid = WMI_WLAN_PROFILE_TRIGGER_CMDID, .wlan_profile_set_hist_intvl_cmdid = WMI_WLAN_PROFILE_SET_HIST_INTVL_CMDID, .wlan_profile_get_profile_data_cmdid = WMI_WLAN_PROFILE_GET_PROFILE_DATA_CMDID, .wlan_profile_enable_profile_id_cmdid = WMI_WLAN_PROFILE_ENABLE_PROFILE_ID_CMDID, .wlan_profile_list_profile_id_cmdid = WMI_WLAN_PROFILE_LIST_PROFILE_ID_CMDID, .pdev_suspend_cmdid = WMI_PDEV_SUSPEND_CMDID, .pdev_resume_cmdid = WMI_PDEV_RESUME_CMDID, .add_bcn_filter_cmdid = WMI_ADD_BCN_FILTER_CMDID, .rmv_bcn_filter_cmdid = WMI_RMV_BCN_FILTER_CMDID, .wow_add_wake_pattern_cmdid = WMI_WOW_ADD_WAKE_PATTERN_CMDID, .wow_del_wake_pattern_cmdid = WMI_WOW_DEL_WAKE_PATTERN_CMDID, .wow_enable_disable_wake_event_cmdid = WMI_WOW_ENABLE_DISABLE_WAKE_EVENT_CMDID, .wow_enable_cmdid = WMI_WOW_ENABLE_CMDID, .wow_hostwakeup_from_sleep_cmdid = WMI_WOW_HOSTWAKEUP_FROM_SLEEP_CMDID, .rtt_measreq_cmdid = WMI_RTT_MEASREQ_CMDID, .rtt_tsf_cmdid = WMI_RTT_TSF_CMDID, .vdev_spectral_scan_configure_cmdid = WMI_VDEV_SPECTRAL_SCAN_CONFIGURE_CMDID, .vdev_spectral_scan_enable_cmdid = WMI_VDEV_SPECTRAL_SCAN_ENABLE_CMDID, .request_stats_cmdid = WMI_REQUEST_STATS_CMDID, .set_arp_ns_offload_cmdid = WMI_SET_ARP_NS_OFFLOAD_CMDID, .network_list_offload_config_cmdid = WMI_NETWORK_LIST_OFFLOAD_CONFIG_CMDID, .gtk_offload_cmdid = WMI_GTK_OFFLOAD_CMDID, .csa_offload_enable_cmdid = WMI_CSA_OFFLOAD_ENABLE_CMDID, .csa_offload_chanswitch_cmdid = WMI_CSA_OFFLOAD_CHANSWITCH_CMDID, .chatter_set_mode_cmdid = WMI_CHATTER_SET_MODE_CMDID, .peer_tid_addba_cmdid = WMI_PEER_TID_ADDBA_CMDID, .peer_tid_delba_cmdid = WMI_PEER_TID_DELBA_CMDID, .sta_dtim_ps_method_cmdid = WMI_STA_DTIM_PS_METHOD_CMDID, .sta_uapsd_auto_trig_cmdid = WMI_STA_UAPSD_AUTO_TRIG_CMDID, .sta_keepalive_cmd = WMI_STA_KEEPALIVE_CMD, .echo_cmdid = WMI_ECHO_CMDID, .pdev_utf_cmdid = WMI_PDEV_UTF_CMDID, .dbglog_cfg_cmdid = WMI_DBGLOG_CFG_CMDID, .pdev_qvit_cmdid = WMI_PDEV_QVIT_CMDID, .pdev_ftm_intg_cmdid = WMI_PDEV_FTM_INTG_CMDID, .vdev_set_keepalive_cmdid = WMI_VDEV_SET_KEEPALIVE_CMDID, .vdev_get_keepalive_cmdid = WMI_VDEV_GET_KEEPALIVE_CMDID, .force_fw_hang_cmdid = WMI_FORCE_FW_HANG_CMDID, .gpio_config_cmdid = WMI_GPIO_CONFIG_CMDID, .gpio_output_cmdid = WMI_GPIO_OUTPUT_CMDID, }; /* 10.X WMI cmd track */ static struct wmi_cmd_map wmi_10x_cmd_map = { .init_cmdid = WMI_10X_INIT_CMDID, .start_scan_cmdid = WMI_10X_START_SCAN_CMDID, .stop_scan_cmdid = WMI_10X_STOP_SCAN_CMDID, .scan_chan_list_cmdid = WMI_10X_SCAN_CHAN_LIST_CMDID, .scan_sch_prio_tbl_cmdid = WMI_CMD_UNSUPPORTED, .pdev_set_regdomain_cmdid = WMI_10X_PDEV_SET_REGDOMAIN_CMDID, .pdev_set_channel_cmdid = WMI_10X_PDEV_SET_CHANNEL_CMDID, .pdev_set_param_cmdid = WMI_10X_PDEV_SET_PARAM_CMDID, .pdev_pktlog_enable_cmdid = WMI_10X_PDEV_PKTLOG_ENABLE_CMDID, .pdev_pktlog_disable_cmdid = WMI_10X_PDEV_PKTLOG_DISABLE_CMDID, .pdev_set_wmm_params_cmdid = WMI_10X_PDEV_SET_WMM_PARAMS_CMDID, .pdev_set_ht_cap_ie_cmdid = WMI_10X_PDEV_SET_HT_CAP_IE_CMDID, .pdev_set_vht_cap_ie_cmdid = WMI_10X_PDEV_SET_VHT_CAP_IE_CMDID, .pdev_set_dscp_tid_map_cmdid = WMI_10X_PDEV_SET_DSCP_TID_MAP_CMDID, .pdev_set_quiet_mode_cmdid = WMI_10X_PDEV_SET_QUIET_MODE_CMDID, .pdev_green_ap_ps_enable_cmdid = WMI_10X_PDEV_GREEN_AP_PS_ENABLE_CMDID, .pdev_get_tpc_config_cmdid = WMI_10X_PDEV_GET_TPC_CONFIG_CMDID, .pdev_set_base_macaddr_cmdid = WMI_10X_PDEV_SET_BASE_MACADDR_CMDID, .vdev_create_cmdid = WMI_10X_VDEV_CREATE_CMDID, .vdev_delete_cmdid = WMI_10X_VDEV_DELETE_CMDID, .vdev_start_request_cmdid = WMI_10X_VDEV_START_REQUEST_CMDID, .vdev_restart_request_cmdid = WMI_10X_VDEV_RESTART_REQUEST_CMDID, .vdev_up_cmdid = WMI_10X_VDEV_UP_CMDID, .vdev_stop_cmdid = WMI_10X_VDEV_STOP_CMDID, .vdev_down_cmdid = WMI_10X_VDEV_DOWN_CMDID, .vdev_set_param_cmdid = WMI_10X_VDEV_SET_PARAM_CMDID, .vdev_install_key_cmdid = WMI_10X_VDEV_INSTALL_KEY_CMDID, .peer_create_cmdid = WMI_10X_PEER_CREATE_CMDID, .peer_delete_cmdid = WMI_10X_PEER_DELETE_CMDID, .peer_flush_tids_cmdid = WMI_10X_PEER_FLUSH_TIDS_CMDID, .peer_set_param_cmdid = WMI_10X_PEER_SET_PARAM_CMDID, .peer_assoc_cmdid = WMI_10X_PEER_ASSOC_CMDID, .peer_add_wds_entry_cmdid = WMI_10X_PEER_ADD_WDS_ENTRY_CMDID, .peer_remove_wds_entry_cmdid = WMI_10X_PEER_REMOVE_WDS_ENTRY_CMDID, .peer_mcast_group_cmdid = WMI_10X_PEER_MCAST_GROUP_CMDID, .bcn_tx_cmdid = WMI_10X_BCN_TX_CMDID, .pdev_send_bcn_cmdid = WMI_10X_PDEV_SEND_BCN_CMDID, .bcn_tmpl_cmdid = WMI_CMD_UNSUPPORTED, .bcn_filter_rx_cmdid = WMI_10X_BCN_FILTER_RX_CMDID, .prb_req_filter_rx_cmdid = WMI_10X_PRB_REQ_FILTER_RX_CMDID, .mgmt_tx_cmdid = WMI_10X_MGMT_TX_CMDID, .prb_tmpl_cmdid = WMI_CMD_UNSUPPORTED, .addba_clear_resp_cmdid = WMI_10X_ADDBA_CLEAR_RESP_CMDID, .addba_send_cmdid = WMI_10X_ADDBA_SEND_CMDID, .addba_status_cmdid = WMI_10X_ADDBA_STATUS_CMDID, .delba_send_cmdid = WMI_10X_DELBA_SEND_CMDID, .addba_set_resp_cmdid = WMI_10X_ADDBA_SET_RESP_CMDID, .send_singleamsdu_cmdid = WMI_10X_SEND_SINGLEAMSDU_CMDID, .sta_powersave_mode_cmdid = WMI_10X_STA_POWERSAVE_MODE_CMDID, .sta_powersave_param_cmdid = WMI_10X_STA_POWERSAVE_PARAM_CMDID, .sta_mimo_ps_mode_cmdid = WMI_10X_STA_MIMO_PS_MODE_CMDID, .pdev_dfs_enable_cmdid = WMI_10X_PDEV_DFS_ENABLE_CMDID, .pdev_dfs_disable_cmdid = WMI_10X_PDEV_DFS_DISABLE_CMDID, .roam_scan_mode = WMI_10X_ROAM_SCAN_MODE, .roam_scan_rssi_threshold = WMI_10X_ROAM_SCAN_RSSI_THRESHOLD, .roam_scan_period = WMI_10X_ROAM_SCAN_PERIOD, .roam_scan_rssi_change_threshold = WMI_10X_ROAM_SCAN_RSSI_CHANGE_THRESHOLD, .roam_ap_profile = WMI_10X_ROAM_AP_PROFILE, .ofl_scan_add_ap_profile = WMI_10X_OFL_SCAN_ADD_AP_PROFILE, .ofl_scan_remove_ap_profile = WMI_10X_OFL_SCAN_REMOVE_AP_PROFILE, .ofl_scan_period = WMI_10X_OFL_SCAN_PERIOD, .p2p_dev_set_device_info = WMI_10X_P2P_DEV_SET_DEVICE_INFO, .p2p_dev_set_discoverability = WMI_10X_P2P_DEV_SET_DISCOVERABILITY, .p2p_go_set_beacon_ie = WMI_10X_P2P_GO_SET_BEACON_IE, .p2p_go_set_probe_resp_ie = WMI_10X_P2P_GO_SET_PROBE_RESP_IE, .p2p_set_vendor_ie_data_cmdid = WMI_CMD_UNSUPPORTED, .ap_ps_peer_param_cmdid = WMI_10X_AP_PS_PEER_PARAM_CMDID, .ap_ps_peer_uapsd_coex_cmdid = WMI_CMD_UNSUPPORTED, .peer_rate_retry_sched_cmdid = WMI_10X_PEER_RATE_RETRY_SCHED_CMDID, .wlan_profile_trigger_cmdid = WMI_10X_WLAN_PROFILE_TRIGGER_CMDID, .wlan_profile_set_hist_intvl_cmdid = WMI_10X_WLAN_PROFILE_SET_HIST_INTVL_CMDID, .wlan_profile_get_profile_data_cmdid = WMI_10X_WLAN_PROFILE_GET_PROFILE_DATA_CMDID, .wlan_profile_enable_profile_id_cmdid = WMI_10X_WLAN_PROFILE_ENABLE_PROFILE_ID_CMDID, .wlan_profile_list_profile_id_cmdid = WMI_10X_WLAN_PROFILE_LIST_PROFILE_ID_CMDID, .pdev_suspend_cmdid = WMI_10X_PDEV_SUSPEND_CMDID, .pdev_resume_cmdid = WMI_10X_PDEV_RESUME_CMDID, .add_bcn_filter_cmdid = WMI_10X_ADD_BCN_FILTER_CMDID, .rmv_bcn_filter_cmdid = WMI_10X_RMV_BCN_FILTER_CMDID, .wow_add_wake_pattern_cmdid = WMI_10X_WOW_ADD_WAKE_PATTERN_CMDID, .wow_del_wake_pattern_cmdid = WMI_10X_WOW_DEL_WAKE_PATTERN_CMDID, .wow_enable_disable_wake_event_cmdid = WMI_10X_WOW_ENABLE_DISABLE_WAKE_EVENT_CMDID, .wow_enable_cmdid = WMI_10X_WOW_ENABLE_CMDID, .wow_hostwakeup_from_sleep_cmdid = WMI_10X_WOW_HOSTWAKEUP_FROM_SLEEP_CMDID, .rtt_measreq_cmdid = WMI_10X_RTT_MEASREQ_CMDID, .rtt_tsf_cmdid = WMI_10X_RTT_TSF_CMDID, .vdev_spectral_scan_configure_cmdid = WMI_10X_VDEV_SPECTRAL_SCAN_CONFIGURE_CMDID, .vdev_spectral_scan_enable_cmdid = WMI_10X_VDEV_SPECTRAL_SCAN_ENABLE_CMDID, .request_stats_cmdid = WMI_10X_REQUEST_STATS_CMDID, .set_arp_ns_offload_cmdid = WMI_CMD_UNSUPPORTED, .network_list_offload_config_cmdid = WMI_CMD_UNSUPPORTED, .gtk_offload_cmdid = WMI_CMD_UNSUPPORTED, .csa_offload_enable_cmdid = WMI_CMD_UNSUPPORTED, .csa_offload_chanswitch_cmdid = WMI_CMD_UNSUPPORTED, .chatter_set_mode_cmdid = WMI_CMD_UNSUPPORTED, .peer_tid_addba_cmdid = WMI_CMD_UNSUPPORTED, .peer_tid_delba_cmdid = WMI_CMD_UNSUPPORTED, .sta_dtim_ps_method_cmdid = WMI_CMD_UNSUPPORTED, .sta_uapsd_auto_trig_cmdid = WMI_CMD_UNSUPPORTED, .sta_keepalive_cmd = WMI_CMD_UNSUPPORTED, .echo_cmdid = WMI_10X_ECHO_CMDID, .pdev_utf_cmdid = WMI_10X_PDEV_UTF_CMDID, .dbglog_cfg_cmdid = WMI_10X_DBGLOG_CFG_CMDID, .pdev_qvit_cmdid = WMI_10X_PDEV_QVIT_CMDID, .pdev_ftm_intg_cmdid = WMI_CMD_UNSUPPORTED, .vdev_set_keepalive_cmdid = WMI_CMD_UNSUPPORTED, .vdev_get_keepalive_cmdid = WMI_CMD_UNSUPPORTED, .force_fw_hang_cmdid = WMI_CMD_UNSUPPORTED, .gpio_config_cmdid = WMI_10X_GPIO_CONFIG_CMDID, .gpio_output_cmdid = WMI_10X_GPIO_OUTPUT_CMDID, }; /* MAIN WMI VDEV param map */ static struct wmi_vdev_param_map wmi_vdev_param_map = { .rts_threshold = WMI_VDEV_PARAM_RTS_THRESHOLD, .fragmentation_threshold = WMI_VDEV_PARAM_FRAGMENTATION_THRESHOLD, .beacon_interval = WMI_VDEV_PARAM_BEACON_INTERVAL, .listen_interval = WMI_VDEV_PARAM_LISTEN_INTERVAL, .multicast_rate = WMI_VDEV_PARAM_MULTICAST_RATE, .mgmt_tx_rate = WMI_VDEV_PARAM_MGMT_TX_RATE, .slot_time = WMI_VDEV_PARAM_SLOT_TIME, .preamble = WMI_VDEV_PARAM_PREAMBLE, .swba_time = WMI_VDEV_PARAM_SWBA_TIME, .wmi_vdev_stats_update_period = WMI_VDEV_STATS_UPDATE_PERIOD, .wmi_vdev_pwrsave_ageout_time = WMI_VDEV_PWRSAVE_AGEOUT_TIME, .wmi_vdev_host_swba_interval = WMI_VDEV_HOST_SWBA_INTERVAL, .dtim_period = WMI_VDEV_PARAM_DTIM_PERIOD, .wmi_vdev_oc_scheduler_air_time_limit = WMI_VDEV_OC_SCHEDULER_AIR_TIME_LIMIT, .wds = WMI_VDEV_PARAM_WDS, .atim_window = WMI_VDEV_PARAM_ATIM_WINDOW, .bmiss_count_max = WMI_VDEV_PARAM_BMISS_COUNT_MAX, .bmiss_first_bcnt = WMI_VDEV_PARAM_BMISS_FIRST_BCNT, .bmiss_final_bcnt = WMI_VDEV_PARAM_BMISS_FINAL_BCNT, .feature_wmm = WMI_VDEV_PARAM_FEATURE_WMM, .chwidth = WMI_VDEV_PARAM_CHWIDTH, .chextoffset = WMI_VDEV_PARAM_CHEXTOFFSET, .disable_htprotection = WMI_VDEV_PARAM_DISABLE_HTPROTECTION, .sta_quickkickout = WMI_VDEV_PARAM_STA_QUICKKICKOUT, .mgmt_rate = WMI_VDEV_PARAM_MGMT_RATE, .protection_mode = WMI_VDEV_PARAM_PROTECTION_MODE, .fixed_rate = WMI_VDEV_PARAM_FIXED_RATE, .sgi = WMI_VDEV_PARAM_SGI, .ldpc = WMI_VDEV_PARAM_LDPC, .tx_stbc = WMI_VDEV_PARAM_TX_STBC, .rx_stbc = WMI_VDEV_PARAM_RX_STBC, .intra_bss_fwd = WMI_VDEV_PARAM_INTRA_BSS_FWD, .def_keyid = WMI_VDEV_PARAM_DEF_KEYID, .nss = WMI_VDEV_PARAM_NSS, .bcast_data_rate = WMI_VDEV_PARAM_BCAST_DATA_RATE, .mcast_data_rate = WMI_VDEV_PARAM_MCAST_DATA_RATE, .mcast_indicate = WMI_VDEV_PARAM_MCAST_INDICATE, .dhcp_indicate = WMI_VDEV_PARAM_DHCP_INDICATE, .unknown_dest_indicate = WMI_VDEV_PARAM_UNKNOWN_DEST_INDICATE, .ap_keepalive_min_idle_inactive_time_secs = WMI_VDEV_PARAM_AP_KEEPALIVE_MIN_IDLE_INACTIVE_TIME_SECS, .ap_keepalive_max_idle_inactive_time_secs = WMI_VDEV_PARAM_AP_KEEPALIVE_MAX_IDLE_INACTIVE_TIME_SECS, .ap_keepalive_max_unresponsive_time_secs = WMI_VDEV_PARAM_AP_KEEPALIVE_MAX_UNRESPONSIVE_TIME_SECS, .ap_enable_nawds = WMI_VDEV_PARAM_AP_ENABLE_NAWDS, .mcast2ucast_set = WMI_VDEV_PARAM_UNSUPPORTED, .enable_rtscts = WMI_VDEV_PARAM_ENABLE_RTSCTS, .txbf = WMI_VDEV_PARAM_TXBF, .packet_powersave = WMI_VDEV_PARAM_PACKET_POWERSAVE, .drop_unencry = WMI_VDEV_PARAM_DROP_UNENCRY, .tx_encap_type = WMI_VDEV_PARAM_TX_ENCAP_TYPE, .ap_detect_out_of_sync_sleeping_sta_time_secs = WMI_VDEV_PARAM_UNSUPPORTED, }; /* 10.X WMI VDEV param map */ static struct wmi_vdev_param_map wmi_10x_vdev_param_map = { .rts_threshold = WMI_10X_VDEV_PARAM_RTS_THRESHOLD, .fragmentation_threshold = WMI_10X_VDEV_PARAM_FRAGMENTATION_THRESHOLD, .beacon_interval = WMI_10X_VDEV_PARAM_BEACON_INTERVAL, .listen_interval = WMI_10X_VDEV_PARAM_LISTEN_INTERVAL, .multicast_rate = WMI_10X_VDEV_PARAM_MULTICAST_RATE, .mgmt_tx_rate = WMI_10X_VDEV_PARAM_MGMT_TX_RATE, .slot_time = WMI_10X_VDEV_PARAM_SLOT_TIME, .preamble = WMI_10X_VDEV_PARAM_PREAMBLE, .swba_time = WMI_10X_VDEV_PARAM_SWBA_TIME, .wmi_vdev_stats_update_period = WMI_10X_VDEV_STATS_UPDATE_PERIOD, .wmi_vdev_pwrsave_ageout_time = WMI_10X_VDEV_PWRSAVE_AGEOUT_TIME, .wmi_vdev_host_swba_interval = WMI_10X_VDEV_HOST_SWBA_INTERVAL, .dtim_period = WMI_10X_VDEV_PARAM_DTIM_PERIOD, .wmi_vdev_oc_scheduler_air_time_limit = WMI_10X_VDEV_OC_SCHEDULER_AIR_TIME_LIMIT, .wds = WMI_10X_VDEV_PARAM_WDS, .atim_window = WMI_10X_VDEV_PARAM_ATIM_WINDOW, .bmiss_count_max = WMI_10X_VDEV_PARAM_BMISS_COUNT_MAX, .bmiss_first_bcnt = WMI_VDEV_PARAM_UNSUPPORTED, .bmiss_final_bcnt = WMI_VDEV_PARAM_UNSUPPORTED, .feature_wmm = WMI_10X_VDEV_PARAM_FEATURE_WMM, .chwidth = WMI_10X_VDEV_PARAM_CHWIDTH, .chextoffset = WMI_10X_VDEV_PARAM_CHEXTOFFSET, .disable_htprotection = WMI_10X_VDEV_PARAM_DISABLE_HTPROTECTION, .sta_quickkickout = WMI_10X_VDEV_PARAM_STA_QUICKKICKOUT, .mgmt_rate = WMI_10X_VDEV_PARAM_MGMT_RATE, .protection_mode = WMI_10X_VDEV_PARAM_PROTECTION_MODE, .fixed_rate = WMI_10X_VDEV_PARAM_FIXED_RATE, .sgi = WMI_10X_VDEV_PARAM_SGI, .ldpc = WMI_10X_VDEV_PARAM_LDPC, .tx_stbc = WMI_10X_VDEV_PARAM_TX_STBC, .rx_stbc = WMI_10X_VDEV_PARAM_RX_STBC, .intra_bss_fwd = WMI_10X_VDEV_PARAM_INTRA_BSS_FWD, .def_keyid = WMI_10X_VDEV_PARAM_DEF_KEYID, .nss = WMI_10X_VDEV_PARAM_NSS, .bcast_data_rate = WMI_10X_VDEV_PARAM_BCAST_DATA_RATE, .mcast_data_rate = WMI_10X_VDEV_PARAM_MCAST_DATA_RATE, .mcast_indicate = WMI_10X_VDEV_PARAM_MCAST_INDICATE, .dhcp_indicate = WMI_10X_VDEV_PARAM_DHCP_INDICATE, .unknown_dest_indicate = WMI_10X_VDEV_PARAM_UNKNOWN_DEST_INDICATE, .ap_keepalive_min_idle_inactive_time_secs = WMI_10X_VDEV_PARAM_AP_KEEPALIVE_MIN_IDLE_INACTIVE_TIME_SECS, .ap_keepalive_max_idle_inactive_time_secs = WMI_10X_VDEV_PARAM_AP_KEEPALIVE_MAX_IDLE_INACTIVE_TIME_SECS, .ap_keepalive_max_unresponsive_time_secs = WMI_10X_VDEV_PARAM_AP_KEEPALIVE_MAX_UNRESPONSIVE_TIME_SECS, .ap_enable_nawds = WMI_10X_VDEV_PARAM_AP_ENABLE_NAWDS, .mcast2ucast_set = WMI_10X_VDEV_PARAM_MCAST2UCAST_SET, .enable_rtscts = WMI_10X_VDEV_PARAM_ENABLE_RTSCTS, .txbf = WMI_VDEV_PARAM_UNSUPPORTED, .packet_powersave = WMI_VDEV_PARAM_UNSUPPORTED, .drop_unencry = WMI_VDEV_PARAM_UNSUPPORTED, .tx_encap_type = WMI_VDEV_PARAM_UNSUPPORTED, .ap_detect_out_of_sync_sleeping_sta_time_secs = WMI_10X_VDEV_PARAM_AP_DETECT_OUT_OF_SYNC_SLEEPING_STA_TIME_SECS, }; static struct wmi_pdev_param_map wmi_pdev_param_map = { .tx_chain_mask = WMI_PDEV_PARAM_TX_CHAIN_MASK, .rx_chain_mask = WMI_PDEV_PARAM_RX_CHAIN_MASK, .txpower_limit2g = WMI_PDEV_PARAM_TXPOWER_LIMIT2G, .txpower_limit5g = WMI_PDEV_PARAM_TXPOWER_LIMIT5G, .txpower_scale = WMI_PDEV_PARAM_TXPOWER_SCALE, .beacon_gen_mode = WMI_PDEV_PARAM_BEACON_GEN_MODE, .beacon_tx_mode = WMI_PDEV_PARAM_BEACON_TX_MODE, .resmgr_offchan_mode = WMI_PDEV_PARAM_RESMGR_OFFCHAN_MODE, .protection_mode = WMI_PDEV_PARAM_PROTECTION_MODE, .dynamic_bw = WMI_PDEV_PARAM_DYNAMIC_BW, .non_agg_sw_retry_th = WMI_PDEV_PARAM_NON_AGG_SW_RETRY_TH, .agg_sw_retry_th = WMI_PDEV_PARAM_AGG_SW_RETRY_TH, .sta_kickout_th = WMI_PDEV_PARAM_STA_KICKOUT_TH, .ac_aggrsize_scaling = WMI_PDEV_PARAM_AC_AGGRSIZE_SCALING, .ltr_enable = WMI_PDEV_PARAM_LTR_ENABLE, .ltr_ac_latency_be = WMI_PDEV_PARAM_LTR_AC_LATENCY_BE, .ltr_ac_latency_bk = WMI_PDEV_PARAM_LTR_AC_LATENCY_BK, .ltr_ac_latency_vi = WMI_PDEV_PARAM_LTR_AC_LATENCY_VI, .ltr_ac_latency_vo = WMI_PDEV_PARAM_LTR_AC_LATENCY_VO, .ltr_ac_latency_timeout = WMI_PDEV_PARAM_LTR_AC_LATENCY_TIMEOUT, .ltr_sleep_override = WMI_PDEV_PARAM_LTR_SLEEP_OVERRIDE, .ltr_rx_override = WMI_PDEV_PARAM_LTR_RX_OVERRIDE, .ltr_tx_activity_timeout = WMI_PDEV_PARAM_LTR_TX_ACTIVITY_TIMEOUT, .l1ss_enable = WMI_PDEV_PARAM_L1SS_ENABLE, .dsleep_enable = WMI_PDEV_PARAM_DSLEEP_ENABLE, .pcielp_txbuf_flush = WMI_PDEV_PARAM_PCIELP_TXBUF_FLUSH, .pcielp_txbuf_watermark = WMI_PDEV_PARAM_PCIELP_TXBUF_TMO_EN, .pcielp_txbuf_tmo_en = WMI_PDEV_PARAM_PCIELP_TXBUF_TMO_EN, .pcielp_txbuf_tmo_value = WMI_PDEV_PARAM_PCIELP_TXBUF_TMO_VALUE, .pdev_stats_update_period = WMI_PDEV_PARAM_PDEV_STATS_UPDATE_PERIOD, .vdev_stats_update_period = WMI_PDEV_PARAM_VDEV_STATS_UPDATE_PERIOD, .peer_stats_update_period = WMI_PDEV_PARAM_PEER_STATS_UPDATE_PERIOD, .bcnflt_stats_update_period = WMI_PDEV_PARAM_BCNFLT_STATS_UPDATE_PERIOD, .pmf_qos = WMI_PDEV_PARAM_PMF_QOS, .arp_ac_override = WMI_PDEV_PARAM_ARP_AC_OVERRIDE, .dcs = WMI_PDEV_PARAM_DCS, .ani_enable = WMI_PDEV_PARAM_ANI_ENABLE, .ani_poll_period = WMI_PDEV_PARAM_ANI_POLL_PERIOD, .ani_listen_period = WMI_PDEV_PARAM_ANI_LISTEN_PERIOD, .ani_ofdm_level = WMI_PDEV_PARAM_ANI_OFDM_LEVEL, .ani_cck_level = WMI_PDEV_PARAM_ANI_CCK_LEVEL, .dyntxchain = WMI_PDEV_PARAM_DYNTXCHAIN, .proxy_sta = WMI_PDEV_PARAM_PROXY_STA, .idle_ps_config = WMI_PDEV_PARAM_IDLE_PS_CONFIG, .power_gating_sleep = WMI_PDEV_PARAM_POWER_GATING_SLEEP, .fast_channel_reset = WMI_PDEV_PARAM_UNSUPPORTED, .burst_dur = WMI_PDEV_PARAM_UNSUPPORTED, .burst_enable = WMI_PDEV_PARAM_UNSUPPORTED, }; static struct wmi_pdev_param_map wmi_10x_pdev_param_map = { .tx_chain_mask = WMI_10X_PDEV_PARAM_TX_CHAIN_MASK, .rx_chain_mask = WMI_10X_PDEV_PARAM_RX_CHAIN_MASK, .txpower_limit2g = WMI_10X_PDEV_PARAM_TXPOWER_LIMIT2G, .txpower_limit5g = WMI_10X_PDEV_PARAM_TXPOWER_LIMIT5G, .txpower_scale = WMI_10X_PDEV_PARAM_TXPOWER_SCALE, .beacon_gen_mode = WMI_10X_PDEV_PARAM_BEACON_GEN_MODE, .beacon_tx_mode = WMI_10X_PDEV_PARAM_BEACON_TX_MODE, .resmgr_offchan_mode = WMI_10X_PDEV_PARAM_RESMGR_OFFCHAN_MODE, .protection_mode = WMI_10X_PDEV_PARAM_PROTECTION_MODE, .dynamic_bw = WMI_10X_PDEV_PARAM_DYNAMIC_BW, .non_agg_sw_retry_th = WMI_10X_PDEV_PARAM_NON_AGG_SW_RETRY_TH, .agg_sw_retry_th = WMI_10X_PDEV_PARAM_AGG_SW_RETRY_TH, .sta_kickout_th = WMI_10X_PDEV_PARAM_STA_KICKOUT_TH, .ac_aggrsize_scaling = WMI_10X_PDEV_PARAM_AC_AGGRSIZE_SCALING, .ltr_enable = WMI_10X_PDEV_PARAM_LTR_ENABLE, .ltr_ac_latency_be = WMI_10X_PDEV_PARAM_LTR_AC_LATENCY_BE, .ltr_ac_latency_bk = WMI_10X_PDEV_PARAM_LTR_AC_LATENCY_BK, .ltr_ac_latency_vi = WMI_10X_PDEV_PARAM_LTR_AC_LATENCY_VI, .ltr_ac_latency_vo = WMI_10X_PDEV_PARAM_LTR_AC_LATENCY_VO, .ltr_ac_latency_timeout = WMI_10X_PDEV_PARAM_LTR_AC_LATENCY_TIMEOUT, .ltr_sleep_override = WMI_10X_PDEV_PARAM_LTR_SLEEP_OVERRIDE, .ltr_rx_override = WMI_10X_PDEV_PARAM_LTR_RX_OVERRIDE, .ltr_tx_activity_timeout = WMI_10X_PDEV_PARAM_LTR_TX_ACTIVITY_TIMEOUT, .l1ss_enable = WMI_10X_PDEV_PARAM_L1SS_ENABLE, .dsleep_enable = WMI_10X_PDEV_PARAM_DSLEEP_ENABLE, .pcielp_txbuf_flush = WMI_PDEV_PARAM_UNSUPPORTED, .pcielp_txbuf_watermark = WMI_PDEV_PARAM_UNSUPPORTED, .pcielp_txbuf_tmo_en = WMI_PDEV_PARAM_UNSUPPORTED, .pcielp_txbuf_tmo_value = WMI_PDEV_PARAM_UNSUPPORTED, .pdev_stats_update_period = WMI_10X_PDEV_PARAM_PDEV_STATS_UPDATE_PERIOD, .vdev_stats_update_period = WMI_10X_PDEV_PARAM_VDEV_STATS_UPDATE_PERIOD, .peer_stats_update_period = WMI_10X_PDEV_PARAM_PEER_STATS_UPDATE_PERIOD, .bcnflt_stats_update_period = WMI_10X_PDEV_PARAM_BCNFLT_STATS_UPDATE_PERIOD, .pmf_qos = WMI_10X_PDEV_PARAM_PMF_QOS, .arp_ac_override = WMI_10X_PDEV_PARAM_ARPDHCP_AC_OVERRIDE, .dcs = WMI_10X_PDEV_PARAM_DCS, .ani_enable = WMI_10X_PDEV_PARAM_ANI_ENABLE, .ani_poll_period = WMI_10X_PDEV_PARAM_ANI_POLL_PERIOD, .ani_listen_period = WMI_10X_PDEV_PARAM_ANI_LISTEN_PERIOD, .ani_ofdm_level = WMI_10X_PDEV_PARAM_ANI_OFDM_LEVEL, .ani_cck_level = WMI_10X_PDEV_PARAM_ANI_CCK_LEVEL, .dyntxchain = WMI_10X_PDEV_PARAM_DYNTXCHAIN, .proxy_sta = WMI_PDEV_PARAM_UNSUPPORTED, .idle_ps_config = WMI_PDEV_PARAM_UNSUPPORTED, .power_gating_sleep = WMI_PDEV_PARAM_UNSUPPORTED, .fast_channel_reset = WMI_10X_PDEV_PARAM_FAST_CHANNEL_RESET, .burst_dur = WMI_10X_PDEV_PARAM_BURST_DUR, .burst_enable = WMI_10X_PDEV_PARAM_BURST_ENABLE, }; /* firmware 10.2 specific mappings */ static struct wmi_cmd_map wmi_10_2_cmd_map = { .init_cmdid = WMI_10_2_INIT_CMDID, .start_scan_cmdid = WMI_10_2_START_SCAN_CMDID, .stop_scan_cmdid = WMI_10_2_STOP_SCAN_CMDID, .scan_chan_list_cmdid = WMI_10_2_SCAN_CHAN_LIST_CMDID, .scan_sch_prio_tbl_cmdid = WMI_CMD_UNSUPPORTED, .pdev_set_regdomain_cmdid = WMI_10_2_PDEV_SET_REGDOMAIN_CMDID, .pdev_set_channel_cmdid = WMI_10_2_PDEV_SET_CHANNEL_CMDID, .pdev_set_param_cmdid = WMI_10_2_PDEV_SET_PARAM_CMDID, .pdev_pktlog_enable_cmdid = WMI_10_2_PDEV_PKTLOG_ENABLE_CMDID, .pdev_pktlog_disable_cmdid = WMI_10_2_PDEV_PKTLOG_DISABLE_CMDID, .pdev_set_wmm_params_cmdid = WMI_10_2_PDEV_SET_WMM_PARAMS_CMDID, .pdev_set_ht_cap_ie_cmdid = WMI_10_2_PDEV_SET_HT_CAP_IE_CMDID, .pdev_set_vht_cap_ie_cmdid = WMI_10_2_PDEV_SET_VHT_CAP_IE_CMDID, .pdev_set_quiet_mode_cmdid = WMI_10_2_PDEV_SET_QUIET_MODE_CMDID, .pdev_green_ap_ps_enable_cmdid = WMI_10_2_PDEV_GREEN_AP_PS_ENABLE_CMDID, .pdev_get_tpc_config_cmdid = WMI_10_2_PDEV_GET_TPC_CONFIG_CMDID, .pdev_set_base_macaddr_cmdid = WMI_10_2_PDEV_SET_BASE_MACADDR_CMDID, .vdev_create_cmdid = WMI_10_2_VDEV_CREATE_CMDID, .vdev_delete_cmdid = WMI_10_2_VDEV_DELETE_CMDID, .vdev_start_request_cmdid = WMI_10_2_VDEV_START_REQUEST_CMDID, .vdev_restart_request_cmdid = WMI_10_2_VDEV_RESTART_REQUEST_CMDID, .vdev_up_cmdid = WMI_10_2_VDEV_UP_CMDID, .vdev_stop_cmdid = WMI_10_2_VDEV_STOP_CMDID, .vdev_down_cmdid = WMI_10_2_VDEV_DOWN_CMDID, .vdev_set_param_cmdid = WMI_10_2_VDEV_SET_PARAM_CMDID, .vdev_install_key_cmdid = WMI_10_2_VDEV_INSTALL_KEY_CMDID, .peer_create_cmdid = WMI_10_2_PEER_CREATE_CMDID, .peer_delete_cmdid = WMI_10_2_PEER_DELETE_CMDID, .peer_flush_tids_cmdid = WMI_10_2_PEER_FLUSH_TIDS_CMDID, .peer_set_param_cmdid = WMI_10_2_PEER_SET_PARAM_CMDID, .peer_assoc_cmdid = WMI_10_2_PEER_ASSOC_CMDID, .peer_add_wds_entry_cmdid = WMI_10_2_PEER_ADD_WDS_ENTRY_CMDID, .peer_remove_wds_entry_cmdid = WMI_10_2_PEER_REMOVE_WDS_ENTRY_CMDID, .peer_mcast_group_cmdid = WMI_10_2_PEER_MCAST_GROUP_CMDID, .bcn_tx_cmdid = WMI_10_2_BCN_TX_CMDID, .pdev_send_bcn_cmdid = WMI_10_2_PDEV_SEND_BCN_CMDID, .bcn_tmpl_cmdid = WMI_CMD_UNSUPPORTED, .bcn_filter_rx_cmdid = WMI_10_2_BCN_FILTER_RX_CMDID, .prb_req_filter_rx_cmdid = WMI_10_2_PRB_REQ_FILTER_RX_CMDID, .mgmt_tx_cmdid = WMI_10_2_MGMT_TX_CMDID, .prb_tmpl_cmdid = WMI_CMD_UNSUPPORTED, .addba_clear_resp_cmdid = WMI_10_2_ADDBA_CLEAR_RESP_CMDID, .addba_send_cmdid = WMI_10_2_ADDBA_SEND_CMDID, .addba_status_cmdid = WMI_10_2_ADDBA_STATUS_CMDID, .delba_send_cmdid = WMI_10_2_DELBA_SEND_CMDID, .addba_set_resp_cmdid = WMI_10_2_ADDBA_SET_RESP_CMDID, .send_singleamsdu_cmdid = WMI_10_2_SEND_SINGLEAMSDU_CMDID, .sta_powersave_mode_cmdid = WMI_10_2_STA_POWERSAVE_MODE_CMDID, .sta_powersave_param_cmdid = WMI_10_2_STA_POWERSAVE_PARAM_CMDID, .sta_mimo_ps_mode_cmdid = WMI_10_2_STA_MIMO_PS_MODE_CMDID, .pdev_dfs_enable_cmdid = WMI_10_2_PDEV_DFS_ENABLE_CMDID, .pdev_dfs_disable_cmdid = WMI_10_2_PDEV_DFS_DISABLE_CMDID, .roam_scan_mode = WMI_10_2_ROAM_SCAN_MODE, .roam_scan_rssi_threshold = WMI_10_2_ROAM_SCAN_RSSI_THRESHOLD, .roam_scan_period = WMI_10_2_ROAM_SCAN_PERIOD, .roam_scan_rssi_change_threshold = WMI_10_2_ROAM_SCAN_RSSI_CHANGE_THRESHOLD, .roam_ap_profile = WMI_10_2_ROAM_AP_PROFILE, .ofl_scan_add_ap_profile = WMI_10_2_OFL_SCAN_ADD_AP_PROFILE, .ofl_scan_remove_ap_profile = WMI_10_2_OFL_SCAN_REMOVE_AP_PROFILE, .ofl_scan_period = WMI_10_2_OFL_SCAN_PERIOD, .p2p_dev_set_device_info = WMI_10_2_P2P_DEV_SET_DEVICE_INFO, .p2p_dev_set_discoverability = WMI_10_2_P2P_DEV_SET_DISCOVERABILITY, .p2p_go_set_beacon_ie = WMI_10_2_P2P_GO_SET_BEACON_IE, .p2p_go_set_probe_resp_ie = WMI_10_2_P2P_GO_SET_PROBE_RESP_IE, .p2p_set_vendor_ie_data_cmdid = WMI_CMD_UNSUPPORTED, .ap_ps_peer_param_cmdid = WMI_10_2_AP_PS_PEER_PARAM_CMDID, .ap_ps_peer_uapsd_coex_cmdid = WMI_CMD_UNSUPPORTED, .peer_rate_retry_sched_cmdid = WMI_10_2_PEER_RATE_RETRY_SCHED_CMDID, .wlan_profile_trigger_cmdid = WMI_10_2_WLAN_PROFILE_TRIGGER_CMDID, .wlan_profile_set_hist_intvl_cmdid = WMI_10_2_WLAN_PROFILE_SET_HIST_INTVL_CMDID, .wlan_profile_get_profile_data_cmdid = WMI_10_2_WLAN_PROFILE_GET_PROFILE_DATA_CMDID, .wlan_profile_enable_profile_id_cmdid = WMI_10_2_WLAN_PROFILE_ENABLE_PROFILE_ID_CMDID, .wlan_profile_list_profile_id_cmdid = WMI_10_2_WLAN_PROFILE_LIST_PROFILE_ID_CMDID, .pdev_suspend_cmdid = WMI_10_2_PDEV_SUSPEND_CMDID, .pdev_resume_cmdid = WMI_10_2_PDEV_RESUME_CMDID, .add_bcn_filter_cmdid = WMI_10_2_ADD_BCN_FILTER_CMDID, .rmv_bcn_filter_cmdid = WMI_10_2_RMV_BCN_FILTER_CMDID, .wow_add_wake_pattern_cmdid = WMI_10_2_WOW_ADD_WAKE_PATTERN_CMDID, .wow_del_wake_pattern_cmdid = WMI_10_2_WOW_DEL_WAKE_PATTERN_CMDID, .wow_enable_disable_wake_event_cmdid = WMI_10_2_WOW_ENABLE_DISABLE_WAKE_EVENT_CMDID, .wow_enable_cmdid = WMI_10_2_WOW_ENABLE_CMDID, .wow_hostwakeup_from_sleep_cmdid = WMI_10_2_WOW_HOSTWAKEUP_FROM_SLEEP_CMDID, .rtt_measreq_cmdid = WMI_10_2_RTT_MEASREQ_CMDID, .rtt_tsf_cmdid = WMI_10_2_RTT_TSF_CMDID, .vdev_spectral_scan_configure_cmdid = WMI_10_2_VDEV_SPECTRAL_SCAN_CONFIGURE_CMDID, .vdev_spectral_scan_enable_cmdid = WMI_10_2_VDEV_SPECTRAL_SCAN_ENABLE_CMDID, .request_stats_cmdid = WMI_10_2_REQUEST_STATS_CMDID, .set_arp_ns_offload_cmdid = WMI_CMD_UNSUPPORTED, .network_list_offload_config_cmdid = WMI_CMD_UNSUPPORTED, .gtk_offload_cmdid = WMI_CMD_UNSUPPORTED, .csa_offload_enable_cmdid = WMI_CMD_UNSUPPORTED, .csa_offload_chanswitch_cmdid = WMI_CMD_UNSUPPORTED, .chatter_set_mode_cmdid = WMI_CMD_UNSUPPORTED, .peer_tid_addba_cmdid = WMI_CMD_UNSUPPORTED, .peer_tid_delba_cmdid = WMI_CMD_UNSUPPORTED, .sta_dtim_ps_method_cmdid = WMI_CMD_UNSUPPORTED, .sta_uapsd_auto_trig_cmdid = WMI_CMD_UNSUPPORTED, .sta_keepalive_cmd = WMI_CMD_UNSUPPORTED, .echo_cmdid = WMI_10_2_ECHO_CMDID, .pdev_utf_cmdid = WMI_10_2_PDEV_UTF_CMDID, .dbglog_cfg_cmdid = WMI_10_2_DBGLOG_CFG_CMDID, .pdev_qvit_cmdid = WMI_10_2_PDEV_QVIT_CMDID, .pdev_ftm_intg_cmdid = WMI_CMD_UNSUPPORTED, .vdev_set_keepalive_cmdid = WMI_CMD_UNSUPPORTED, .vdev_get_keepalive_cmdid = WMI_CMD_UNSUPPORTED, .force_fw_hang_cmdid = WMI_CMD_UNSUPPORTED, .gpio_config_cmdid = WMI_10_2_GPIO_CONFIG_CMDID, .gpio_output_cmdid = WMI_10_2_GPIO_OUTPUT_CMDID, }; int ath10k_wmi_wait_for_service_ready(struct ath10k *ar) { int ret; ret = wait_for_completion_timeout(&ar->wmi.service_ready, WMI_SERVICE_READY_TIMEOUT_HZ); return ret; } int ath10k_wmi_wait_for_unified_ready(struct ath10k *ar) { int ret; ret = wait_for_completion_timeout(&ar->wmi.unified_ready, WMI_UNIFIED_READY_TIMEOUT_HZ); return ret; } struct sk_buff *ath10k_wmi_alloc_skb(struct ath10k *ar, u32 len) { struct sk_buff *skb; u32 round_len = roundup(len, 4); skb = ath10k_htc_alloc_skb(ar, WMI_SKB_HEADROOM + round_len); if (!skb) return NULL; skb_reserve(skb, WMI_SKB_HEADROOM); if (!IS_ALIGNED((unsigned long)skb->data, 4)) ath10k_warn(ar, "Unaligned WMI skb\n"); skb_put(skb, round_len); memset(skb->data, 0, round_len); return skb; } static void ath10k_wmi_htc_tx_complete(struct ath10k *ar, struct sk_buff *skb) { dev_kfree_skb(skb); } static int ath10k_wmi_cmd_send_nowait(struct ath10k *ar, struct sk_buff *skb, u32 cmd_id) { struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(skb); struct wmi_cmd_hdr *cmd_hdr; int ret; u32 cmd = 0; if (skb_push(skb, sizeof(struct wmi_cmd_hdr)) == NULL) return -ENOMEM; cmd |= SM(cmd_id, WMI_CMD_HDR_CMD_ID); cmd_hdr = (struct wmi_cmd_hdr *)skb->data; cmd_hdr->cmd_id = __cpu_to_le32(cmd); memset(skb_cb, 0, sizeof(*skb_cb)); ret = ath10k_htc_send(&ar->htc, ar->wmi.eid, skb); trace_ath10k_wmi_cmd(ar, cmd_id, skb->data, skb->len, ret); if (ret) goto err_pull; return 0; err_pull: skb_pull(skb, sizeof(struct wmi_cmd_hdr)); return ret; } static void ath10k_wmi_tx_beacon_nowait(struct ath10k_vif *arvif) { int ret; lockdep_assert_held(&arvif->ar->data_lock); if (arvif->beacon == NULL) return; if (arvif->beacon_sent) return; ret = ath10k_wmi_beacon_send_ref_nowait(arvif); if (ret) return; /* We need to retain the arvif->beacon reference for DMA unmapping and * freeing the skbuff later. */ arvif->beacon_sent = true; } static void ath10k_wmi_tx_beacons_iter(void *data, u8 *mac, struct ieee80211_vif *vif) { struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); ath10k_wmi_tx_beacon_nowait(arvif); } static void ath10k_wmi_tx_beacons_nowait(struct ath10k *ar) { spin_lock_bh(&ar->data_lock); ieee80211_iterate_active_interfaces_atomic(ar->hw, IEEE80211_IFACE_ITER_NORMAL, ath10k_wmi_tx_beacons_iter, NULL); spin_unlock_bh(&ar->data_lock); } static void ath10k_wmi_op_ep_tx_credits(struct ath10k *ar) { /* try to send pending beacons first. they take priority */ ath10k_wmi_tx_beacons_nowait(ar); wake_up(&ar->wmi.tx_credits_wq); } int ath10k_wmi_cmd_send(struct ath10k *ar, struct sk_buff *skb, u32 cmd_id) { int ret = -EOPNOTSUPP; might_sleep(); if (cmd_id == WMI_CMD_UNSUPPORTED) { ath10k_warn(ar, "wmi command %d is not supported by firmware\n", cmd_id); return ret; } wait_event_timeout(ar->wmi.tx_credits_wq, ({ /* try to send pending beacons first. they take priority */ ath10k_wmi_tx_beacons_nowait(ar); ret = ath10k_wmi_cmd_send_nowait(ar, skb, cmd_id); (ret != -EAGAIN); }), 3*HZ); if (ret) dev_kfree_skb_any(skb); return ret; } int ath10k_wmi_mgmt_tx(struct ath10k *ar, struct sk_buff *skb) { int ret = 0; struct wmi_mgmt_tx_cmd *cmd; struct ieee80211_hdr *hdr; struct sk_buff *wmi_skb; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); int len; u32 buf_len = skb->len; u16 fc; hdr = (struct ieee80211_hdr *)skb->data; fc = le16_to_cpu(hdr->frame_control); if (WARN_ON_ONCE(!ieee80211_is_mgmt(hdr->frame_control))) return -EINVAL; len = sizeof(cmd->hdr) + skb->len; if ((ieee80211_is_action(hdr->frame_control) || ieee80211_is_deauth(hdr->frame_control) || ieee80211_is_disassoc(hdr->frame_control)) && ieee80211_has_protected(hdr->frame_control)) { len += IEEE80211_CCMP_MIC_LEN; buf_len += IEEE80211_CCMP_MIC_LEN; } len = round_up(len, 4); wmi_skb = ath10k_wmi_alloc_skb(ar, len); if (!wmi_skb) return -ENOMEM; cmd = (struct wmi_mgmt_tx_cmd *)wmi_skb->data; cmd->hdr.vdev_id = __cpu_to_le32(ATH10K_SKB_CB(skb)->vdev_id); cmd->hdr.tx_rate = 0; cmd->hdr.tx_power = 0; cmd->hdr.buf_len = __cpu_to_le32(buf_len); memcpy(cmd->hdr.peer_macaddr.addr, ieee80211_get_DA(hdr), ETH_ALEN); memcpy(cmd->buf, skb->data, skb->len); ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi mgmt tx skb %p len %d ftype %02x stype %02x\n", wmi_skb, wmi_skb->len, fc & IEEE80211_FCTL_FTYPE, fc & IEEE80211_FCTL_STYPE); /* Send the management frame buffer to the target */ ret = ath10k_wmi_cmd_send(ar, wmi_skb, ar->wmi.cmd->mgmt_tx_cmdid); if (ret) return ret; /* TODO: report tx status to mac80211 - temporary just ACK */ info->flags |= IEEE80211_TX_STAT_ACK; ieee80211_tx_status_irqsafe(ar->hw, skb); return ret; } static void ath10k_wmi_event_scan_started(struct ath10k *ar) { lockdep_assert_held(&ar->data_lock); switch (ar->scan.state) { case ATH10K_SCAN_IDLE: case ATH10K_SCAN_RUNNING: case ATH10K_SCAN_ABORTING: ath10k_warn(ar, "received scan started event in an invalid scan state: %s (%d)\n", ath10k_scan_state_str(ar->scan.state), ar->scan.state); break; case ATH10K_SCAN_STARTING: ar->scan.state = ATH10K_SCAN_RUNNING; if (ar->scan.is_roc) ieee80211_ready_on_channel(ar->hw); complete(&ar->scan.started); break; } } static void ath10k_wmi_event_scan_completed(struct ath10k *ar) { lockdep_assert_held(&ar->data_lock); switch (ar->scan.state) { case ATH10K_SCAN_IDLE: case ATH10K_SCAN_STARTING: /* One suspected reason scan can be completed while starting is * if firmware fails to deliver all scan events to the host, * e.g. when transport pipe is full. This has been observed * with spectral scan phyerr events starving wmi transport * pipe. In such case the "scan completed" event should be (and * is) ignored by the host as it may be just firmware's scan * state machine recovering. */ ath10k_warn(ar, "received scan completed event in an invalid scan state: %s (%d)\n", ath10k_scan_state_str(ar->scan.state), ar->scan.state); break; case ATH10K_SCAN_RUNNING: case ATH10K_SCAN_ABORTING: __ath10k_scan_finish(ar); break; } } static void ath10k_wmi_event_scan_bss_chan(struct ath10k *ar) { lockdep_assert_held(&ar->data_lock); switch (ar->scan.state) { case ATH10K_SCAN_IDLE: case ATH10K_SCAN_STARTING: ath10k_warn(ar, "received scan bss chan event in an invalid scan state: %s (%d)\n", ath10k_scan_state_str(ar->scan.state), ar->scan.state); break; case ATH10K_SCAN_RUNNING: case ATH10K_SCAN_ABORTING: ar->scan_channel = NULL; break; } } static void ath10k_wmi_event_scan_foreign_chan(struct ath10k *ar, u32 freq) { lockdep_assert_held(&ar->data_lock); switch (ar->scan.state) { case ATH10K_SCAN_IDLE: case ATH10K_SCAN_STARTING: ath10k_warn(ar, "received scan foreign chan event in an invalid scan state: %s (%d)\n", ath10k_scan_state_str(ar->scan.state), ar->scan.state); break; case ATH10K_SCAN_RUNNING: case ATH10K_SCAN_ABORTING: ar->scan_channel = ieee80211_get_channel(ar->hw->wiphy, freq); if (ar->scan.is_roc && ar->scan.roc_freq == freq) complete(&ar->scan.on_channel); break; } } static const char * ath10k_wmi_event_scan_type_str(enum wmi_scan_event_type type, enum wmi_scan_completion_reason reason) { switch (type) { case WMI_SCAN_EVENT_STARTED: return "started"; case WMI_SCAN_EVENT_COMPLETED: switch (reason) { case WMI_SCAN_REASON_COMPLETED: return "completed"; case WMI_SCAN_REASON_CANCELLED: return "completed [cancelled]"; case WMI_SCAN_REASON_PREEMPTED: return "completed [preempted]"; case WMI_SCAN_REASON_TIMEDOUT: return "completed [timedout]"; case WMI_SCAN_REASON_MAX: break; } return "completed [unknown]"; case WMI_SCAN_EVENT_BSS_CHANNEL: return "bss channel"; case WMI_SCAN_EVENT_FOREIGN_CHANNEL: return "foreign channel"; case WMI_SCAN_EVENT_DEQUEUED: return "dequeued"; case WMI_SCAN_EVENT_PREEMPTED: return "preempted"; case WMI_SCAN_EVENT_START_FAILED: return "start failed"; default: return "unknown"; } } static int ath10k_wmi_event_scan(struct ath10k *ar, struct sk_buff *skb) { struct wmi_scan_event *event = (struct wmi_scan_event *)skb->data; enum wmi_scan_event_type event_type; enum wmi_scan_completion_reason reason; u32 freq; u32 req_id; u32 scan_id; u32 vdev_id; event_type = __le32_to_cpu(event->event_type); reason = __le32_to_cpu(event->reason); freq = __le32_to_cpu(event->channel_freq); req_id = __le32_to_cpu(event->scan_req_id); scan_id = __le32_to_cpu(event->scan_id); vdev_id = __le32_to_cpu(event->vdev_id); spin_lock_bh(&ar->data_lock); ath10k_dbg(ar, ATH10K_DBG_WMI, "scan event %s type %d reason %d freq %d req_id %d scan_id %d vdev_id %d state %s (%d)\n", ath10k_wmi_event_scan_type_str(event_type, reason), event_type, reason, freq, req_id, scan_id, vdev_id, ath10k_scan_state_str(ar->scan.state), ar->scan.state); switch (event_type) { case WMI_SCAN_EVENT_STARTED: ath10k_wmi_event_scan_started(ar); break; case WMI_SCAN_EVENT_COMPLETED: ath10k_wmi_event_scan_completed(ar); break; case WMI_SCAN_EVENT_BSS_CHANNEL: ath10k_wmi_event_scan_bss_chan(ar); break; case WMI_SCAN_EVENT_FOREIGN_CHANNEL: ath10k_wmi_event_scan_foreign_chan(ar, freq); break; case WMI_SCAN_EVENT_START_FAILED: ath10k_warn(ar, "received scan start failure event\n"); break; case WMI_SCAN_EVENT_DEQUEUED: case WMI_SCAN_EVENT_PREEMPTED: default: break; } spin_unlock_bh(&ar->data_lock); return 0; } static inline enum ieee80211_band phy_mode_to_band(u32 phy_mode) { enum ieee80211_band band; switch (phy_mode) { case MODE_11A: case MODE_11NA_HT20: case MODE_11NA_HT40: case MODE_11AC_VHT20: case MODE_11AC_VHT40: case MODE_11AC_VHT80: band = IEEE80211_BAND_5GHZ; break; case MODE_11G: case MODE_11B: case MODE_11GONLY: case MODE_11NG_HT20: case MODE_11NG_HT40: case MODE_11AC_VHT20_2G: case MODE_11AC_VHT40_2G: case MODE_11AC_VHT80_2G: default: band = IEEE80211_BAND_2GHZ; } return band; } static inline u8 get_rate_idx(u32 rate, enum ieee80211_band band) { u8 rate_idx = 0; /* rate in Kbps */ switch (rate) { case 1000: rate_idx = 0; break; case 2000: rate_idx = 1; break; case 5500: rate_idx = 2; break; case 11000: rate_idx = 3; break; case 6000: rate_idx = 4; break; case 9000: rate_idx = 5; break; case 12000: rate_idx = 6; break; case 18000: rate_idx = 7; break; case 24000: rate_idx = 8; break; case 36000: rate_idx = 9; break; case 48000: rate_idx = 10; break; case 54000: rate_idx = 11; break; default: break; } if (band == IEEE80211_BAND_5GHZ) { if (rate_idx > 3) /* Omit CCK rates */ rate_idx -= 4; else rate_idx = 0; } return rate_idx; } static int ath10k_wmi_event_mgmt_rx(struct ath10k *ar, struct sk_buff *skb) { struct wmi_mgmt_rx_event_v1 *ev_v1; struct wmi_mgmt_rx_event_v2 *ev_v2; struct wmi_mgmt_rx_hdr_v1 *ev_hdr; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); struct ieee80211_channel *ch; struct ieee80211_hdr *hdr; u32 rx_status; u32 channel; u32 phy_mode; u32 snr; u32 rate; u32 buf_len; u16 fc; int pull_len; if (test_bit(ATH10K_FW_FEATURE_EXT_WMI_MGMT_RX, ar->fw_features)) { ev_v2 = (struct wmi_mgmt_rx_event_v2 *)skb->data; ev_hdr = &ev_v2->hdr.v1; pull_len = sizeof(*ev_v2); } else { ev_v1 = (struct wmi_mgmt_rx_event_v1 *)skb->data; ev_hdr = &ev_v1->hdr; pull_len = sizeof(*ev_v1); } channel = __le32_to_cpu(ev_hdr->channel); buf_len = __le32_to_cpu(ev_hdr->buf_len); rx_status = __le32_to_cpu(ev_hdr->status); snr = __le32_to_cpu(ev_hdr->snr); phy_mode = __le32_to_cpu(ev_hdr->phy_mode); rate = __le32_to_cpu(ev_hdr->rate); memset(status, 0, sizeof(*status)); ath10k_dbg(ar, ATH10K_DBG_MGMT, "event mgmt rx status %08x\n", rx_status); if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) { dev_kfree_skb(skb); return 0; } if (rx_status & WMI_RX_STATUS_ERR_DECRYPT) { dev_kfree_skb(skb); return 0; } if (rx_status & WMI_RX_STATUS_ERR_KEY_CACHE_MISS) { dev_kfree_skb(skb); return 0; } if (rx_status & WMI_RX_STATUS_ERR_CRC) status->flag |= RX_FLAG_FAILED_FCS_CRC; if (rx_status & WMI_RX_STATUS_ERR_MIC) status->flag |= RX_FLAG_MMIC_ERROR; /* HW can Rx CCK rates on 5GHz. In that case phy_mode is set to * MODE_11B. This means phy_mode is not a reliable source for the band * of mgmt rx. */ ch = ar->scan_channel; if (!ch) ch = ar->rx_channel; if (ch) { status->band = ch->band; if (phy_mode == MODE_11B && status->band == IEEE80211_BAND_5GHZ) ath10k_dbg(ar, ATH10K_DBG_MGMT, "wmi mgmt rx 11b (CCK) on 5GHz\n"); } else { ath10k_warn(ar, "using (unreliable) phy_mode to extract band for mgmt rx\n"); status->band = phy_mode_to_band(phy_mode); } status->freq = ieee80211_channel_to_frequency(channel, status->band); status->signal = snr + ATH10K_DEFAULT_NOISE_FLOOR; status->rate_idx = get_rate_idx(rate, status->band); skb_pull(skb, pull_len); hdr = (struct ieee80211_hdr *)skb->data; fc = le16_to_cpu(hdr->frame_control); /* FW delivers WEP Shared Auth frame with Protected Bit set and * encrypted payload. However in case of PMF it delivers decrypted * frames with Protected Bit set. */ if (ieee80211_has_protected(hdr->frame_control) && !ieee80211_is_auth(hdr->frame_control)) { status->flag |= RX_FLAG_DECRYPTED; if (!ieee80211_is_action(hdr->frame_control) && !ieee80211_is_deauth(hdr->frame_control) && !ieee80211_is_disassoc(hdr->frame_control)) { status->flag |= RX_FLAG_IV_STRIPPED | RX_FLAG_MMIC_STRIPPED; hdr->frame_control = __cpu_to_le16(fc & ~IEEE80211_FCTL_PROTECTED); } } ath10k_dbg(ar, ATH10K_DBG_MGMT, "event mgmt rx skb %p len %d ftype %02x stype %02x\n", skb, skb->len, fc & IEEE80211_FCTL_FTYPE, fc & IEEE80211_FCTL_STYPE); ath10k_dbg(ar, ATH10K_DBG_MGMT, "event mgmt rx freq %d band %d snr %d, rate_idx %d\n", status->freq, status->band, status->signal, status->rate_idx); /* * packets from HTC come aligned to 4byte boundaries * because they can originally come in along with a trailer */ skb_trim(skb, buf_len); ieee80211_rx(ar->hw, skb); return 0; } static int freq_to_idx(struct ath10k *ar, int freq) { struct ieee80211_supported_band *sband; int band, ch, idx = 0; for (band = IEEE80211_BAND_2GHZ; band < IEEE80211_NUM_BANDS; band++) { sband = ar->hw->wiphy->bands[band]; if (!sband) continue; for (ch = 0; ch < sband->n_channels; ch++, idx++) if (sband->channels[ch].center_freq == freq) goto exit; } exit: return idx; } static void ath10k_wmi_event_chan_info(struct ath10k *ar, struct sk_buff *skb) { struct wmi_chan_info_event *ev; struct survey_info *survey; u32 err_code, freq, cmd_flags, noise_floor, rx_clear_count, cycle_count; int idx; ev = (struct wmi_chan_info_event *)skb->data; err_code = __le32_to_cpu(ev->err_code); freq = __le32_to_cpu(ev->freq); cmd_flags = __le32_to_cpu(ev->cmd_flags); noise_floor = __le32_to_cpu(ev->noise_floor); rx_clear_count = __le32_to_cpu(ev->rx_clear_count); cycle_count = __le32_to_cpu(ev->cycle_count); ath10k_dbg(ar, ATH10K_DBG_WMI, "chan info err_code %d freq %d cmd_flags %d noise_floor %d rx_clear_count %d cycle_count %d\n", err_code, freq, cmd_flags, noise_floor, rx_clear_count, cycle_count); spin_lock_bh(&ar->data_lock); switch (ar->scan.state) { case ATH10K_SCAN_IDLE: case ATH10K_SCAN_STARTING: ath10k_warn(ar, "received chan info event without a scan request, ignoring\n"); goto exit; case ATH10K_SCAN_RUNNING: case ATH10K_SCAN_ABORTING: break; } idx = freq_to_idx(ar, freq); if (idx >= ARRAY_SIZE(ar->survey)) { ath10k_warn(ar, "chan info: invalid frequency %d (idx %d out of bounds)\n", freq, idx); goto exit; } if (cmd_flags & WMI_CHAN_INFO_FLAG_COMPLETE) { /* During scanning chan info is reported twice for each * visited channel. The reported cycle count is global * and per-channel cycle count must be calculated */ cycle_count -= ar->survey_last_cycle_count; rx_clear_count -= ar->survey_last_rx_clear_count; survey = &ar->survey[idx]; survey->channel_time = WMI_CHAN_INFO_MSEC(cycle_count); survey->channel_time_rx = WMI_CHAN_INFO_MSEC(rx_clear_count); survey->noise = noise_floor; survey->filled = SURVEY_INFO_CHANNEL_TIME | SURVEY_INFO_CHANNEL_TIME_RX | SURVEY_INFO_NOISE_DBM; } ar->survey_last_rx_clear_count = rx_clear_count; ar->survey_last_cycle_count = cycle_count; exit: spin_unlock_bh(&ar->data_lock); } static void ath10k_wmi_event_echo(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ar, ATH10K_DBG_WMI, "WMI_ECHO_EVENTID\n"); } static int ath10k_wmi_event_debug_mesg(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi event debug mesg len %d\n", skb->len); trace_ath10k_wmi_dbglog(ar, skb->data, skb->len); return 0; } static void ath10k_wmi_event_update_stats(struct ath10k *ar, struct sk_buff *skb) { struct wmi_stats_event *ev = (struct wmi_stats_event *)skb->data; ath10k_dbg(ar, ATH10K_DBG_WMI, "WMI_UPDATE_STATS_EVENTID\n"); ath10k_debug_read_target_stats(ar, ev); } static void ath10k_wmi_event_vdev_start_resp(struct ath10k *ar, struct sk_buff *skb) { struct wmi_vdev_start_response_event *ev; ath10k_dbg(ar, ATH10K_DBG_WMI, "WMI_VDEV_START_RESP_EVENTID\n"); ev = (struct wmi_vdev_start_response_event *)skb->data; if (WARN_ON(__le32_to_cpu(ev->status))) return; complete(&ar->vdev_setup_done); } static void ath10k_wmi_event_vdev_stopped(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ar, ATH10K_DBG_WMI, "WMI_VDEV_STOPPED_EVENTID\n"); complete(&ar->vdev_setup_done); } static void ath10k_wmi_event_peer_sta_kickout(struct ath10k *ar, struct sk_buff *skb) { struct wmi_peer_sta_kickout_event *ev; struct ieee80211_sta *sta; ev = (struct wmi_peer_sta_kickout_event *)skb->data; ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi event peer sta kickout %pM\n", ev->peer_macaddr.addr); rcu_read_lock(); sta = ieee80211_find_sta_by_ifaddr(ar->hw, ev->peer_macaddr.addr, NULL); if (!sta) { ath10k_warn(ar, "Spurious quick kickout for STA %pM\n", ev->peer_macaddr.addr); goto exit; } ieee80211_report_low_ack(sta, 10); exit: rcu_read_unlock(); } /* * FIXME * * We don't report to mac80211 sleep state of connected * stations. Due to this mac80211 can't fill in TIM IE * correctly. * * I know of no way of getting nullfunc frames that contain * sleep transition from connected stations - these do not * seem to be sent from the target to the host. There also * doesn't seem to be a dedicated event for that. So the * only way left to do this would be to read tim_bitmap * during SWBA. * * We could probably try using tim_bitmap from SWBA to tell * mac80211 which stations are asleep and which are not. The * problem here is calling mac80211 functions so many times * could take too long and make us miss the time to submit * the beacon to the target. * * So as a workaround we try to extend the TIM IE if there * is unicast buffered for stations with aid > 7 and fill it * in ourselves. */ static void ath10k_wmi_update_tim(struct ath10k *ar, struct ath10k_vif *arvif, struct sk_buff *bcn, struct wmi_bcn_info *bcn_info) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)bcn->data; struct ieee80211_tim_ie *tim; u8 *ies, *ie; u8 ie_len, pvm_len; /* if next SWBA has no tim_changed the tim_bitmap is garbage. * we must copy the bitmap upon change and reuse it later */ if (__le32_to_cpu(bcn_info->tim_info.tim_changed)) { int i; BUILD_BUG_ON(sizeof(arvif->u.ap.tim_bitmap) != sizeof(bcn_info->tim_info.tim_bitmap)); for (i = 0; i < sizeof(arvif->u.ap.tim_bitmap); i++) { __le32 t = bcn_info->tim_info.tim_bitmap[i / 4]; u32 v = __le32_to_cpu(t); arvif->u.ap.tim_bitmap[i] = (v >> ((i % 4) * 8)) & 0xFF; } /* FW reports either length 0 or 16 * so we calculate this on our own */ arvif->u.ap.tim_len = 0; for (i = 0; i < sizeof(arvif->u.ap.tim_bitmap); i++) if (arvif->u.ap.tim_bitmap[i]) arvif->u.ap.tim_len = i; arvif->u.ap.tim_len++; } ies = bcn->data; ies += ieee80211_hdrlen(hdr->frame_control); ies += 12; /* fixed parameters */ ie = (u8 *)cfg80211_find_ie(WLAN_EID_TIM, ies, (u8 *)skb_tail_pointer(bcn) - ies); if (!ie) { if (arvif->vdev_type != WMI_VDEV_TYPE_IBSS) ath10k_warn(ar, "no tim ie found;\n"); return; } tim = (void *)ie + 2; ie_len = ie[1]; pvm_len = ie_len - 3; /* exclude dtim count, dtim period, bmap ctl */ if (pvm_len < arvif->u.ap.tim_len) { int expand_size = sizeof(arvif->u.ap.tim_bitmap) - pvm_len; int move_size = skb_tail_pointer(bcn) - (ie + 2 + ie_len); void *next_ie = ie + 2 + ie_len; if (skb_put(bcn, expand_size)) { memmove(next_ie + expand_size, next_ie, move_size); ie[1] += expand_size; ie_len += expand_size; pvm_len += expand_size; } else { ath10k_warn(ar, "tim expansion failed\n"); } } if (pvm_len > sizeof(arvif->u.ap.tim_bitmap)) { ath10k_warn(ar, "tim pvm length is too great (%d)\n", pvm_len); return; } tim->bitmap_ctrl = !!__le32_to_cpu(bcn_info->tim_info.tim_mcast); memcpy(tim->virtual_map, arvif->u.ap.tim_bitmap, pvm_len); if (tim->dtim_count == 0) { ATH10K_SKB_CB(bcn)->bcn.dtim_zero = true; if (__le32_to_cpu(bcn_info->tim_info.tim_mcast) == 1) ATH10K_SKB_CB(bcn)->bcn.deliver_cab = true; } ath10k_dbg(ar, ATH10K_DBG_MGMT, "dtim %d/%d mcast %d pvmlen %d\n", tim->dtim_count, tim->dtim_period, tim->bitmap_ctrl, pvm_len); } static void ath10k_p2p_fill_noa_ie(u8 *data, u32 len, struct wmi_p2p_noa_info *noa) { struct ieee80211_p2p_noa_attr *noa_attr; u8 ctwindow_oppps = noa->ctwindow_oppps; u8 ctwindow = ctwindow_oppps >> WMI_P2P_OPPPS_CTWINDOW_OFFSET; bool oppps = !!(ctwindow_oppps & WMI_P2P_OPPPS_ENABLE_BIT); __le16 *noa_attr_len; u16 attr_len; u8 noa_descriptors = noa->num_descriptors; int i; /* P2P IE */ data[0] = WLAN_EID_VENDOR_SPECIFIC; data[1] = len - 2; data[2] = (WLAN_OUI_WFA >> 16) & 0xff; data[3] = (WLAN_OUI_WFA >> 8) & 0xff; data[4] = (WLAN_OUI_WFA >> 0) & 0xff; data[5] = WLAN_OUI_TYPE_WFA_P2P; /* NOA ATTR */ data[6] = IEEE80211_P2P_ATTR_ABSENCE_NOTICE; noa_attr_len = (__le16 *)&data[7]; /* 2 bytes */ noa_attr = (struct ieee80211_p2p_noa_attr *)&data[9]; noa_attr->index = noa->index; noa_attr->oppps_ctwindow = ctwindow; if (oppps) noa_attr->oppps_ctwindow |= IEEE80211_P2P_OPPPS_ENABLE_BIT; for (i = 0; i < noa_descriptors; i++) { noa_attr->desc[i].count = __le32_to_cpu(noa->descriptors[i].type_count); noa_attr->desc[i].duration = noa->descriptors[i].duration; noa_attr->desc[i].interval = noa->descriptors[i].interval; noa_attr->desc[i].start_time = noa->descriptors[i].start_time; } attr_len = 2; /* index + oppps_ctwindow */ attr_len += noa_descriptors * sizeof(struct ieee80211_p2p_noa_desc); *noa_attr_len = __cpu_to_le16(attr_len); } static u32 ath10k_p2p_calc_noa_ie_len(struct wmi_p2p_noa_info *noa) { u32 len = 0; u8 noa_descriptors = noa->num_descriptors; u8 opp_ps_info = noa->ctwindow_oppps; bool opps_enabled = !!(opp_ps_info & WMI_P2P_OPPPS_ENABLE_BIT); if (!noa_descriptors && !opps_enabled) return len; len += 1 + 1 + 4; /* EID + len + OUI */ len += 1 + 2; /* noa attr + attr len */ len += 1 + 1; /* index + oppps_ctwindow */ len += noa_descriptors * sizeof(struct ieee80211_p2p_noa_desc); return len; } static void ath10k_wmi_update_noa(struct ath10k *ar, struct ath10k_vif *arvif, struct sk_buff *bcn, struct wmi_bcn_info *bcn_info) { struct wmi_p2p_noa_info *noa = &bcn_info->p2p_noa_info; u8 *new_data, *old_data = arvif->u.ap.noa_data; u32 new_len; if (arvif->vdev_subtype != WMI_VDEV_SUBTYPE_P2P_GO) return; ath10k_dbg(ar, ATH10K_DBG_MGMT, "noa changed: %d\n", noa->changed); if (noa->changed & WMI_P2P_NOA_CHANGED_BIT) { new_len = ath10k_p2p_calc_noa_ie_len(noa); if (!new_len) goto cleanup; new_data = kmalloc(new_len, GFP_ATOMIC); if (!new_data) goto cleanup; ath10k_p2p_fill_noa_ie(new_data, new_len, noa); spin_lock_bh(&ar->data_lock); arvif->u.ap.noa_data = new_data; arvif->u.ap.noa_len = new_len; spin_unlock_bh(&ar->data_lock); kfree(old_data); } if (arvif->u.ap.noa_data) if (!pskb_expand_head(bcn, 0, arvif->u.ap.noa_len, GFP_ATOMIC)) memcpy(skb_put(bcn, arvif->u.ap.noa_len), arvif->u.ap.noa_data, arvif->u.ap.noa_len); return; cleanup: spin_lock_bh(&ar->data_lock); arvif->u.ap.noa_data = NULL; arvif->u.ap.noa_len = 0; spin_unlock_bh(&ar->data_lock); kfree(old_data); } static void ath10k_wmi_event_host_swba(struct ath10k *ar, struct sk_buff *skb) { struct wmi_host_swba_event *ev; u32 map; int i = -1; struct wmi_bcn_info *bcn_info; struct ath10k_vif *arvif; struct sk_buff *bcn; int ret, vdev_id = 0; ev = (struct wmi_host_swba_event *)skb->data; map = __le32_to_cpu(ev->vdev_map); ath10k_dbg(ar, ATH10K_DBG_MGMT, "mgmt swba vdev_map 0x%x\n", ev->vdev_map); for (; map; map >>= 1, vdev_id++) { if (!(map & 0x1)) continue; i++; if (i >= WMI_MAX_AP_VDEV) { ath10k_warn(ar, "swba has corrupted vdev map\n"); break; } bcn_info = &ev->bcn_info[i]; ath10k_dbg(ar, ATH10K_DBG_MGMT, "mgmt event bcn_info %d tim_len %d mcast %d changed %d num_ps_pending %d bitmap 0x%08x%08x%08x%08x\n", i, __le32_to_cpu(bcn_info->tim_info.tim_len), __le32_to_cpu(bcn_info->tim_info.tim_mcast), __le32_to_cpu(bcn_info->tim_info.tim_changed), __le32_to_cpu(bcn_info->tim_info.tim_num_ps_pending), __le32_to_cpu(bcn_info->tim_info.tim_bitmap[3]), __le32_to_cpu(bcn_info->tim_info.tim_bitmap[2]), __le32_to_cpu(bcn_info->tim_info.tim_bitmap[1]), __le32_to_cpu(bcn_info->tim_info.tim_bitmap[0])); arvif = ath10k_get_arvif(ar, vdev_id); if (arvif == NULL) { ath10k_warn(ar, "no vif for vdev_id %d found\n", vdev_id); continue; } /* There are no completions for beacons so wait for next SWBA * before telling mac80211 to decrement CSA counter * * Once CSA counter is completed stop sending beacons until * actual channel switch is done */ if (arvif->vif->csa_active && ieee80211_csa_is_complete(arvif->vif)) { ieee80211_csa_finish(arvif->vif); continue; } bcn = ieee80211_beacon_get(ar->hw, arvif->vif); if (!bcn) { ath10k_warn(ar, "could not get mac80211 beacon\n"); continue; } ath10k_tx_h_seq_no(arvif->vif, bcn); ath10k_wmi_update_tim(ar, arvif, bcn, bcn_info); ath10k_wmi_update_noa(ar, arvif, bcn, bcn_info); spin_lock_bh(&ar->data_lock); if (arvif->beacon) { if (!arvif->beacon_sent) ath10k_warn(ar, "SWBA overrun on vdev %d\n", arvif->vdev_id); dma_unmap_single(arvif->ar->dev, ATH10K_SKB_CB(arvif->beacon)->paddr, arvif->beacon->len, DMA_TO_DEVICE); dev_kfree_skb_any(arvif->beacon); arvif->beacon = NULL; } ATH10K_SKB_CB(bcn)->paddr = dma_map_single(arvif->ar->dev, bcn->data, bcn->len, DMA_TO_DEVICE); ret = dma_mapping_error(arvif->ar->dev, ATH10K_SKB_CB(bcn)->paddr); if (ret) { ath10k_warn(ar, "failed to map beacon: %d\n", ret); dev_kfree_skb_any(bcn); goto skip; } arvif->beacon = bcn; arvif->beacon_sent = false; ath10k_wmi_tx_beacon_nowait(arvif); skip: spin_unlock_bh(&ar->data_lock); } } static void ath10k_wmi_event_tbttoffset_update(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ar, ATH10K_DBG_WMI, "WMI_TBTTOFFSET_UPDATE_EVENTID\n"); } static void ath10k_dfs_radar_report(struct ath10k *ar, struct wmi_single_phyerr_rx_event *event, struct phyerr_radar_report *rr, u64 tsf) { u32 reg0, reg1, tsf32l; struct pulse_event pe; u64 tsf64; u8 rssi, width; reg0 = __le32_to_cpu(rr->reg0); reg1 = __le32_to_cpu(rr->reg1); ath10k_dbg(ar, ATH10K_DBG_REGULATORY, "wmi phyerr radar report chirp %d max_width %d agc_total_gain %d pulse_delta_diff %d\n", MS(reg0, RADAR_REPORT_REG0_PULSE_IS_CHIRP), MS(reg0, RADAR_REPORT_REG0_PULSE_IS_MAX_WIDTH), MS(reg0, RADAR_REPORT_REG0_AGC_TOTAL_GAIN), MS(reg0, RADAR_REPORT_REG0_PULSE_DELTA_DIFF)); ath10k_dbg(ar, ATH10K_DBG_REGULATORY, "wmi phyerr radar report pulse_delta_pean %d pulse_sidx %d fft_valid %d agc_mb_gain %d subchan_mask %d\n", MS(reg0, RADAR_REPORT_REG0_PULSE_DELTA_PEAK), MS(reg0, RADAR_REPORT_REG0_PULSE_SIDX), MS(reg1, RADAR_REPORT_REG1_PULSE_SRCH_FFT_VALID), MS(reg1, RADAR_REPORT_REG1_PULSE_AGC_MB_GAIN), MS(reg1, RADAR_REPORT_REG1_PULSE_SUBCHAN_MASK)); ath10k_dbg(ar, ATH10K_DBG_REGULATORY, "wmi phyerr radar report pulse_tsf_offset 0x%X pulse_dur: %d\n", MS(reg1, RADAR_REPORT_REG1_PULSE_TSF_OFFSET), MS(reg1, RADAR_REPORT_REG1_PULSE_DUR)); if (!ar->dfs_detector) return; /* report event to DFS pattern detector */ tsf32l = __le32_to_cpu(event->hdr.tsf_timestamp); tsf64 = tsf & (~0xFFFFFFFFULL); tsf64 |= tsf32l; width = MS(reg1, RADAR_REPORT_REG1_PULSE_DUR); rssi = event->hdr.rssi_combined; /* hardware store this as 8 bit signed value, * set to zero if negative number */ if (rssi & 0x80) rssi = 0; pe.ts = tsf64; pe.freq = ar->hw->conf.chandef.chan->center_freq; pe.width = width; pe.rssi = rssi; ath10k_dbg(ar, ATH10K_DBG_REGULATORY, "dfs add pulse freq: %d, width: %d, rssi %d, tsf: %llX\n", pe.freq, pe.width, pe.rssi, pe.ts); ATH10K_DFS_STAT_INC(ar, pulses_detected); if (!ar->dfs_detector->add_pulse(ar->dfs_detector, &pe)) { ath10k_dbg(ar, ATH10K_DBG_REGULATORY, "dfs no pulse pattern detected, yet\n"); return; } ath10k_dbg(ar, ATH10K_DBG_REGULATORY, "dfs radar detected\n"); ATH10K_DFS_STAT_INC(ar, radar_detected); /* Control radar events reporting in debugfs file dfs_block_radar_events */ if (ar->dfs_block_radar_events) { ath10k_info(ar, "DFS Radar detected, but ignored as requested\n"); return; } ieee80211_radar_detected(ar->hw); } static int ath10k_dfs_fft_report(struct ath10k *ar, struct wmi_single_phyerr_rx_event *event, struct phyerr_fft_report *fftr, u64 tsf) { u32 reg0, reg1; u8 rssi, peak_mag; reg0 = __le32_to_cpu(fftr->reg0); reg1 = __le32_to_cpu(fftr->reg1); rssi = event->hdr.rssi_combined; ath10k_dbg(ar, ATH10K_DBG_REGULATORY, "wmi phyerr fft report total_gain_db %d base_pwr_db %d fft_chn_idx %d peak_sidx %d\n", MS(reg0, SEARCH_FFT_REPORT_REG0_TOTAL_GAIN_DB), MS(reg0, SEARCH_FFT_REPORT_REG0_BASE_PWR_DB), MS(reg0, SEARCH_FFT_REPORT_REG0_FFT_CHN_IDX), MS(reg0, SEARCH_FFT_REPORT_REG0_PEAK_SIDX)); ath10k_dbg(ar, ATH10K_DBG_REGULATORY, "wmi phyerr fft report rel_pwr_db %d avgpwr_db %d peak_mag %d num_store_bin %d\n", MS(reg1, SEARCH_FFT_REPORT_REG1_RELPWR_DB), MS(reg1, SEARCH_FFT_REPORT_REG1_AVGPWR_DB), MS(reg1, SEARCH_FFT_REPORT_REG1_PEAK_MAG), MS(reg1, SEARCH_FFT_REPORT_REG1_NUM_STR_BINS_IB)); peak_mag = MS(reg1, SEARCH_FFT_REPORT_REG1_PEAK_MAG); /* false event detection */ if (rssi == DFS_RSSI_POSSIBLY_FALSE && peak_mag < 2 * DFS_PEAK_MAG_THOLD_POSSIBLY_FALSE) { ath10k_dbg(ar, ATH10K_DBG_REGULATORY, "dfs false pulse detected\n"); ATH10K_DFS_STAT_INC(ar, pulses_discarded); return -EINVAL; } return 0; } static void ath10k_wmi_event_dfs(struct ath10k *ar, struct wmi_single_phyerr_rx_event *event, u64 tsf) { int buf_len, tlv_len, res, i = 0; struct phyerr_tlv *tlv; struct phyerr_radar_report *rr; struct phyerr_fft_report *fftr; u8 *tlv_buf; buf_len = __le32_to_cpu(event->hdr.buf_len); ath10k_dbg(ar, ATH10K_DBG_REGULATORY, "wmi event dfs err_code %d rssi %d tsfl 0x%X tsf64 0x%llX len %d\n", event->hdr.phy_err_code, event->hdr.rssi_combined, __le32_to_cpu(event->hdr.tsf_timestamp), tsf, buf_len); /* Skip event if DFS disabled */ if (!config_enabled(CONFIG_ATH10K_DFS_CERTIFIED)) return; ATH10K_DFS_STAT_INC(ar, pulses_total); while (i < buf_len) { if (i + sizeof(*tlv) > buf_len) { ath10k_warn(ar, "too short buf for tlv header (%d)\n", i); return; } tlv = (struct phyerr_tlv *)&event->bufp[i]; tlv_len = __le16_to_cpu(tlv->len); tlv_buf = &event->bufp[i + sizeof(*tlv)]; ath10k_dbg(ar, ATH10K_DBG_REGULATORY, "wmi event dfs tlv_len %d tlv_tag 0x%02X tlv_sig 0x%02X\n", tlv_len, tlv->tag, tlv->sig); switch (tlv->tag) { case PHYERR_TLV_TAG_RADAR_PULSE_SUMMARY: if (i + sizeof(*tlv) + sizeof(*rr) > buf_len) { ath10k_warn(ar, "too short radar pulse summary (%d)\n", i); return; } rr = (struct phyerr_radar_report *)tlv_buf; ath10k_dfs_radar_report(ar, event, rr, tsf); break; case PHYERR_TLV_TAG_SEARCH_FFT_REPORT: if (i + sizeof(*tlv) + sizeof(*fftr) > buf_len) { ath10k_warn(ar, "too short fft report (%d)\n", i); return; } fftr = (struct phyerr_fft_report *)tlv_buf; res = ath10k_dfs_fft_report(ar, event, fftr, tsf); if (res) return; break; } i += sizeof(*tlv) + tlv_len; } } static void ath10k_wmi_event_spectral_scan(struct ath10k *ar, struct wmi_single_phyerr_rx_event *event, u64 tsf) { int buf_len, tlv_len, res, i = 0; struct phyerr_tlv *tlv; u8 *tlv_buf; struct phyerr_fft_report *fftr; size_t fftr_len; buf_len = __le32_to_cpu(event->hdr.buf_len); while (i < buf_len) { if (i + sizeof(*tlv) > buf_len) { ath10k_warn(ar, "failed to parse phyerr tlv header at byte %d\n", i); return; } tlv = (struct phyerr_tlv *)&event->bufp[i]; tlv_len = __le16_to_cpu(tlv->len); tlv_buf = &event->bufp[i + sizeof(*tlv)]; if (i + sizeof(*tlv) + tlv_len > buf_len) { ath10k_warn(ar, "failed to parse phyerr tlv payload at byte %d\n", i); return; } switch (tlv->tag) { case PHYERR_TLV_TAG_SEARCH_FFT_REPORT: if (sizeof(*fftr) > tlv_len) { ath10k_warn(ar, "failed to parse fft report at byte %d\n", i); return; } fftr_len = tlv_len - sizeof(*fftr); fftr = (struct phyerr_fft_report *)tlv_buf; res = ath10k_spectral_process_fft(ar, event, fftr, fftr_len, tsf); if (res < 0) { ath10k_warn(ar, "failed to process fft report: %d\n", res); return; } break; } i += sizeof(*tlv) + tlv_len; } } static void ath10k_wmi_event_phyerr(struct ath10k *ar, struct sk_buff *skb) { struct wmi_comb_phyerr_rx_event *comb_event; struct wmi_single_phyerr_rx_event *event; u32 count, i, buf_len, phy_err_code; u64 tsf; int left_len = skb->len; ATH10K_DFS_STAT_INC(ar, phy_errors); /* Check if combined event available */ if (left_len < sizeof(*comb_event)) { ath10k_warn(ar, "wmi phyerr combined event wrong len\n"); return; } left_len -= sizeof(*comb_event); /* Check number of included events */ comb_event = (struct wmi_comb_phyerr_rx_event *)skb->data; count = __le32_to_cpu(comb_event->hdr.num_phyerr_events); tsf = __le32_to_cpu(comb_event->hdr.tsf_u32); tsf <<= 32; tsf |= __le32_to_cpu(comb_event->hdr.tsf_l32); ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi event phyerr count %d tsf64 0x%llX\n", count, tsf); event = (struct wmi_single_phyerr_rx_event *)comb_event->bufp; for (i = 0; i < count; i++) { /* Check if we can read event header */ if (left_len < sizeof(*event)) { ath10k_warn(ar, "single event (%d) wrong head len\n", i); return; } left_len -= sizeof(*event); buf_len = __le32_to_cpu(event->hdr.buf_len); phy_err_code = event->hdr.phy_err_code; if (left_len < buf_len) { ath10k_warn(ar, "single event (%d) wrong buf len\n", i); return; } left_len -= buf_len; switch (phy_err_code) { case PHY_ERROR_RADAR: ath10k_wmi_event_dfs(ar, event, tsf); break; case PHY_ERROR_SPECTRAL_SCAN: ath10k_wmi_event_spectral_scan(ar, event, tsf); break; case PHY_ERROR_FALSE_RADAR_EXT: ath10k_wmi_event_dfs(ar, event, tsf); ath10k_wmi_event_spectral_scan(ar, event, tsf); break; default: break; } event += sizeof(*event) + buf_len; } } static void ath10k_wmi_event_roam(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ar, ATH10K_DBG_WMI, "WMI_ROAM_EVENTID\n"); } static void ath10k_wmi_event_profile_match(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ar, ATH10K_DBG_WMI, "WMI_PROFILE_MATCH\n"); } static void ath10k_wmi_event_debug_print(struct ath10k *ar, struct sk_buff *skb) { char buf[101], c; int i; for (i = 0; i < sizeof(buf) - 1; i++) { if (i >= skb->len) break; c = skb->data[i]; if (c == '\0') break; if (isascii(c) && isprint(c)) buf[i] = c; else buf[i] = '.'; } if (i == sizeof(buf) - 1) ath10k_warn(ar, "wmi debug print truncated: %d\n", skb->len); /* for some reason the debug prints end with \n, remove that */ if (skb->data[i - 1] == '\n') i--; /* the last byte is always reserved for the null character */ buf[i] = '\0'; ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi event debug print '%s'\n", buf); } static void ath10k_wmi_event_pdev_qvit(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ar, ATH10K_DBG_WMI, "WMI_PDEV_QVIT_EVENTID\n"); } static void ath10k_wmi_event_wlan_profile_data(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ar, ATH10K_DBG_WMI, "WMI_WLAN_PROFILE_DATA_EVENTID\n"); } static void ath10k_wmi_event_rtt_measurement_report(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ar, ATH10K_DBG_WMI, "WMI_RTT_MEASUREMENT_REPORT_EVENTID\n"); } static void ath10k_wmi_event_tsf_measurement_report(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ar, ATH10K_DBG_WMI, "WMI_TSF_MEASUREMENT_REPORT_EVENTID\n"); } static void ath10k_wmi_event_rtt_error_report(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ar, ATH10K_DBG_WMI, "WMI_RTT_ERROR_REPORT_EVENTID\n"); } static void ath10k_wmi_event_wow_wakeup_host(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ar, ATH10K_DBG_WMI, "WMI_WOW_WAKEUP_HOST_EVENTID\n"); } static void ath10k_wmi_event_dcs_interference(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ar, ATH10K_DBG_WMI, "WMI_DCS_INTERFERENCE_EVENTID\n"); } static void ath10k_wmi_event_pdev_tpc_config(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ar, ATH10K_DBG_WMI, "WMI_PDEV_TPC_CONFIG_EVENTID\n"); } static void ath10k_wmi_event_pdev_ftm_intg(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ar, ATH10K_DBG_WMI, "WMI_PDEV_FTM_INTG_EVENTID\n"); } static void ath10k_wmi_event_gtk_offload_status(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ar, ATH10K_DBG_WMI, "WMI_GTK_OFFLOAD_STATUS_EVENTID\n"); } static void ath10k_wmi_event_gtk_rekey_fail(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ar, ATH10K_DBG_WMI, "WMI_GTK_REKEY_FAIL_EVENTID\n"); } static void ath10k_wmi_event_delba_complete(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ar, ATH10K_DBG_WMI, "WMI_TX_DELBA_COMPLETE_EVENTID\n"); } static void ath10k_wmi_event_addba_complete(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ar, ATH10K_DBG_WMI, "WMI_TX_ADDBA_COMPLETE_EVENTID\n"); } static void ath10k_wmi_event_vdev_install_key_complete(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ar, ATH10K_DBG_WMI, "WMI_VDEV_INSTALL_KEY_COMPLETE_EVENTID\n"); } static void ath10k_wmi_event_inst_rssi_stats(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ar, ATH10K_DBG_WMI, "WMI_INST_RSSI_STATS_EVENTID\n"); } static void ath10k_wmi_event_vdev_standby_req(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ar, ATH10K_DBG_WMI, "WMI_VDEV_STANDBY_REQ_EVENTID\n"); } static void ath10k_wmi_event_vdev_resume_req(struct ath10k *ar, struct sk_buff *skb) { ath10k_dbg(ar, ATH10K_DBG_WMI, "WMI_VDEV_RESUME_REQ_EVENTID\n"); } static int ath10k_wmi_alloc_host_mem(struct ath10k *ar, u32 req_id, u32 num_units, u32 unit_len) { dma_addr_t paddr; u32 pool_size; int idx = ar->wmi.num_mem_chunks; pool_size = num_units * round_up(unit_len, 4); if (!pool_size) return -EINVAL; ar->wmi.mem_chunks[idx].vaddr = dma_alloc_coherent(ar->dev, pool_size, &paddr, GFP_ATOMIC); if (!ar->wmi.mem_chunks[idx].vaddr) { ath10k_warn(ar, "failed to allocate memory chunk\n"); return -ENOMEM; } memset(ar->wmi.mem_chunks[idx].vaddr, 0, pool_size); ar->wmi.mem_chunks[idx].paddr = paddr; ar->wmi.mem_chunks[idx].len = pool_size; ar->wmi.mem_chunks[idx].req_id = req_id; ar->wmi.num_mem_chunks++; return 0; } static void ath10k_wmi_service_ready_event_rx(struct ath10k *ar, struct sk_buff *skb) { struct wmi_service_ready_event *ev = (void *)skb->data; DECLARE_BITMAP(svc_bmap, WMI_SERVICE_MAX) = {}; if (skb->len < sizeof(*ev)) { ath10k_warn(ar, "Service ready event was %d B but expected %zu B. Wrong firmware version?\n", skb->len, sizeof(*ev)); return; } ar->hw_min_tx_power = __le32_to_cpu(ev->hw_min_tx_power); ar->hw_max_tx_power = __le32_to_cpu(ev->hw_max_tx_power); ar->ht_cap_info = __le32_to_cpu(ev->ht_cap_info); ar->vht_cap_info = __le32_to_cpu(ev->vht_cap_info); ar->fw_version_major = (__le32_to_cpu(ev->sw_version) & 0xff000000) >> 24; ar->fw_version_minor = (__le32_to_cpu(ev->sw_version) & 0x00ffffff); ar->fw_version_release = (__le32_to_cpu(ev->sw_version_1) & 0xffff0000) >> 16; ar->fw_version_build = (__le32_to_cpu(ev->sw_version_1) & 0x0000ffff); ar->phy_capability = __le32_to_cpu(ev->phy_capability); ar->num_rf_chains = __le32_to_cpu(ev->num_rf_chains); /* only manually set fw features when not using FW IE format */ if (ar->fw_api == 1 && ar->fw_version_build > 636) set_bit(ATH10K_FW_FEATURE_EXT_WMI_MGMT_RX, ar->fw_features); if (ar->num_rf_chains > WMI_MAX_SPATIAL_STREAM) { ath10k_warn(ar, "hardware advertises support for more spatial streams than it should (%d > %d)\n", ar->num_rf_chains, WMI_MAX_SPATIAL_STREAM); ar->num_rf_chains = WMI_MAX_SPATIAL_STREAM; } ar->ath_common.regulatory.current_rd = __le32_to_cpu(ev->hal_reg_capabilities.eeprom_rd); wmi_main_svc_map(ev->wmi_service_bitmap, svc_bmap); ath10k_debug_read_service_map(ar, svc_bmap, sizeof(svc_bmap)); ath10k_dbg_dump(ar, ATH10K_DBG_WMI, NULL, "wmi svc: ", ev->wmi_service_bitmap, sizeof(ev->wmi_service_bitmap)); if (strlen(ar->hw->wiphy->fw_version) == 0) { snprintf(ar->hw->wiphy->fw_version, sizeof(ar->hw->wiphy->fw_version), "%u.%u.%u.%u", ar->fw_version_major, ar->fw_version_minor, ar->fw_version_release, ar->fw_version_build); } /* FIXME: it probably should be better to support this */ if (__le32_to_cpu(ev->num_mem_reqs) > 0) { ath10k_warn(ar, "target requested %d memory chunks; ignoring\n", __le32_to_cpu(ev->num_mem_reqs)); } ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi event service ready sw_ver 0x%08x sw_ver1 0x%08x abi_ver %u phy_cap 0x%08x ht_cap 0x%08x vht_cap 0x%08x vht_supp_msc 0x%08x sys_cap_info 0x%08x mem_reqs %u num_rf_chains %u\n", __le32_to_cpu(ev->sw_version), __le32_to_cpu(ev->sw_version_1), __le32_to_cpu(ev->abi_version), __le32_to_cpu(ev->phy_capability), __le32_to_cpu(ev->ht_cap_info), __le32_to_cpu(ev->vht_cap_info), __le32_to_cpu(ev->vht_supp_mcs), __le32_to_cpu(ev->sys_cap_info), __le32_to_cpu(ev->num_mem_reqs), __le32_to_cpu(ev->num_rf_chains)); complete(&ar->wmi.service_ready); } static void ath10k_wmi_10x_service_ready_event_rx(struct ath10k *ar, struct sk_buff *skb) { u32 num_units, req_id, unit_size, num_mem_reqs, num_unit_info, i; int ret; struct wmi_service_ready_event_10x *ev = (void *)skb->data; DECLARE_BITMAP(svc_bmap, WMI_SERVICE_MAX) = {}; if (skb->len < sizeof(*ev)) { ath10k_warn(ar, "Service ready event was %d B but expected %zu B. Wrong firmware version?\n", skb->len, sizeof(*ev)); return; } ar->hw_min_tx_power = __le32_to_cpu(ev->hw_min_tx_power); ar->hw_max_tx_power = __le32_to_cpu(ev->hw_max_tx_power); ar->ht_cap_info = __le32_to_cpu(ev->ht_cap_info); ar->vht_cap_info = __le32_to_cpu(ev->vht_cap_info); ar->fw_version_major = (__le32_to_cpu(ev->sw_version) & 0xff000000) >> 24; ar->fw_version_minor = (__le32_to_cpu(ev->sw_version) & 0x00ffffff); ar->phy_capability = __le32_to_cpu(ev->phy_capability); ar->num_rf_chains = __le32_to_cpu(ev->num_rf_chains); if (ar->num_rf_chains > WMI_MAX_SPATIAL_STREAM) { ath10k_warn(ar, "hardware advertises support for more spatial streams than it should (%d > %d)\n", ar->num_rf_chains, WMI_MAX_SPATIAL_STREAM); ar->num_rf_chains = WMI_MAX_SPATIAL_STREAM; } ar->ath_common.regulatory.current_rd = __le32_to_cpu(ev->hal_reg_capabilities.eeprom_rd); wmi_10x_svc_map(ev->wmi_service_bitmap, svc_bmap); ath10k_debug_read_service_map(ar, svc_bmap, sizeof(svc_bmap)); ath10k_dbg_dump(ar, ATH10K_DBG_WMI, NULL, "wmi svc: ", ev->wmi_service_bitmap, sizeof(ev->wmi_service_bitmap)); if (strlen(ar->hw->wiphy->fw_version) == 0) { snprintf(ar->hw->wiphy->fw_version, sizeof(ar->hw->wiphy->fw_version), "%u.%u", ar->fw_version_major, ar->fw_version_minor); } num_mem_reqs = __le32_to_cpu(ev->num_mem_reqs); if (num_mem_reqs > ATH10K_MAX_MEM_REQS) { ath10k_warn(ar, "requested memory chunks number (%d) exceeds the limit\n", num_mem_reqs); return; } if (!num_mem_reqs) goto exit; ath10k_dbg(ar, ATH10K_DBG_WMI, "firmware has requested %d memory chunks\n", num_mem_reqs); for (i = 0; i < num_mem_reqs; ++i) { req_id = __le32_to_cpu(ev->mem_reqs[i].req_id); num_units = __le32_to_cpu(ev->mem_reqs[i].num_units); unit_size = __le32_to_cpu(ev->mem_reqs[i].unit_size); num_unit_info = __le32_to_cpu(ev->mem_reqs[i].num_unit_info); if (num_unit_info & NUM_UNITS_IS_NUM_PEERS) /* number of units to allocate is number of * peers, 1 extra for self peer on target */ /* this needs to be tied, host and target * can get out of sync */ num_units = TARGET_10X_NUM_PEERS + 1; else if (num_unit_info & NUM_UNITS_IS_NUM_VDEVS) num_units = TARGET_10X_NUM_VDEVS + 1; ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi mem_req_id %d num_units %d num_unit_info %d unit size %d actual units %d\n", req_id, __le32_to_cpu(ev->mem_reqs[i].num_units), num_unit_info, unit_size, num_units); ret = ath10k_wmi_alloc_host_mem(ar, req_id, num_units, unit_size); if (ret) return; } exit: ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi event service ready sw_ver 0x%08x abi_ver %u phy_cap 0x%08x ht_cap 0x%08x vht_cap 0x%08x vht_supp_msc 0x%08x sys_cap_info 0x%08x mem_reqs %u num_rf_chains %u\n", __le32_to_cpu(ev->sw_version), __le32_to_cpu(ev->abi_version), __le32_to_cpu(ev->phy_capability), __le32_to_cpu(ev->ht_cap_info), __le32_to_cpu(ev->vht_cap_info), __le32_to_cpu(ev->vht_supp_mcs), __le32_to_cpu(ev->sys_cap_info), __le32_to_cpu(ev->num_mem_reqs), __le32_to_cpu(ev->num_rf_chains)); complete(&ar->wmi.service_ready); } static int ath10k_wmi_ready_event_rx(struct ath10k *ar, struct sk_buff *skb) { struct wmi_ready_event *ev = (struct wmi_ready_event *)skb->data; if (WARN_ON(skb->len < sizeof(*ev))) return -EINVAL; memcpy(ar->mac_addr, ev->mac_addr.addr, ETH_ALEN); ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi event ready sw_version %u abi_version %u mac_addr %pM status %d skb->len %i ev-sz %zu\n", __le32_to_cpu(ev->sw_version), __le32_to_cpu(ev->abi_version), ev->mac_addr.addr, __le32_to_cpu(ev->status), skb->len, sizeof(*ev)); complete(&ar->wmi.unified_ready); return 0; } static void ath10k_wmi_main_process_rx(struct ath10k *ar, struct sk_buff *skb) { struct wmi_cmd_hdr *cmd_hdr; enum wmi_event_id id; cmd_hdr = (struct wmi_cmd_hdr *)skb->data; id = MS(__le32_to_cpu(cmd_hdr->cmd_id), WMI_CMD_HDR_CMD_ID); if (skb_pull(skb, sizeof(struct wmi_cmd_hdr)) == NULL) return; trace_ath10k_wmi_event(ar, id, skb->data, skb->len); switch (id) { case WMI_MGMT_RX_EVENTID: ath10k_wmi_event_mgmt_rx(ar, skb); /* mgmt_rx() owns the skb now! */ return; case WMI_SCAN_EVENTID: ath10k_wmi_event_scan(ar, skb); break; case WMI_CHAN_INFO_EVENTID: ath10k_wmi_event_chan_info(ar, skb); break; case WMI_ECHO_EVENTID: ath10k_wmi_event_echo(ar, skb); break; case WMI_DEBUG_MESG_EVENTID: ath10k_wmi_event_debug_mesg(ar, skb); break; case WMI_UPDATE_STATS_EVENTID: ath10k_wmi_event_update_stats(ar, skb); break; case WMI_VDEV_START_RESP_EVENTID: ath10k_wmi_event_vdev_start_resp(ar, skb); break; case WMI_VDEV_STOPPED_EVENTID: ath10k_wmi_event_vdev_stopped(ar, skb); break; case WMI_PEER_STA_KICKOUT_EVENTID: ath10k_wmi_event_peer_sta_kickout(ar, skb); break; case WMI_HOST_SWBA_EVENTID: ath10k_wmi_event_host_swba(ar, skb); break; case WMI_TBTTOFFSET_UPDATE_EVENTID: ath10k_wmi_event_tbttoffset_update(ar, skb); break; case WMI_PHYERR_EVENTID: ath10k_wmi_event_phyerr(ar, skb); break; case WMI_ROAM_EVENTID: ath10k_wmi_event_roam(ar, skb); break; case WMI_PROFILE_MATCH: ath10k_wmi_event_profile_match(ar, skb); break; case WMI_DEBUG_PRINT_EVENTID: ath10k_wmi_event_debug_print(ar, skb); break; case WMI_PDEV_QVIT_EVENTID: ath10k_wmi_event_pdev_qvit(ar, skb); break; case WMI_WLAN_PROFILE_DATA_EVENTID: ath10k_wmi_event_wlan_profile_data(ar, skb); break; case WMI_RTT_MEASUREMENT_REPORT_EVENTID: ath10k_wmi_event_rtt_measurement_report(ar, skb); break; case WMI_TSF_MEASUREMENT_REPORT_EVENTID: ath10k_wmi_event_tsf_measurement_report(ar, skb); break; case WMI_RTT_ERROR_REPORT_EVENTID: ath10k_wmi_event_rtt_error_report(ar, skb); break; case WMI_WOW_WAKEUP_HOST_EVENTID: ath10k_wmi_event_wow_wakeup_host(ar, skb); break; case WMI_DCS_INTERFERENCE_EVENTID: ath10k_wmi_event_dcs_interference(ar, skb); break; case WMI_PDEV_TPC_CONFIG_EVENTID: ath10k_wmi_event_pdev_tpc_config(ar, skb); break; case WMI_PDEV_FTM_INTG_EVENTID: ath10k_wmi_event_pdev_ftm_intg(ar, skb); break; case WMI_GTK_OFFLOAD_STATUS_EVENTID: ath10k_wmi_event_gtk_offload_status(ar, skb); break; case WMI_GTK_REKEY_FAIL_EVENTID: ath10k_wmi_event_gtk_rekey_fail(ar, skb); break; case WMI_TX_DELBA_COMPLETE_EVENTID: ath10k_wmi_event_delba_complete(ar, skb); break; case WMI_TX_ADDBA_COMPLETE_EVENTID: ath10k_wmi_event_addba_complete(ar, skb); break; case WMI_VDEV_INSTALL_KEY_COMPLETE_EVENTID: ath10k_wmi_event_vdev_install_key_complete(ar, skb); break; case WMI_SERVICE_READY_EVENTID: ath10k_wmi_service_ready_event_rx(ar, skb); break; case WMI_READY_EVENTID: ath10k_wmi_ready_event_rx(ar, skb); break; default: ath10k_warn(ar, "Unknown eventid: %d\n", id); break; } dev_kfree_skb(skb); } static void ath10k_wmi_10x_process_rx(struct ath10k *ar, struct sk_buff *skb) { struct wmi_cmd_hdr *cmd_hdr; enum wmi_10x_event_id id; bool consumed; cmd_hdr = (struct wmi_cmd_hdr *)skb->data; id = MS(__le32_to_cpu(cmd_hdr->cmd_id), WMI_CMD_HDR_CMD_ID); if (skb_pull(skb, sizeof(struct wmi_cmd_hdr)) == NULL) return; trace_ath10k_wmi_event(ar, id, skb->data, skb->len); consumed = ath10k_tm_event_wmi(ar, id, skb); /* Ready event must be handled normally also in UTF mode so that we * know the UTF firmware has booted, others we are just bypass WMI * events to testmode. */ if (consumed && id != WMI_10X_READY_EVENTID) { ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi testmode consumed 0x%x\n", id); goto out; } switch (id) { case WMI_10X_MGMT_RX_EVENTID: ath10k_wmi_event_mgmt_rx(ar, skb); /* mgmt_rx() owns the skb now! */ return; case WMI_10X_SCAN_EVENTID: ath10k_wmi_event_scan(ar, skb); break; case WMI_10X_CHAN_INFO_EVENTID: ath10k_wmi_event_chan_info(ar, skb); break; case WMI_10X_ECHO_EVENTID: ath10k_wmi_event_echo(ar, skb); break; case WMI_10X_DEBUG_MESG_EVENTID: ath10k_wmi_event_debug_mesg(ar, skb); break; case WMI_10X_UPDATE_STATS_EVENTID: ath10k_wmi_event_update_stats(ar, skb); break; case WMI_10X_VDEV_START_RESP_EVENTID: ath10k_wmi_event_vdev_start_resp(ar, skb); break; case WMI_10X_VDEV_STOPPED_EVENTID: ath10k_wmi_event_vdev_stopped(ar, skb); break; case WMI_10X_PEER_STA_KICKOUT_EVENTID: ath10k_wmi_event_peer_sta_kickout(ar, skb); break; case WMI_10X_HOST_SWBA_EVENTID: ath10k_wmi_event_host_swba(ar, skb); break; case WMI_10X_TBTTOFFSET_UPDATE_EVENTID: ath10k_wmi_event_tbttoffset_update(ar, skb); break; case WMI_10X_PHYERR_EVENTID: ath10k_wmi_event_phyerr(ar, skb); break; case WMI_10X_ROAM_EVENTID: ath10k_wmi_event_roam(ar, skb); break; case WMI_10X_PROFILE_MATCH: ath10k_wmi_event_profile_match(ar, skb); break; case WMI_10X_DEBUG_PRINT_EVENTID: ath10k_wmi_event_debug_print(ar, skb); break; case WMI_10X_PDEV_QVIT_EVENTID: ath10k_wmi_event_pdev_qvit(ar, skb); break; case WMI_10X_WLAN_PROFILE_DATA_EVENTID: ath10k_wmi_event_wlan_profile_data(ar, skb); break; case WMI_10X_RTT_MEASUREMENT_REPORT_EVENTID: ath10k_wmi_event_rtt_measurement_report(ar, skb); break; case WMI_10X_TSF_MEASUREMENT_REPORT_EVENTID: ath10k_wmi_event_tsf_measurement_report(ar, skb); break; case WMI_10X_RTT_ERROR_REPORT_EVENTID: ath10k_wmi_event_rtt_error_report(ar, skb); break; case WMI_10X_WOW_WAKEUP_HOST_EVENTID: ath10k_wmi_event_wow_wakeup_host(ar, skb); break; case WMI_10X_DCS_INTERFERENCE_EVENTID: ath10k_wmi_event_dcs_interference(ar, skb); break; case WMI_10X_PDEV_TPC_CONFIG_EVENTID: ath10k_wmi_event_pdev_tpc_config(ar, skb); break; case WMI_10X_INST_RSSI_STATS_EVENTID: ath10k_wmi_event_inst_rssi_stats(ar, skb); break; case WMI_10X_VDEV_STANDBY_REQ_EVENTID: ath10k_wmi_event_vdev_standby_req(ar, skb); break; case WMI_10X_VDEV_RESUME_REQ_EVENTID: ath10k_wmi_event_vdev_resume_req(ar, skb); break; case WMI_10X_SERVICE_READY_EVENTID: ath10k_wmi_10x_service_ready_event_rx(ar, skb); break; case WMI_10X_READY_EVENTID: ath10k_wmi_ready_event_rx(ar, skb); break; case WMI_10X_PDEV_UTF_EVENTID: /* ignore utf events */ break; default: ath10k_warn(ar, "Unknown eventid: %d\n", id); break; } out: dev_kfree_skb(skb); } static void ath10k_wmi_10_2_process_rx(struct ath10k *ar, struct sk_buff *skb) { struct wmi_cmd_hdr *cmd_hdr; enum wmi_10_2_event_id id; cmd_hdr = (struct wmi_cmd_hdr *)skb->data; id = MS(__le32_to_cpu(cmd_hdr->cmd_id), WMI_CMD_HDR_CMD_ID); if (skb_pull(skb, sizeof(struct wmi_cmd_hdr)) == NULL) return; trace_ath10k_wmi_event(ar, id, skb->data, skb->len); switch (id) { case WMI_10_2_MGMT_RX_EVENTID: ath10k_wmi_event_mgmt_rx(ar, skb); /* mgmt_rx() owns the skb now! */ return; case WMI_10_2_SCAN_EVENTID: ath10k_wmi_event_scan(ar, skb); break; case WMI_10_2_CHAN_INFO_EVENTID: ath10k_wmi_event_chan_info(ar, skb); break; case WMI_10_2_ECHO_EVENTID: ath10k_wmi_event_echo(ar, skb); break; case WMI_10_2_DEBUG_MESG_EVENTID: ath10k_wmi_event_debug_mesg(ar, skb); break; case WMI_10_2_UPDATE_STATS_EVENTID: ath10k_wmi_event_update_stats(ar, skb); break; case WMI_10_2_VDEV_START_RESP_EVENTID: ath10k_wmi_event_vdev_start_resp(ar, skb); break; case WMI_10_2_VDEV_STOPPED_EVENTID: ath10k_wmi_event_vdev_stopped(ar, skb); break; case WMI_10_2_PEER_STA_KICKOUT_EVENTID: ath10k_wmi_event_peer_sta_kickout(ar, skb); break; case WMI_10_2_HOST_SWBA_EVENTID: ath10k_wmi_event_host_swba(ar, skb); break; case WMI_10_2_TBTTOFFSET_UPDATE_EVENTID: ath10k_wmi_event_tbttoffset_update(ar, skb); break; case WMI_10_2_PHYERR_EVENTID: ath10k_wmi_event_phyerr(ar, skb); break; case WMI_10_2_ROAM_EVENTID: ath10k_wmi_event_roam(ar, skb); break; case WMI_10_2_PROFILE_MATCH: ath10k_wmi_event_profile_match(ar, skb); break; case WMI_10_2_DEBUG_PRINT_EVENTID: ath10k_wmi_event_debug_print(ar, skb); break; case WMI_10_2_PDEV_QVIT_EVENTID: ath10k_wmi_event_pdev_qvit(ar, skb); break; case WMI_10_2_WLAN_PROFILE_DATA_EVENTID: ath10k_wmi_event_wlan_profile_data(ar, skb); break; case WMI_10_2_RTT_MEASUREMENT_REPORT_EVENTID: ath10k_wmi_event_rtt_measurement_report(ar, skb); break; case WMI_10_2_TSF_MEASUREMENT_REPORT_EVENTID: ath10k_wmi_event_tsf_measurement_report(ar, skb); break; case WMI_10_2_RTT_ERROR_REPORT_EVENTID: ath10k_wmi_event_rtt_error_report(ar, skb); break; case WMI_10_2_WOW_WAKEUP_HOST_EVENTID: ath10k_wmi_event_wow_wakeup_host(ar, skb); break; case WMI_10_2_DCS_INTERFERENCE_EVENTID: ath10k_wmi_event_dcs_interference(ar, skb); break; case WMI_10_2_PDEV_TPC_CONFIG_EVENTID: ath10k_wmi_event_pdev_tpc_config(ar, skb); break; case WMI_10_2_INST_RSSI_STATS_EVENTID: ath10k_wmi_event_inst_rssi_stats(ar, skb); break; case WMI_10_2_VDEV_STANDBY_REQ_EVENTID: ath10k_wmi_event_vdev_standby_req(ar, skb); break; case WMI_10_2_VDEV_RESUME_REQ_EVENTID: ath10k_wmi_event_vdev_resume_req(ar, skb); break; case WMI_10_2_SERVICE_READY_EVENTID: ath10k_wmi_10x_service_ready_event_rx(ar, skb); break; case WMI_10_2_READY_EVENTID: ath10k_wmi_ready_event_rx(ar, skb); break; case WMI_10_2_RTT_KEEPALIVE_EVENTID: case WMI_10_2_GPIO_INPUT_EVENTID: case WMI_10_2_PEER_RATECODE_LIST_EVENTID: case WMI_10_2_GENERIC_BUFFER_EVENTID: case WMI_10_2_MCAST_BUF_RELEASE_EVENTID: case WMI_10_2_MCAST_LIST_AGEOUT_EVENTID: case WMI_10_2_WDS_PEER_EVENTID: ath10k_dbg(ar, ATH10K_DBG_WMI, "received event id %d not implemented\n", id); break; default: ath10k_warn(ar, "Unknown eventid: %d\n", id); break; } dev_kfree_skb(skb); } static void ath10k_wmi_process_rx(struct ath10k *ar, struct sk_buff *skb) { if (test_bit(ATH10K_FW_FEATURE_WMI_10X, ar->fw_features)) { if (test_bit(ATH10K_FW_FEATURE_WMI_10_2, ar->fw_features)) ath10k_wmi_10_2_process_rx(ar, skb); else ath10k_wmi_10x_process_rx(ar, skb); } else { ath10k_wmi_main_process_rx(ar, skb); } } /* WMI Initialization functions */ int ath10k_wmi_attach(struct ath10k *ar) { if (test_bit(ATH10K_FW_FEATURE_WMI_10X, ar->fw_features)) { if (test_bit(ATH10K_FW_FEATURE_WMI_10_2, ar->fw_features)) ar->wmi.cmd = &wmi_10_2_cmd_map; else ar->wmi.cmd = &wmi_10x_cmd_map; ar->wmi.vdev_param = &wmi_10x_vdev_param_map; ar->wmi.pdev_param = &wmi_10x_pdev_param_map; } else { ar->wmi.cmd = &wmi_cmd_map; ar->wmi.vdev_param = &wmi_vdev_param_map; ar->wmi.pdev_param = &wmi_pdev_param_map; } init_completion(&ar->wmi.service_ready); init_completion(&ar->wmi.unified_ready); init_waitqueue_head(&ar->wmi.tx_credits_wq); return 0; } void ath10k_wmi_detach(struct ath10k *ar) { int i; /* free the host memory chunks requested by firmware */ for (i = 0; i < ar->wmi.num_mem_chunks; i++) { dma_free_coherent(ar->dev, ar->wmi.mem_chunks[i].len, ar->wmi.mem_chunks[i].vaddr, ar->wmi.mem_chunks[i].paddr); } ar->wmi.num_mem_chunks = 0; } int ath10k_wmi_connect(struct ath10k *ar) { int status; struct ath10k_htc_svc_conn_req conn_req; struct ath10k_htc_svc_conn_resp conn_resp; memset(&conn_req, 0, sizeof(conn_req)); memset(&conn_resp, 0, sizeof(conn_resp)); /* these fields are the same for all service endpoints */ conn_req.ep_ops.ep_tx_complete = ath10k_wmi_htc_tx_complete; conn_req.ep_ops.ep_rx_complete = ath10k_wmi_process_rx; conn_req.ep_ops.ep_tx_credits = ath10k_wmi_op_ep_tx_credits; /* connect to control service */ conn_req.service_id = ATH10K_HTC_SVC_ID_WMI_CONTROL; status = ath10k_htc_connect_service(&ar->htc, &conn_req, &conn_resp); if (status) { ath10k_warn(ar, "failed to connect to WMI CONTROL service status: %d\n", status); return status; } ar->wmi.eid = conn_resp.eid; return 0; } static int ath10k_wmi_main_pdev_set_regdomain(struct ath10k *ar, u16 rd, u16 rd2g, u16 rd5g, u16 ctl2g, u16 ctl5g) { struct wmi_pdev_set_regdomain_cmd *cmd; struct sk_buff *skb; skb = ath10k_wmi_alloc_skb(ar, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_pdev_set_regdomain_cmd *)skb->data; cmd->reg_domain = __cpu_to_le32(rd); cmd->reg_domain_2G = __cpu_to_le32(rd2g); cmd->reg_domain_5G = __cpu_to_le32(rd5g); cmd->conformance_test_limit_2G = __cpu_to_le32(ctl2g); cmd->conformance_test_limit_5G = __cpu_to_le32(ctl5g); ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi pdev regdomain rd %x rd2g %x rd5g %x ctl2g %x ctl5g %x\n", rd, rd2g, rd5g, ctl2g, ctl5g); return ath10k_wmi_cmd_send(ar, skb, ar->wmi.cmd->pdev_set_regdomain_cmdid); } static int ath10k_wmi_10x_pdev_set_regdomain(struct ath10k *ar, u16 rd, u16 rd2g, u16 rd5g, u16 ctl2g, u16 ctl5g, enum wmi_dfs_region dfs_reg) { struct wmi_pdev_set_regdomain_cmd_10x *cmd; struct sk_buff *skb; skb = ath10k_wmi_alloc_skb(ar, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_pdev_set_regdomain_cmd_10x *)skb->data; cmd->reg_domain = __cpu_to_le32(rd); cmd->reg_domain_2G = __cpu_to_le32(rd2g); cmd->reg_domain_5G = __cpu_to_le32(rd5g); cmd->conformance_test_limit_2G = __cpu_to_le32(ctl2g); cmd->conformance_test_limit_5G = __cpu_to_le32(ctl5g); cmd->dfs_domain = __cpu_to_le32(dfs_reg); ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi pdev regdomain rd %x rd2g %x rd5g %x ctl2g %x ctl5g %x dfs_region %x\n", rd, rd2g, rd5g, ctl2g, ctl5g, dfs_reg); return ath10k_wmi_cmd_send(ar, skb, ar->wmi.cmd->pdev_set_regdomain_cmdid); } int ath10k_wmi_pdev_set_regdomain(struct ath10k *ar, u16 rd, u16 rd2g, u16 rd5g, u16 ctl2g, u16 ctl5g, enum wmi_dfs_region dfs_reg) { if (test_bit(ATH10K_FW_FEATURE_WMI_10X, ar->fw_features)) return ath10k_wmi_10x_pdev_set_regdomain(ar, rd, rd2g, rd5g, ctl2g, ctl5g, dfs_reg); else return ath10k_wmi_main_pdev_set_regdomain(ar, rd, rd2g, rd5g, ctl2g, ctl5g); } int ath10k_wmi_pdev_set_channel(struct ath10k *ar, const struct wmi_channel_arg *arg) { struct wmi_set_channel_cmd *cmd; struct sk_buff *skb; u32 ch_flags = 0; if (arg->passive) return -EINVAL; skb = ath10k_wmi_alloc_skb(ar, sizeof(*cmd)); if (!skb) return -ENOMEM; if (arg->chan_radar) ch_flags |= WMI_CHAN_FLAG_DFS; cmd = (struct wmi_set_channel_cmd *)skb->data; cmd->chan.mhz = __cpu_to_le32(arg->freq); cmd->chan.band_center_freq1 = __cpu_to_le32(arg->freq); cmd->chan.mode = arg->mode; cmd->chan.flags |= __cpu_to_le32(ch_flags); cmd->chan.min_power = arg->min_power; cmd->chan.max_power = arg->max_power; cmd->chan.reg_power = arg->max_reg_power; cmd->chan.reg_classid = arg->reg_class_id; cmd->chan.antenna_max = arg->max_antenna_gain; ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi set channel mode %d freq %d\n", arg->mode, arg->freq); return ath10k_wmi_cmd_send(ar, skb, ar->wmi.cmd->pdev_set_channel_cmdid); } int ath10k_wmi_pdev_suspend_target(struct ath10k *ar, u32 suspend_opt) { struct wmi_pdev_suspend_cmd *cmd; struct sk_buff *skb; skb = ath10k_wmi_alloc_skb(ar, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_pdev_suspend_cmd *)skb->data; cmd->suspend_opt = __cpu_to_le32(suspend_opt); return ath10k_wmi_cmd_send(ar, skb, ar->wmi.cmd->pdev_suspend_cmdid); } int ath10k_wmi_pdev_resume_target(struct ath10k *ar) { struct sk_buff *skb; skb = ath10k_wmi_alloc_skb(ar, 0); if (skb == NULL) return -ENOMEM; return ath10k_wmi_cmd_send(ar, skb, ar->wmi.cmd->pdev_resume_cmdid); } int ath10k_wmi_pdev_set_param(struct ath10k *ar, u32 id, u32 value) { struct wmi_pdev_set_param_cmd *cmd; struct sk_buff *skb; if (id == WMI_PDEV_PARAM_UNSUPPORTED) { ath10k_warn(ar, "pdev param %d not supported by firmware\n", id); return -EOPNOTSUPP; } skb = ath10k_wmi_alloc_skb(ar, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_pdev_set_param_cmd *)skb->data; cmd->param_id = __cpu_to_le32(id); cmd->param_value = __cpu_to_le32(value); ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi pdev set param %d value %d\n", id, value); return ath10k_wmi_cmd_send(ar, skb, ar->wmi.cmd->pdev_set_param_cmdid); } static int ath10k_wmi_main_cmd_init(struct ath10k *ar) { struct wmi_init_cmd *cmd; struct sk_buff *buf; struct wmi_resource_config config = {}; u32 len, val; int i; config.num_vdevs = __cpu_to_le32(TARGET_NUM_VDEVS); config.num_peers = __cpu_to_le32(TARGET_NUM_PEERS + TARGET_NUM_VDEVS); config.num_offload_peers = __cpu_to_le32(TARGET_NUM_OFFLOAD_PEERS); config.num_offload_reorder_bufs = __cpu_to_le32(TARGET_NUM_OFFLOAD_REORDER_BUFS); config.num_peer_keys = __cpu_to_le32(TARGET_NUM_PEER_KEYS); config.num_tids = __cpu_to_le32(TARGET_NUM_TIDS); config.ast_skid_limit = __cpu_to_le32(TARGET_AST_SKID_LIMIT); config.tx_chain_mask = __cpu_to_le32(TARGET_TX_CHAIN_MASK); config.rx_chain_mask = __cpu_to_le32(TARGET_RX_CHAIN_MASK); config.rx_timeout_pri_vo = __cpu_to_le32(TARGET_RX_TIMEOUT_LO_PRI); config.rx_timeout_pri_vi = __cpu_to_le32(TARGET_RX_TIMEOUT_LO_PRI); config.rx_timeout_pri_be = __cpu_to_le32(TARGET_RX_TIMEOUT_LO_PRI); config.rx_timeout_pri_bk = __cpu_to_le32(TARGET_RX_TIMEOUT_HI_PRI); config.rx_decap_mode = __cpu_to_le32(TARGET_RX_DECAP_MODE); config.scan_max_pending_reqs = __cpu_to_le32(TARGET_SCAN_MAX_PENDING_REQS); config.bmiss_offload_max_vdev = __cpu_to_le32(TARGET_BMISS_OFFLOAD_MAX_VDEV); config.roam_offload_max_vdev = __cpu_to_le32(TARGET_ROAM_OFFLOAD_MAX_VDEV); config.roam_offload_max_ap_profiles = __cpu_to_le32(TARGET_ROAM_OFFLOAD_MAX_AP_PROFILES); config.num_mcast_groups = __cpu_to_le32(TARGET_NUM_MCAST_GROUPS); config.num_mcast_table_elems = __cpu_to_le32(TARGET_NUM_MCAST_TABLE_ELEMS); config.mcast2ucast_mode = __cpu_to_le32(TARGET_MCAST2UCAST_MODE); config.tx_dbg_log_size = __cpu_to_le32(TARGET_TX_DBG_LOG_SIZE); config.num_wds_entries = __cpu_to_le32(TARGET_NUM_WDS_ENTRIES); config.dma_burst_size = __cpu_to_le32(TARGET_DMA_BURST_SIZE); config.mac_aggr_delim = __cpu_to_le32(TARGET_MAC_AGGR_DELIM); val = TARGET_RX_SKIP_DEFRAG_TIMEOUT_DUP_DETECTION_CHECK; config.rx_skip_defrag_timeout_dup_detection_check = __cpu_to_le32(val); config.vow_config = __cpu_to_le32(TARGET_VOW_CONFIG); config.gtk_offload_max_vdev = __cpu_to_le32(TARGET_GTK_OFFLOAD_MAX_VDEV); config.num_msdu_desc = __cpu_to_le32(TARGET_NUM_MSDU_DESC); config.max_frag_entries = __cpu_to_le32(TARGET_MAX_FRAG_ENTRIES); len = sizeof(*cmd) + (sizeof(struct host_memory_chunk) * ar->wmi.num_mem_chunks); buf = ath10k_wmi_alloc_skb(ar, len); if (!buf) return -ENOMEM; cmd = (struct wmi_init_cmd *)buf->data; if (ar->wmi.num_mem_chunks == 0) { cmd->num_host_mem_chunks = 0; goto out; } ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi sending %d memory chunks info.\n", ar->wmi.num_mem_chunks); cmd->num_host_mem_chunks = __cpu_to_le32(ar->wmi.num_mem_chunks); for (i = 0; i < ar->wmi.num_mem_chunks; i++) { cmd->host_mem_chunks[i].ptr = __cpu_to_le32(ar->wmi.mem_chunks[i].paddr); cmd->host_mem_chunks[i].size = __cpu_to_le32(ar->wmi.mem_chunks[i].len); cmd->host_mem_chunks[i].req_id = __cpu_to_le32(ar->wmi.mem_chunks[i].req_id); ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi chunk %d len %d requested, addr 0x%llx\n", i, ar->wmi.mem_chunks[i].len, (unsigned long long)ar->wmi.mem_chunks[i].paddr); } out: memcpy(&cmd->resource_config, &config, sizeof(config)); ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi init\n"); return ath10k_wmi_cmd_send(ar, buf, ar->wmi.cmd->init_cmdid); } static int ath10k_wmi_10x_cmd_init(struct ath10k *ar) { struct wmi_init_cmd_10x *cmd; struct sk_buff *buf; struct wmi_resource_config_10x config = {}; u32 len, val; int i; config.num_vdevs = __cpu_to_le32(TARGET_10X_NUM_VDEVS); config.num_peers = __cpu_to_le32(TARGET_10X_NUM_PEERS); config.num_peer_keys = __cpu_to_le32(TARGET_10X_NUM_PEER_KEYS); config.num_tids = __cpu_to_le32(TARGET_10X_NUM_TIDS); config.ast_skid_limit = __cpu_to_le32(TARGET_10X_AST_SKID_LIMIT); config.tx_chain_mask = __cpu_to_le32(TARGET_10X_TX_CHAIN_MASK); config.rx_chain_mask = __cpu_to_le32(TARGET_10X_RX_CHAIN_MASK); config.rx_timeout_pri_vo = __cpu_to_le32(TARGET_10X_RX_TIMEOUT_LO_PRI); config.rx_timeout_pri_vi = __cpu_to_le32(TARGET_10X_RX_TIMEOUT_LO_PRI); config.rx_timeout_pri_be = __cpu_to_le32(TARGET_10X_RX_TIMEOUT_LO_PRI); config.rx_timeout_pri_bk = __cpu_to_le32(TARGET_10X_RX_TIMEOUT_HI_PRI); config.rx_decap_mode = __cpu_to_le32(TARGET_10X_RX_DECAP_MODE); config.scan_max_pending_reqs = __cpu_to_le32(TARGET_10X_SCAN_MAX_PENDING_REQS); config.bmiss_offload_max_vdev = __cpu_to_le32(TARGET_10X_BMISS_OFFLOAD_MAX_VDEV); config.roam_offload_max_vdev = __cpu_to_le32(TARGET_10X_ROAM_OFFLOAD_MAX_VDEV); config.roam_offload_max_ap_profiles = __cpu_to_le32(TARGET_10X_ROAM_OFFLOAD_MAX_AP_PROFILES); config.num_mcast_groups = __cpu_to_le32(TARGET_10X_NUM_MCAST_GROUPS); config.num_mcast_table_elems = __cpu_to_le32(TARGET_10X_NUM_MCAST_TABLE_ELEMS); config.mcast2ucast_mode = __cpu_to_le32(TARGET_10X_MCAST2UCAST_MODE); config.tx_dbg_log_size = __cpu_to_le32(TARGET_10X_TX_DBG_LOG_SIZE); config.num_wds_entries = __cpu_to_le32(TARGET_10X_NUM_WDS_ENTRIES); config.dma_burst_size = __cpu_to_le32(TARGET_10X_DMA_BURST_SIZE); config.mac_aggr_delim = __cpu_to_le32(TARGET_10X_MAC_AGGR_DELIM); val = TARGET_10X_RX_SKIP_DEFRAG_TIMEOUT_DUP_DETECTION_CHECK; config.rx_skip_defrag_timeout_dup_detection_check = __cpu_to_le32(val); config.vow_config = __cpu_to_le32(TARGET_10X_VOW_CONFIG); config.num_msdu_desc = __cpu_to_le32(TARGET_10X_NUM_MSDU_DESC); config.max_frag_entries = __cpu_to_le32(TARGET_10X_MAX_FRAG_ENTRIES); len = sizeof(*cmd) + (sizeof(struct host_memory_chunk) * ar->wmi.num_mem_chunks); buf = ath10k_wmi_alloc_skb(ar, len); if (!buf) return -ENOMEM; cmd = (struct wmi_init_cmd_10x *)buf->data; if (ar->wmi.num_mem_chunks == 0) { cmd->num_host_mem_chunks = 0; goto out; } ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi sending %d memory chunks info.\n", ar->wmi.num_mem_chunks); cmd->num_host_mem_chunks = __cpu_to_le32(ar->wmi.num_mem_chunks); for (i = 0; i < ar->wmi.num_mem_chunks; i++) { cmd->host_mem_chunks[i].ptr = __cpu_to_le32(ar->wmi.mem_chunks[i].paddr); cmd->host_mem_chunks[i].size = __cpu_to_le32(ar->wmi.mem_chunks[i].len); cmd->host_mem_chunks[i].req_id = __cpu_to_le32(ar->wmi.mem_chunks[i].req_id); ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi chunk %d len %d requested, addr 0x%llx\n", i, ar->wmi.mem_chunks[i].len, (unsigned long long)ar->wmi.mem_chunks[i].paddr); } out: memcpy(&cmd->resource_config, &config, sizeof(config)); ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi init 10x\n"); return ath10k_wmi_cmd_send(ar, buf, ar->wmi.cmd->init_cmdid); } static int ath10k_wmi_10_2_cmd_init(struct ath10k *ar) { struct wmi_init_cmd_10_2 *cmd; struct sk_buff *buf; struct wmi_resource_config_10x config = {}; u32 len, val; int i; config.num_vdevs = __cpu_to_le32(TARGET_10X_NUM_VDEVS); config.num_peers = __cpu_to_le32(TARGET_10X_NUM_PEERS); config.num_peer_keys = __cpu_to_le32(TARGET_10X_NUM_PEER_KEYS); config.num_tids = __cpu_to_le32(TARGET_10X_NUM_TIDS); config.ast_skid_limit = __cpu_to_le32(TARGET_10X_AST_SKID_LIMIT); config.tx_chain_mask = __cpu_to_le32(TARGET_10X_TX_CHAIN_MASK); config.rx_chain_mask = __cpu_to_le32(TARGET_10X_RX_CHAIN_MASK); config.rx_timeout_pri_vo = __cpu_to_le32(TARGET_10X_RX_TIMEOUT_LO_PRI); config.rx_timeout_pri_vi = __cpu_to_le32(TARGET_10X_RX_TIMEOUT_LO_PRI); config.rx_timeout_pri_be = __cpu_to_le32(TARGET_10X_RX_TIMEOUT_LO_PRI); config.rx_timeout_pri_bk = __cpu_to_le32(TARGET_10X_RX_TIMEOUT_HI_PRI); config.rx_decap_mode = __cpu_to_le32(TARGET_10X_RX_DECAP_MODE); config.scan_max_pending_reqs = __cpu_to_le32(TARGET_10X_SCAN_MAX_PENDING_REQS); config.bmiss_offload_max_vdev = __cpu_to_le32(TARGET_10X_BMISS_OFFLOAD_MAX_VDEV); config.roam_offload_max_vdev = __cpu_to_le32(TARGET_10X_ROAM_OFFLOAD_MAX_VDEV); config.roam_offload_max_ap_profiles = __cpu_to_le32(TARGET_10X_ROAM_OFFLOAD_MAX_AP_PROFILES); config.num_mcast_groups = __cpu_to_le32(TARGET_10X_NUM_MCAST_GROUPS); config.num_mcast_table_elems = __cpu_to_le32(TARGET_10X_NUM_MCAST_TABLE_ELEMS); config.mcast2ucast_mode = __cpu_to_le32(TARGET_10X_MCAST2UCAST_MODE); config.tx_dbg_log_size = __cpu_to_le32(TARGET_10X_TX_DBG_LOG_SIZE); config.num_wds_entries = __cpu_to_le32(TARGET_10X_NUM_WDS_ENTRIES); config.dma_burst_size = __cpu_to_le32(TARGET_10X_DMA_BURST_SIZE); config.mac_aggr_delim = __cpu_to_le32(TARGET_10X_MAC_AGGR_DELIM); val = TARGET_10X_RX_SKIP_DEFRAG_TIMEOUT_DUP_DETECTION_CHECK; config.rx_skip_defrag_timeout_dup_detection_check = __cpu_to_le32(val); config.vow_config = __cpu_to_le32(TARGET_10X_VOW_CONFIG); config.num_msdu_desc = __cpu_to_le32(TARGET_10X_NUM_MSDU_DESC); config.max_frag_entries = __cpu_to_le32(TARGET_10X_MAX_FRAG_ENTRIES); len = sizeof(*cmd) + (sizeof(struct host_memory_chunk) * ar->wmi.num_mem_chunks); buf = ath10k_wmi_alloc_skb(ar, len); if (!buf) return -ENOMEM; cmd = (struct wmi_init_cmd_10_2 *)buf->data; if (ar->wmi.num_mem_chunks == 0) { cmd->num_host_mem_chunks = 0; goto out; } ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi sending %d memory chunks info.\n", ar->wmi.num_mem_chunks); cmd->num_host_mem_chunks = __cpu_to_le32(ar->wmi.num_mem_chunks); for (i = 0; i < ar->wmi.num_mem_chunks; i++) { cmd->host_mem_chunks[i].ptr = __cpu_to_le32(ar->wmi.mem_chunks[i].paddr); cmd->host_mem_chunks[i].size = __cpu_to_le32(ar->wmi.mem_chunks[i].len); cmd->host_mem_chunks[i].req_id = __cpu_to_le32(ar->wmi.mem_chunks[i].req_id); ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi chunk %d len %d requested, addr 0x%llx\n", i, ar->wmi.mem_chunks[i].len, (unsigned long long)ar->wmi.mem_chunks[i].paddr); } out: memcpy(&cmd->resource_config.common, &config, sizeof(config)); ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi init 10.2\n"); return ath10k_wmi_cmd_send(ar, buf, ar->wmi.cmd->init_cmdid); } int ath10k_wmi_cmd_init(struct ath10k *ar) { int ret; if (test_bit(ATH10K_FW_FEATURE_WMI_10X, ar->fw_features)) { if (test_bit(ATH10K_FW_FEATURE_WMI_10_2, ar->fw_features)) ret = ath10k_wmi_10_2_cmd_init(ar); else ret = ath10k_wmi_10x_cmd_init(ar); } else { ret = ath10k_wmi_main_cmd_init(ar); } return ret; } static int ath10k_wmi_start_scan_calc_len(struct ath10k *ar, const struct wmi_start_scan_arg *arg) { int len; if (test_bit(ATH10K_FW_FEATURE_WMI_10X, ar->fw_features)) len = sizeof(struct wmi_start_scan_cmd_10x); else len = sizeof(struct wmi_start_scan_cmd); if (arg->ie_len) { if (!arg->ie) return -EINVAL; if (arg->ie_len > WLAN_SCAN_PARAMS_MAX_IE_LEN) return -EINVAL; len += sizeof(struct wmi_ie_data); len += roundup(arg->ie_len, 4); } if (arg->n_channels) { if (!arg->channels) return -EINVAL; if (arg->n_channels > ARRAY_SIZE(arg->channels)) return -EINVAL; len += sizeof(struct wmi_chan_list); len += sizeof(__le32) * arg->n_channels; } if (arg->n_ssids) { if (!arg->ssids) return -EINVAL; if (arg->n_ssids > WLAN_SCAN_PARAMS_MAX_SSID) return -EINVAL; len += sizeof(struct wmi_ssid_list); len += sizeof(struct wmi_ssid) * arg->n_ssids; } if (arg->n_bssids) { if (!arg->bssids) return -EINVAL; if (arg->n_bssids > WLAN_SCAN_PARAMS_MAX_BSSID) return -EINVAL; len += sizeof(struct wmi_bssid_list); len += sizeof(struct wmi_mac_addr) * arg->n_bssids; } return len; } int ath10k_wmi_start_scan(struct ath10k *ar, const struct wmi_start_scan_arg *arg) { struct wmi_start_scan_cmd *cmd; struct sk_buff *skb; struct wmi_ie_data *ie; struct wmi_chan_list *channels; struct wmi_ssid_list *ssids; struct wmi_bssid_list *bssids; u32 scan_id; u32 scan_req_id; int off; int len = 0; int i; len = ath10k_wmi_start_scan_calc_len(ar, arg); if (len < 0) return len; /* len contains error code here */ skb = ath10k_wmi_alloc_skb(ar, len); if (!skb) return -ENOMEM; scan_id = WMI_HOST_SCAN_REQ_ID_PREFIX; scan_id |= arg->scan_id; scan_req_id = WMI_HOST_SCAN_REQUESTOR_ID_PREFIX; scan_req_id |= arg->scan_req_id; cmd = (struct wmi_start_scan_cmd *)skb->data; cmd->scan_id = __cpu_to_le32(scan_id); cmd->scan_req_id = __cpu_to_le32(scan_req_id); cmd->vdev_id = __cpu_to_le32(arg->vdev_id); cmd->scan_priority = __cpu_to_le32(arg->scan_priority); cmd->notify_scan_events = __cpu_to_le32(arg->notify_scan_events); cmd->dwell_time_active = __cpu_to_le32(arg->dwell_time_active); cmd->dwell_time_passive = __cpu_to_le32(arg->dwell_time_passive); cmd->min_rest_time = __cpu_to_le32(arg->min_rest_time); cmd->max_rest_time = __cpu_to_le32(arg->max_rest_time); cmd->repeat_probe_time = __cpu_to_le32(arg->repeat_probe_time); cmd->probe_spacing_time = __cpu_to_le32(arg->probe_spacing_time); cmd->idle_time = __cpu_to_le32(arg->idle_time); cmd->max_scan_time = __cpu_to_le32(arg->max_scan_time); cmd->probe_delay = __cpu_to_le32(arg->probe_delay); cmd->scan_ctrl_flags = __cpu_to_le32(arg->scan_ctrl_flags); /* TLV list starts after fields included in the struct */ /* There's just one filed that differes the two start_scan * structures - burst_duration, which we are not using btw, no point to make the split here, just shift the buffer to fit with given FW */ if (test_bit(ATH10K_FW_FEATURE_WMI_10X, ar->fw_features)) off = sizeof(struct wmi_start_scan_cmd_10x); else off = sizeof(struct wmi_start_scan_cmd); if (arg->n_channels) { channels = (void *)skb->data + off; channels->tag = __cpu_to_le32(WMI_CHAN_LIST_TAG); channels->num_chan = __cpu_to_le32(arg->n_channels); for (i = 0; i < arg->n_channels; i++) channels->channel_list[i].freq = __cpu_to_le16(arg->channels[i]); off += sizeof(*channels); off += sizeof(__le32) * arg->n_channels; } if (arg->n_ssids) { ssids = (void *)skb->data + off; ssids->tag = __cpu_to_le32(WMI_SSID_LIST_TAG); ssids->num_ssids = __cpu_to_le32(arg->n_ssids); for (i = 0; i < arg->n_ssids; i++) { ssids->ssids[i].ssid_len = __cpu_to_le32(arg->ssids[i].len); memcpy(&ssids->ssids[i].ssid, arg->ssids[i].ssid, arg->ssids[i].len); } off += sizeof(*ssids); off += sizeof(struct wmi_ssid) * arg->n_ssids; } if (arg->n_bssids) { bssids = (void *)skb->data + off; bssids->tag = __cpu_to_le32(WMI_BSSID_LIST_TAG); bssids->num_bssid = __cpu_to_le32(arg->n_bssids); for (i = 0; i < arg->n_bssids; i++) memcpy(&bssids->bssid_list[i], arg->bssids[i].bssid, ETH_ALEN); off += sizeof(*bssids); off += sizeof(struct wmi_mac_addr) * arg->n_bssids; } if (arg->ie_len) { ie = (void *)skb->data + off; ie->tag = __cpu_to_le32(WMI_IE_TAG); ie->ie_len = __cpu_to_le32(arg->ie_len); memcpy(ie->ie_data, arg->ie, arg->ie_len); off += sizeof(*ie); off += roundup(arg->ie_len, 4); } if (off != skb->len) { dev_kfree_skb(skb); return -EINVAL; } ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi start scan\n"); return ath10k_wmi_cmd_send(ar, skb, ar->wmi.cmd->start_scan_cmdid); } void ath10k_wmi_start_scan_init(struct ath10k *ar, struct wmi_start_scan_arg *arg) { /* setup commonly used values */ arg->scan_req_id = 1; arg->scan_priority = WMI_SCAN_PRIORITY_LOW; arg->dwell_time_active = 50; arg->dwell_time_passive = 150; arg->min_rest_time = 50; arg->max_rest_time = 500; arg->repeat_probe_time = 0; arg->probe_spacing_time = 0; arg->idle_time = 0; arg->max_scan_time = 20000; arg->probe_delay = 5; arg->notify_scan_events = WMI_SCAN_EVENT_STARTED | WMI_SCAN_EVENT_COMPLETED | WMI_SCAN_EVENT_BSS_CHANNEL | WMI_SCAN_EVENT_FOREIGN_CHANNEL | WMI_SCAN_EVENT_DEQUEUED; arg->scan_ctrl_flags |= WMI_SCAN_ADD_OFDM_RATES; arg->scan_ctrl_flags |= WMI_SCAN_CHAN_STAT_EVENT; arg->n_bssids = 1; arg->bssids[0].bssid = "\xFF\xFF\xFF\xFF\xFF\xFF"; } int ath10k_wmi_stop_scan(struct ath10k *ar, const struct wmi_stop_scan_arg *arg) { struct wmi_stop_scan_cmd *cmd; struct sk_buff *skb; u32 scan_id; u32 req_id; if (arg->req_id > 0xFFF) return -EINVAL; if (arg->req_type == WMI_SCAN_STOP_ONE && arg->u.scan_id > 0xFFF) return -EINVAL; skb = ath10k_wmi_alloc_skb(ar, sizeof(*cmd)); if (!skb) return -ENOMEM; scan_id = arg->u.scan_id; scan_id |= WMI_HOST_SCAN_REQ_ID_PREFIX; req_id = arg->req_id; req_id |= WMI_HOST_SCAN_REQUESTOR_ID_PREFIX; cmd = (struct wmi_stop_scan_cmd *)skb->data; cmd->req_type = __cpu_to_le32(arg->req_type); cmd->vdev_id = __cpu_to_le32(arg->u.vdev_id); cmd->scan_id = __cpu_to_le32(scan_id); cmd->scan_req_id = __cpu_to_le32(req_id); ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi stop scan reqid %d req_type %d vdev/scan_id %d\n", arg->req_id, arg->req_type, arg->u.scan_id); return ath10k_wmi_cmd_send(ar, skb, ar->wmi.cmd->stop_scan_cmdid); } int ath10k_wmi_vdev_create(struct ath10k *ar, u32 vdev_id, enum wmi_vdev_type type, enum wmi_vdev_subtype subtype, const u8 macaddr[ETH_ALEN]) { struct wmi_vdev_create_cmd *cmd; struct sk_buff *skb; skb = ath10k_wmi_alloc_skb(ar, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_vdev_create_cmd *)skb->data; cmd->vdev_id = __cpu_to_le32(vdev_id); cmd->vdev_type = __cpu_to_le32(type); cmd->vdev_subtype = __cpu_to_le32(subtype); memcpy(cmd->vdev_macaddr.addr, macaddr, ETH_ALEN); ath10k_dbg(ar, ATH10K_DBG_WMI, "WMI vdev create: id %d type %d subtype %d macaddr %pM\n", vdev_id, type, subtype, macaddr); return ath10k_wmi_cmd_send(ar, skb, ar->wmi.cmd->vdev_create_cmdid); } int ath10k_wmi_vdev_delete(struct ath10k *ar, u32 vdev_id) { struct wmi_vdev_delete_cmd *cmd; struct sk_buff *skb; skb = ath10k_wmi_alloc_skb(ar, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_vdev_delete_cmd *)skb->data; cmd->vdev_id = __cpu_to_le32(vdev_id); ath10k_dbg(ar, ATH10K_DBG_WMI, "WMI vdev delete id %d\n", vdev_id); return ath10k_wmi_cmd_send(ar, skb, ar->wmi.cmd->vdev_delete_cmdid); } static int ath10k_wmi_vdev_start_restart(struct ath10k *ar, const struct wmi_vdev_start_request_arg *arg, u32 cmd_id) { struct wmi_vdev_start_request_cmd *cmd; struct sk_buff *skb; const char *cmdname; u32 flags = 0; u32 ch_flags = 0; if (cmd_id != ar->wmi.cmd->vdev_start_request_cmdid && cmd_id != ar->wmi.cmd->vdev_restart_request_cmdid) return -EINVAL; if (WARN_ON(arg->ssid && arg->ssid_len == 0)) return -EINVAL; if (WARN_ON(arg->hidden_ssid && !arg->ssid)) return -EINVAL; if (WARN_ON(arg->ssid_len > sizeof(cmd->ssid.ssid))) return -EINVAL; if (cmd_id == ar->wmi.cmd->vdev_start_request_cmdid) cmdname = "start"; else if (cmd_id == ar->wmi.cmd->vdev_restart_request_cmdid) cmdname = "restart"; else return -EINVAL; /* should not happen, we already check cmd_id */ skb = ath10k_wmi_alloc_skb(ar, sizeof(*cmd)); if (!skb) return -ENOMEM; if (arg->hidden_ssid) flags |= WMI_VDEV_START_HIDDEN_SSID; if (arg->pmf_enabled) flags |= WMI_VDEV_START_PMF_ENABLED; if (arg->channel.chan_radar) ch_flags |= WMI_CHAN_FLAG_DFS; cmd = (struct wmi_vdev_start_request_cmd *)skb->data; cmd->vdev_id = __cpu_to_le32(arg->vdev_id); cmd->disable_hw_ack = __cpu_to_le32(arg->disable_hw_ack); cmd->beacon_interval = __cpu_to_le32(arg->bcn_intval); cmd->dtim_period = __cpu_to_le32(arg->dtim_period); cmd->flags = __cpu_to_le32(flags); cmd->bcn_tx_rate = __cpu_to_le32(arg->bcn_tx_rate); cmd->bcn_tx_power = __cpu_to_le32(arg->bcn_tx_power); if (arg->ssid) { cmd->ssid.ssid_len = __cpu_to_le32(arg->ssid_len); memcpy(cmd->ssid.ssid, arg->ssid, arg->ssid_len); } cmd->chan.mhz = __cpu_to_le32(arg->channel.freq); cmd->chan.band_center_freq1 = __cpu_to_le32(arg->channel.band_center_freq1); cmd->chan.mode = arg->channel.mode; cmd->chan.flags |= __cpu_to_le32(ch_flags); cmd->chan.min_power = arg->channel.min_power; cmd->chan.max_power = arg->channel.max_power; cmd->chan.reg_power = arg->channel.max_reg_power; cmd->chan.reg_classid = arg->channel.reg_class_id; cmd->chan.antenna_max = arg->channel.max_antenna_gain; ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi vdev %s id 0x%x flags: 0x%0X, freq %d, mode %d, " "ch_flags: 0x%0X, max_power: %d\n", cmdname, arg->vdev_id, flags, arg->channel.freq, arg->channel.mode, cmd->chan.flags, arg->channel.max_power); return ath10k_wmi_cmd_send(ar, skb, cmd_id); } int ath10k_wmi_vdev_start(struct ath10k *ar, const struct wmi_vdev_start_request_arg *arg) { u32 cmd_id = ar->wmi.cmd->vdev_start_request_cmdid; return ath10k_wmi_vdev_start_restart(ar, arg, cmd_id); } int ath10k_wmi_vdev_restart(struct ath10k *ar, const struct wmi_vdev_start_request_arg *arg) { u32 cmd_id = ar->wmi.cmd->vdev_restart_request_cmdid; return ath10k_wmi_vdev_start_restart(ar, arg, cmd_id); } int ath10k_wmi_vdev_stop(struct ath10k *ar, u32 vdev_id) { struct wmi_vdev_stop_cmd *cmd; struct sk_buff *skb; skb = ath10k_wmi_alloc_skb(ar, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_vdev_stop_cmd *)skb->data; cmd->vdev_id = __cpu_to_le32(vdev_id); ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi vdev stop id 0x%x\n", vdev_id); return ath10k_wmi_cmd_send(ar, skb, ar->wmi.cmd->vdev_stop_cmdid); } int ath10k_wmi_vdev_up(struct ath10k *ar, u32 vdev_id, u32 aid, const u8 *bssid) { struct wmi_vdev_up_cmd *cmd; struct sk_buff *skb; skb = ath10k_wmi_alloc_skb(ar, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_vdev_up_cmd *)skb->data; cmd->vdev_id = __cpu_to_le32(vdev_id); cmd->vdev_assoc_id = __cpu_to_le32(aid); memcpy(&cmd->vdev_bssid.addr, bssid, ETH_ALEN); ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi mgmt vdev up id 0x%x assoc id %d bssid %pM\n", vdev_id, aid, bssid); return ath10k_wmi_cmd_send(ar, skb, ar->wmi.cmd->vdev_up_cmdid); } int ath10k_wmi_vdev_down(struct ath10k *ar, u32 vdev_id) { struct wmi_vdev_down_cmd *cmd; struct sk_buff *skb; skb = ath10k_wmi_alloc_skb(ar, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_vdev_down_cmd *)skb->data; cmd->vdev_id = __cpu_to_le32(vdev_id); ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi mgmt vdev down id 0x%x\n", vdev_id); return ath10k_wmi_cmd_send(ar, skb, ar->wmi.cmd->vdev_down_cmdid); } int ath10k_wmi_vdev_set_param(struct ath10k *ar, u32 vdev_id, u32 param_id, u32 param_value) { struct wmi_vdev_set_param_cmd *cmd; struct sk_buff *skb; if (param_id == WMI_VDEV_PARAM_UNSUPPORTED) { ath10k_dbg(ar, ATH10K_DBG_WMI, "vdev param %d not supported by firmware\n", param_id); return -EOPNOTSUPP; } skb = ath10k_wmi_alloc_skb(ar, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_vdev_set_param_cmd *)skb->data; cmd->vdev_id = __cpu_to_le32(vdev_id); cmd->param_id = __cpu_to_le32(param_id); cmd->param_value = __cpu_to_le32(param_value); ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi vdev id 0x%x set param %d value %d\n", vdev_id, param_id, param_value); return ath10k_wmi_cmd_send(ar, skb, ar->wmi.cmd->vdev_set_param_cmdid); } int ath10k_wmi_vdev_install_key(struct ath10k *ar, const struct wmi_vdev_install_key_arg *arg) { struct wmi_vdev_install_key_cmd *cmd; struct sk_buff *skb; if (arg->key_cipher == WMI_CIPHER_NONE && arg->key_data != NULL) return -EINVAL; if (arg->key_cipher != WMI_CIPHER_NONE && arg->key_data == NULL) return -EINVAL; skb = ath10k_wmi_alloc_skb(ar, sizeof(*cmd) + arg->key_len); if (!skb) return -ENOMEM; cmd = (struct wmi_vdev_install_key_cmd *)skb->data; cmd->vdev_id = __cpu_to_le32(arg->vdev_id); cmd->key_idx = __cpu_to_le32(arg->key_idx); cmd->key_flags = __cpu_to_le32(arg->key_flags); cmd->key_cipher = __cpu_to_le32(arg->key_cipher); cmd->key_len = __cpu_to_le32(arg->key_len); cmd->key_txmic_len = __cpu_to_le32(arg->key_txmic_len); cmd->key_rxmic_len = __cpu_to_le32(arg->key_rxmic_len); if (arg->macaddr) memcpy(cmd->peer_macaddr.addr, arg->macaddr, ETH_ALEN); if (arg->key_data) memcpy(cmd->key_data, arg->key_data, arg->key_len); ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi vdev install key idx %d cipher %d len %d\n", arg->key_idx, arg->key_cipher, arg->key_len); return ath10k_wmi_cmd_send(ar, skb, ar->wmi.cmd->vdev_install_key_cmdid); } int ath10k_wmi_vdev_spectral_conf(struct ath10k *ar, const struct wmi_vdev_spectral_conf_arg *arg) { struct wmi_vdev_spectral_conf_cmd *cmd; struct sk_buff *skb; u32 cmdid; skb = ath10k_wmi_alloc_skb(ar, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_vdev_spectral_conf_cmd *)skb->data; cmd->vdev_id = __cpu_to_le32(arg->vdev_id); cmd->scan_count = __cpu_to_le32(arg->scan_count); cmd->scan_period = __cpu_to_le32(arg->scan_period); cmd->scan_priority = __cpu_to_le32(arg->scan_priority); cmd->scan_fft_size = __cpu_to_le32(arg->scan_fft_size); cmd->scan_gc_ena = __cpu_to_le32(arg->scan_gc_ena); cmd->scan_restart_ena = __cpu_to_le32(arg->scan_restart_ena); cmd->scan_noise_floor_ref = __cpu_to_le32(arg->scan_noise_floor_ref); cmd->scan_init_delay = __cpu_to_le32(arg->scan_init_delay); cmd->scan_nb_tone_thr = __cpu_to_le32(arg->scan_nb_tone_thr); cmd->scan_str_bin_thr = __cpu_to_le32(arg->scan_str_bin_thr); cmd->scan_wb_rpt_mode = __cpu_to_le32(arg->scan_wb_rpt_mode); cmd->scan_rssi_rpt_mode = __cpu_to_le32(arg->scan_rssi_rpt_mode); cmd->scan_rssi_thr = __cpu_to_le32(arg->scan_rssi_thr); cmd->scan_pwr_format = __cpu_to_le32(arg->scan_pwr_format); cmd->scan_rpt_mode = __cpu_to_le32(arg->scan_rpt_mode); cmd->scan_bin_scale = __cpu_to_le32(arg->scan_bin_scale); cmd->scan_dbm_adj = __cpu_to_le32(arg->scan_dbm_adj); cmd->scan_chn_mask = __cpu_to_le32(arg->scan_chn_mask); cmdid = ar->wmi.cmd->vdev_spectral_scan_configure_cmdid; return ath10k_wmi_cmd_send(ar, skb, cmdid); } int ath10k_wmi_vdev_spectral_enable(struct ath10k *ar, u32 vdev_id, u32 trigger, u32 enable) { struct wmi_vdev_spectral_enable_cmd *cmd; struct sk_buff *skb; u32 cmdid; skb = ath10k_wmi_alloc_skb(ar, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_vdev_spectral_enable_cmd *)skb->data; cmd->vdev_id = __cpu_to_le32(vdev_id); cmd->trigger_cmd = __cpu_to_le32(trigger); cmd->enable_cmd = __cpu_to_le32(enable); cmdid = ar->wmi.cmd->vdev_spectral_scan_enable_cmdid; return ath10k_wmi_cmd_send(ar, skb, cmdid); } int ath10k_wmi_peer_create(struct ath10k *ar, u32 vdev_id, const u8 peer_addr[ETH_ALEN]) { struct wmi_peer_create_cmd *cmd; struct sk_buff *skb; skb = ath10k_wmi_alloc_skb(ar, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_peer_create_cmd *)skb->data; cmd->vdev_id = __cpu_to_le32(vdev_id); memcpy(cmd->peer_macaddr.addr, peer_addr, ETH_ALEN); ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi peer create vdev_id %d peer_addr %pM\n", vdev_id, peer_addr); return ath10k_wmi_cmd_send(ar, skb, ar->wmi.cmd->peer_create_cmdid); } int ath10k_wmi_peer_delete(struct ath10k *ar, u32 vdev_id, const u8 peer_addr[ETH_ALEN]) { struct wmi_peer_delete_cmd *cmd; struct sk_buff *skb; skb = ath10k_wmi_alloc_skb(ar, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_peer_delete_cmd *)skb->data; cmd->vdev_id = __cpu_to_le32(vdev_id); memcpy(cmd->peer_macaddr.addr, peer_addr, ETH_ALEN); ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi peer delete vdev_id %d peer_addr %pM\n", vdev_id, peer_addr); return ath10k_wmi_cmd_send(ar, skb, ar->wmi.cmd->peer_delete_cmdid); } int ath10k_wmi_peer_flush(struct ath10k *ar, u32 vdev_id, const u8 peer_addr[ETH_ALEN], u32 tid_bitmap) { struct wmi_peer_flush_tids_cmd *cmd; struct sk_buff *skb; skb = ath10k_wmi_alloc_skb(ar, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_peer_flush_tids_cmd *)skb->data; cmd->vdev_id = __cpu_to_le32(vdev_id); cmd->peer_tid_bitmap = __cpu_to_le32(tid_bitmap); memcpy(cmd->peer_macaddr.addr, peer_addr, ETH_ALEN); ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi peer flush vdev_id %d peer_addr %pM tids %08x\n", vdev_id, peer_addr, tid_bitmap); return ath10k_wmi_cmd_send(ar, skb, ar->wmi.cmd->peer_flush_tids_cmdid); } int ath10k_wmi_peer_set_param(struct ath10k *ar, u32 vdev_id, const u8 *peer_addr, enum wmi_peer_param param_id, u32 param_value) { struct wmi_peer_set_param_cmd *cmd; struct sk_buff *skb; skb = ath10k_wmi_alloc_skb(ar, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_peer_set_param_cmd *)skb->data; cmd->vdev_id = __cpu_to_le32(vdev_id); cmd->param_id = __cpu_to_le32(param_id); cmd->param_value = __cpu_to_le32(param_value); memcpy(&cmd->peer_macaddr.addr, peer_addr, ETH_ALEN); ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi vdev %d peer 0x%pM set param %d value %d\n", vdev_id, peer_addr, param_id, param_value); return ath10k_wmi_cmd_send(ar, skb, ar->wmi.cmd->peer_set_param_cmdid); } int ath10k_wmi_set_psmode(struct ath10k *ar, u32 vdev_id, enum wmi_sta_ps_mode psmode) { struct wmi_sta_powersave_mode_cmd *cmd; struct sk_buff *skb; skb = ath10k_wmi_alloc_skb(ar, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_sta_powersave_mode_cmd *)skb->data; cmd->vdev_id = __cpu_to_le32(vdev_id); cmd->sta_ps_mode = __cpu_to_le32(psmode); ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi set powersave id 0x%x mode %d\n", vdev_id, psmode); return ath10k_wmi_cmd_send(ar, skb, ar->wmi.cmd->sta_powersave_mode_cmdid); } int ath10k_wmi_set_sta_ps_param(struct ath10k *ar, u32 vdev_id, enum wmi_sta_powersave_param param_id, u32 value) { struct wmi_sta_powersave_param_cmd *cmd; struct sk_buff *skb; skb = ath10k_wmi_alloc_skb(ar, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_sta_powersave_param_cmd *)skb->data; cmd->vdev_id = __cpu_to_le32(vdev_id); cmd->param_id = __cpu_to_le32(param_id); cmd->param_value = __cpu_to_le32(value); ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi sta ps param vdev_id 0x%x param %d value %d\n", vdev_id, param_id, value); return ath10k_wmi_cmd_send(ar, skb, ar->wmi.cmd->sta_powersave_param_cmdid); } int ath10k_wmi_set_ap_ps_param(struct ath10k *ar, u32 vdev_id, const u8 *mac, enum wmi_ap_ps_peer_param param_id, u32 value) { struct wmi_ap_ps_peer_cmd *cmd; struct sk_buff *skb; if (!mac) return -EINVAL; skb = ath10k_wmi_alloc_skb(ar, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_ap_ps_peer_cmd *)skb->data; cmd->vdev_id = __cpu_to_le32(vdev_id); cmd->param_id = __cpu_to_le32(param_id); cmd->param_value = __cpu_to_le32(value); memcpy(&cmd->peer_macaddr, mac, ETH_ALEN); ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi ap ps param vdev_id 0x%X param %d value %d mac_addr %pM\n", vdev_id, param_id, value, mac); return ath10k_wmi_cmd_send(ar, skb, ar->wmi.cmd->ap_ps_peer_param_cmdid); } int ath10k_wmi_scan_chan_list(struct ath10k *ar, const struct wmi_scan_chan_list_arg *arg) { struct wmi_scan_chan_list_cmd *cmd; struct sk_buff *skb; struct wmi_channel_arg *ch; struct wmi_channel *ci; int len; int i; len = sizeof(*cmd) + arg->n_channels * sizeof(struct wmi_channel); skb = ath10k_wmi_alloc_skb(ar, len); if (!skb) return -EINVAL; cmd = (struct wmi_scan_chan_list_cmd *)skb->data; cmd->num_scan_chans = __cpu_to_le32(arg->n_channels); for (i = 0; i < arg->n_channels; i++) { u32 flags = 0; ch = &arg->channels[i]; ci = &cmd->chan_info[i]; if (ch->passive) flags |= WMI_CHAN_FLAG_PASSIVE; if (ch->allow_ibss) flags |= WMI_CHAN_FLAG_ADHOC_ALLOWED; if (ch->allow_ht) flags |= WMI_CHAN_FLAG_ALLOW_HT; if (ch->allow_vht) flags |= WMI_CHAN_FLAG_ALLOW_VHT; if (ch->ht40plus) flags |= WMI_CHAN_FLAG_HT40_PLUS; if (ch->chan_radar) flags |= WMI_CHAN_FLAG_DFS; ci->mhz = __cpu_to_le32(ch->freq); ci->band_center_freq1 = __cpu_to_le32(ch->freq); ci->band_center_freq2 = 0; ci->min_power = ch->min_power; ci->max_power = ch->max_power; ci->reg_power = ch->max_reg_power; ci->antenna_max = ch->max_antenna_gain; /* mode & flags share storage */ ci->mode = ch->mode; ci->flags |= __cpu_to_le32(flags); } return ath10k_wmi_cmd_send(ar, skb, ar->wmi.cmd->scan_chan_list_cmdid); } static void ath10k_wmi_peer_assoc_fill(struct ath10k *ar, void *buf, const struct wmi_peer_assoc_complete_arg *arg) { struct wmi_common_peer_assoc_complete_cmd *cmd = buf; cmd->vdev_id = __cpu_to_le32(arg->vdev_id); cmd->peer_new_assoc = __cpu_to_le32(arg->peer_reassoc ? 0 : 1); cmd->peer_associd = __cpu_to_le32(arg->peer_aid); cmd->peer_flags = __cpu_to_le32(arg->peer_flags); cmd->peer_caps = __cpu_to_le32(arg->peer_caps); cmd->peer_listen_intval = __cpu_to_le32(arg->peer_listen_intval); cmd->peer_ht_caps = __cpu_to_le32(arg->peer_ht_caps); cmd->peer_max_mpdu = __cpu_to_le32(arg->peer_max_mpdu); cmd->peer_mpdu_density = __cpu_to_le32(arg->peer_mpdu_density); cmd->peer_rate_caps = __cpu_to_le32(arg->peer_rate_caps); cmd->peer_nss = __cpu_to_le32(arg->peer_num_spatial_streams); cmd->peer_vht_caps = __cpu_to_le32(arg->peer_vht_caps); cmd->peer_phymode = __cpu_to_le32(arg->peer_phymode); memcpy(cmd->peer_macaddr.addr, arg->addr, ETH_ALEN); cmd->peer_legacy_rates.num_rates = __cpu_to_le32(arg->peer_legacy_rates.num_rates); memcpy(cmd->peer_legacy_rates.rates, arg->peer_legacy_rates.rates, arg->peer_legacy_rates.num_rates); cmd->peer_ht_rates.num_rates = __cpu_to_le32(arg->peer_ht_rates.num_rates); memcpy(cmd->peer_ht_rates.rates, arg->peer_ht_rates.rates, arg->peer_ht_rates.num_rates); cmd->peer_vht_rates.rx_max_rate = __cpu_to_le32(arg->peer_vht_rates.rx_max_rate); cmd->peer_vht_rates.rx_mcs_set = __cpu_to_le32(arg->peer_vht_rates.rx_mcs_set); cmd->peer_vht_rates.tx_max_rate = __cpu_to_le32(arg->peer_vht_rates.tx_max_rate); cmd->peer_vht_rates.tx_mcs_set = __cpu_to_le32(arg->peer_vht_rates.tx_mcs_set); } static void ath10k_wmi_peer_assoc_fill_main(struct ath10k *ar, void *buf, const struct wmi_peer_assoc_complete_arg *arg) { struct wmi_main_peer_assoc_complete_cmd *cmd = buf; ath10k_wmi_peer_assoc_fill(ar, buf, arg); memset(cmd->peer_ht_info, 0, sizeof(cmd->peer_ht_info)); } static void ath10k_wmi_peer_assoc_fill_10_1(struct ath10k *ar, void *buf, const struct wmi_peer_assoc_complete_arg *arg) { ath10k_wmi_peer_assoc_fill(ar, buf, arg); } static void ath10k_wmi_peer_assoc_fill_10_2(struct ath10k *ar, void *buf, const struct wmi_peer_assoc_complete_arg *arg) { struct wmi_10_2_peer_assoc_complete_cmd *cmd = buf; int max_mcs, max_nss; u32 info0; /* TODO: Is using max values okay with firmware? */ max_mcs = 0xf; max_nss = 0xf; info0 = SM(max_mcs, WMI_PEER_ASSOC_INFO0_MAX_MCS_IDX) | SM(max_nss, WMI_PEER_ASSOC_INFO0_MAX_NSS); ath10k_wmi_peer_assoc_fill(ar, buf, arg); cmd->info0 = __cpu_to_le32(info0); } int ath10k_wmi_peer_assoc(struct ath10k *ar, const struct wmi_peer_assoc_complete_arg *arg) { struct sk_buff *skb; int len; if (arg->peer_mpdu_density > 16) return -EINVAL; if (arg->peer_legacy_rates.num_rates > MAX_SUPPORTED_RATES) return -EINVAL; if (arg->peer_ht_rates.num_rates > MAX_SUPPORTED_RATES) return -EINVAL; if (test_bit(ATH10K_FW_FEATURE_WMI_10X, ar->fw_features)) { if (test_bit(ATH10K_FW_FEATURE_WMI_10_2, ar->fw_features)) len = sizeof(struct wmi_10_2_peer_assoc_complete_cmd); else len = sizeof(struct wmi_10_1_peer_assoc_complete_cmd); } else { len = sizeof(struct wmi_main_peer_assoc_complete_cmd); } skb = ath10k_wmi_alloc_skb(ar, len); if (!skb) return -ENOMEM; if (test_bit(ATH10K_FW_FEATURE_WMI_10X, ar->fw_features)) { if (test_bit(ATH10K_FW_FEATURE_WMI_10_2, ar->fw_features)) ath10k_wmi_peer_assoc_fill_10_1(ar, skb->data, arg); else ath10k_wmi_peer_assoc_fill_10_2(ar, skb->data, arg); } else { ath10k_wmi_peer_assoc_fill_main(ar, skb->data, arg); } ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi peer assoc vdev %d addr %pM (%s)\n", arg->vdev_id, arg->addr, arg->peer_reassoc ? "reassociate" : "new"); return ath10k_wmi_cmd_send(ar, skb, ar->wmi.cmd->peer_assoc_cmdid); } /* This function assumes the beacon is already DMA mapped */ int ath10k_wmi_beacon_send_ref_nowait(struct ath10k_vif *arvif) { struct wmi_bcn_tx_ref_cmd *cmd; struct sk_buff *skb; struct sk_buff *beacon = arvif->beacon; struct ath10k *ar = arvif->ar; struct ieee80211_hdr *hdr; int ret; u16 fc; skb = ath10k_wmi_alloc_skb(ar, sizeof(*cmd)); if (!skb) return -ENOMEM; hdr = (struct ieee80211_hdr *)beacon->data; fc = le16_to_cpu(hdr->frame_control); cmd = (struct wmi_bcn_tx_ref_cmd *)skb->data; cmd->vdev_id = __cpu_to_le32(arvif->vdev_id); cmd->data_len = __cpu_to_le32(beacon->len); cmd->data_ptr = __cpu_to_le32(ATH10K_SKB_CB(beacon)->paddr); cmd->msdu_id = 0; cmd->frame_control = __cpu_to_le32(fc); cmd->flags = 0; cmd->antenna_mask = __cpu_to_le32(WMI_BCN_TX_REF_DEF_ANTENNA); if (ATH10K_SKB_CB(beacon)->bcn.dtim_zero) cmd->flags |= __cpu_to_le32(WMI_BCN_TX_REF_FLAG_DTIM_ZERO); if (ATH10K_SKB_CB(beacon)->bcn.deliver_cab) cmd->flags |= __cpu_to_le32(WMI_BCN_TX_REF_FLAG_DELIVER_CAB); ret = ath10k_wmi_cmd_send_nowait(ar, skb, ar->wmi.cmd->pdev_send_bcn_cmdid); if (ret) dev_kfree_skb(skb); return ret; } static void ath10k_wmi_pdev_set_wmm_param(struct wmi_wmm_params *params, const struct wmi_wmm_params_arg *arg) { params->cwmin = __cpu_to_le32(arg->cwmin); params->cwmax = __cpu_to_le32(arg->cwmax); params->aifs = __cpu_to_le32(arg->aifs); params->txop = __cpu_to_le32(arg->txop); params->acm = __cpu_to_le32(arg->acm); params->no_ack = __cpu_to_le32(arg->no_ack); } int ath10k_wmi_pdev_set_wmm_params(struct ath10k *ar, const struct wmi_pdev_set_wmm_params_arg *arg) { struct wmi_pdev_set_wmm_params *cmd; struct sk_buff *skb; skb = ath10k_wmi_alloc_skb(ar, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_pdev_set_wmm_params *)skb->data; ath10k_wmi_pdev_set_wmm_param(&cmd->ac_be, &arg->ac_be); ath10k_wmi_pdev_set_wmm_param(&cmd->ac_bk, &arg->ac_bk); ath10k_wmi_pdev_set_wmm_param(&cmd->ac_vi, &arg->ac_vi); ath10k_wmi_pdev_set_wmm_param(&cmd->ac_vo, &arg->ac_vo); ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi pdev set wmm params\n"); return ath10k_wmi_cmd_send(ar, skb, ar->wmi.cmd->pdev_set_wmm_params_cmdid); } int ath10k_wmi_request_stats(struct ath10k *ar, enum wmi_stats_id stats_id) { struct wmi_request_stats_cmd *cmd; struct sk_buff *skb; skb = ath10k_wmi_alloc_skb(ar, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_request_stats_cmd *)skb->data; cmd->stats_id = __cpu_to_le32(stats_id); ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi request stats %d\n", (int)stats_id); return ath10k_wmi_cmd_send(ar, skb, ar->wmi.cmd->request_stats_cmdid); } int ath10k_wmi_force_fw_hang(struct ath10k *ar, enum wmi_force_fw_hang_type type, u32 delay_ms) { struct wmi_force_fw_hang_cmd *cmd; struct sk_buff *skb; skb = ath10k_wmi_alloc_skb(ar, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_force_fw_hang_cmd *)skb->data; cmd->type = __cpu_to_le32(type); cmd->delay_ms = __cpu_to_le32(delay_ms); ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi force fw hang %d delay %d\n", type, delay_ms); return ath10k_wmi_cmd_send(ar, skb, ar->wmi.cmd->force_fw_hang_cmdid); } int ath10k_wmi_dbglog_cfg(struct ath10k *ar, u32 module_enable) { struct wmi_dbglog_cfg_cmd *cmd; struct sk_buff *skb; u32 cfg; skb = ath10k_wmi_alloc_skb(ar, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_dbglog_cfg_cmd *)skb->data; if (module_enable) { cfg = SM(ATH10K_DBGLOG_LEVEL_VERBOSE, ATH10K_DBGLOG_CFG_LOG_LVL); } else { /* set back defaults, all modules with WARN level */ cfg = SM(ATH10K_DBGLOG_LEVEL_WARN, ATH10K_DBGLOG_CFG_LOG_LVL); module_enable = ~0; } cmd->module_enable = __cpu_to_le32(module_enable); cmd->module_valid = __cpu_to_le32(~0); cmd->config_enable = __cpu_to_le32(cfg); cmd->config_valid = __cpu_to_le32(ATH10K_DBGLOG_CFG_LOG_LVL_MASK); ath10k_dbg(ar, ATH10K_DBG_WMI, "wmi dbglog cfg modules %08x %08x config %08x %08x\n", __le32_to_cpu(cmd->module_enable), __le32_to_cpu(cmd->module_valid), __le32_to_cpu(cmd->config_enable), __le32_to_cpu(cmd->config_valid)); return ath10k_wmi_cmd_send(ar, skb, ar->wmi.cmd->dbglog_cfg_cmdid); }