/* pcnet32.c: An AMD PCnet32 ethernet driver for linux. */ /* * Copyright 1996-1999 Thomas Bogendoerfer * * Derived from the lance driver written 1993,1994,1995 by Donald Becker. * * Copyright 1993 United States Government as represented by the * Director, National Security Agency. * * This software may be used and distributed according to the terms * of the GNU General Public License, incorporated herein by reference. * * This driver is for PCnet32 and PCnetPCI based ethercards */ /************************************************************************** * 23 Oct, 2000. * Fixed a few bugs, related to running the controller in 32bit mode. * * Carsten Langgaard, carstenl@mips.com * Copyright (C) 2000 MIPS Technologies, Inc. All rights reserved. * *************************************************************************/ #define DRV_NAME "pcnet32" #define DRV_VERSION "1.35" #define DRV_RELDATE "21.Apr.2008" #define PFX DRV_NAME ": " static const char *const version = DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " tsbogend@alpha.franken.de\n"; #include <linux/module.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/errno.h> #include <linux/ioport.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/ethtool.h> #include <linux/mii.h> #include <linux/crc32.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/spinlock.h> #include <linux/moduleparam.h> #include <linux/bitops.h> #include <asm/dma.h> #include <asm/io.h> #include <asm/uaccess.h> #include <asm/irq.h> /* * PCI device identifiers for "new style" Linux PCI Device Drivers */ static struct pci_device_id pcnet32_pci_tbl[] = { { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_LANCE_HOME), }, { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_LANCE), }, /* * Adapters that were sold with IBM's RS/6000 or pSeries hardware have * the incorrect vendor id. */ { PCI_DEVICE(PCI_VENDOR_ID_TRIDENT, PCI_DEVICE_ID_AMD_LANCE), .class = (PCI_CLASS_NETWORK_ETHERNET << 8), .class_mask = 0xffff00, }, { } /* terminate list */ }; MODULE_DEVICE_TABLE(pci, pcnet32_pci_tbl); static int cards_found; /* * VLB I/O addresses */ static unsigned int pcnet32_portlist[] __initdata = { 0x300, 0x320, 0x340, 0x360, 0 }; static int pcnet32_debug = 0; static int tx_start = 1; /* Mapping -- 0:20, 1:64, 2:128, 3:~220 (depends on chip vers) */ static int pcnet32vlb; /* check for VLB cards ? */ static struct net_device *pcnet32_dev; static int max_interrupt_work = 2; static int rx_copybreak = 200; #define PCNET32_PORT_AUI 0x00 #define PCNET32_PORT_10BT 0x01 #define PCNET32_PORT_GPSI 0x02 #define PCNET32_PORT_MII 0x03 #define PCNET32_PORT_PORTSEL 0x03 #define PCNET32_PORT_ASEL 0x04 #define PCNET32_PORT_100 0x40 #define PCNET32_PORT_FD 0x80 #define PCNET32_DMA_MASK 0xffffffff #define PCNET32_WATCHDOG_TIMEOUT (jiffies + (2 * HZ)) #define PCNET32_BLINK_TIMEOUT (jiffies + (HZ/4)) /* * table to translate option values from tulip * to internal options */ static const unsigned char options_mapping[] = { PCNET32_PORT_ASEL, /* 0 Auto-select */ PCNET32_PORT_AUI, /* 1 BNC/AUI */ PCNET32_PORT_AUI, /* 2 AUI/BNC */ PCNET32_PORT_ASEL, /* 3 not supported */ PCNET32_PORT_10BT | PCNET32_PORT_FD, /* 4 10baseT-FD */ PCNET32_PORT_ASEL, /* 5 not supported */ PCNET32_PORT_ASEL, /* 6 not supported */ PCNET32_PORT_ASEL, /* 7 not supported */ PCNET32_PORT_ASEL, /* 8 not supported */ PCNET32_PORT_MII, /* 9 MII 10baseT */ PCNET32_PORT_MII | PCNET32_PORT_FD, /* 10 MII 10baseT-FD */ PCNET32_PORT_MII, /* 11 MII (autosel) */ PCNET32_PORT_10BT, /* 12 10BaseT */ PCNET32_PORT_MII | PCNET32_PORT_100, /* 13 MII 100BaseTx */ /* 14 MII 100BaseTx-FD */ PCNET32_PORT_MII | PCNET32_PORT_100 | PCNET32_PORT_FD, PCNET32_PORT_ASEL /* 15 not supported */ }; static const char pcnet32_gstrings_test[][ETH_GSTRING_LEN] = { "Loopback test (offline)" }; #define PCNET32_TEST_LEN ARRAY_SIZE(pcnet32_gstrings_test) #define PCNET32_NUM_REGS 136 #define MAX_UNITS 8 /* More are supported, limit only on options */ static int options[MAX_UNITS]; static int full_duplex[MAX_UNITS]; static int homepna[MAX_UNITS]; /* * Theory of Operation * * This driver uses the same software structure as the normal lance * driver. So look for a verbose description in lance.c. The differences * to the normal lance driver is the use of the 32bit mode of PCnet32 * and PCnetPCI chips. Because these chips are 32bit chips, there is no * 16MB limitation and we don't need bounce buffers. */ /* * Set the number of Tx and Rx buffers, using Log_2(# buffers). * Reasonable default values are 4 Tx buffers, and 16 Rx buffers. * That translates to 2 (4 == 2^^2) and 4 (16 == 2^^4). */ #ifndef PCNET32_LOG_TX_BUFFERS #define PCNET32_LOG_TX_BUFFERS 4 #define PCNET32_LOG_RX_BUFFERS 5 #define PCNET32_LOG_MAX_TX_BUFFERS 9 /* 2^9 == 512 */ #define PCNET32_LOG_MAX_RX_BUFFERS 9 #endif #define TX_RING_SIZE (1 << (PCNET32_LOG_TX_BUFFERS)) #define TX_MAX_RING_SIZE (1 << (PCNET32_LOG_MAX_TX_BUFFERS)) #define RX_RING_SIZE (1 << (PCNET32_LOG_RX_BUFFERS)) #define RX_MAX_RING_SIZE (1 << (PCNET32_LOG_MAX_RX_BUFFERS)) #define PKT_BUF_SKB 1544 /* actual buffer length after being aligned */ #define PKT_BUF_SIZE (PKT_BUF_SKB - NET_IP_ALIGN) /* chip wants twos complement of the (aligned) buffer length */ #define NEG_BUF_SIZE (NET_IP_ALIGN - PKT_BUF_SKB) /* Offsets from base I/O address. */ #define PCNET32_WIO_RDP 0x10 #define PCNET32_WIO_RAP 0x12 #define PCNET32_WIO_RESET 0x14 #define PCNET32_WIO_BDP 0x16 #define PCNET32_DWIO_RDP 0x10 #define PCNET32_DWIO_RAP 0x14 #define PCNET32_DWIO_RESET 0x18 #define PCNET32_DWIO_BDP 0x1C #define PCNET32_TOTAL_SIZE 0x20 #define CSR0 0 #define CSR0_INIT 0x1 #define CSR0_START 0x2 #define CSR0_STOP 0x4 #define CSR0_TXPOLL 0x8 #define CSR0_INTEN 0x40 #define CSR0_IDON 0x0100 #define CSR0_NORMAL (CSR0_START | CSR0_INTEN) #define PCNET32_INIT_LOW 1 #define PCNET32_INIT_HIGH 2 #define CSR3 3 #define CSR4 4 #define CSR5 5 #define CSR5_SUSPEND 0x0001 #define CSR15 15 #define PCNET32_MC_FILTER 8 #define PCNET32_79C970A 0x2621 /* The PCNET32 Rx and Tx ring descriptors. */ struct pcnet32_rx_head { __le32 base; __le16 buf_length; /* two`s complement of length */ __le16 status; __le32 msg_length; __le32 reserved; }; struct pcnet32_tx_head { __le32 base; __le16 length; /* two`s complement of length */ __le16 status; __le32 misc; __le32 reserved; }; /* The PCNET32 32-Bit initialization block, described in databook. */ struct pcnet32_init_block { __le16 mode; __le16 tlen_rlen; u8 phys_addr[6]; __le16 reserved; __le32 filter[2]; /* Receive and transmit ring base, along with extra bits. */ __le32 rx_ring; __le32 tx_ring; }; /* PCnet32 access functions */ struct pcnet32_access { u16 (*read_csr) (unsigned long, int); void (*write_csr) (unsigned long, int, u16); u16 (*read_bcr) (unsigned long, int); void (*write_bcr) (unsigned long, int, u16); u16 (*read_rap) (unsigned long); void (*write_rap) (unsigned long, u16); void (*reset) (unsigned long); }; /* * The first field of pcnet32_private is read by the ethernet device * so the structure should be allocated using pci_alloc_consistent(). */ struct pcnet32_private { struct pcnet32_init_block *init_block; /* The Tx and Rx ring entries must be aligned on 16-byte boundaries in 32bit mode. */ struct pcnet32_rx_head *rx_ring; struct pcnet32_tx_head *tx_ring; dma_addr_t init_dma_addr;/* DMA address of beginning of the init block, returned by pci_alloc_consistent */ struct pci_dev *pci_dev; const char *name; /* The saved address of a sent-in-place packet/buffer, for skfree(). */ struct sk_buff **tx_skbuff; struct sk_buff **rx_skbuff; dma_addr_t *tx_dma_addr; dma_addr_t *rx_dma_addr; struct pcnet32_access a; spinlock_t lock; /* Guard lock */ unsigned int cur_rx, cur_tx; /* The next free ring entry */ unsigned int rx_ring_size; /* current rx ring size */ unsigned int tx_ring_size; /* current tx ring size */ unsigned int rx_mod_mask; /* rx ring modular mask */ unsigned int tx_mod_mask; /* tx ring modular mask */ unsigned short rx_len_bits; unsigned short tx_len_bits; dma_addr_t rx_ring_dma_addr; dma_addr_t tx_ring_dma_addr; unsigned int dirty_rx, /* ring entries to be freed. */ dirty_tx; struct net_device *dev; struct napi_struct napi; char tx_full; char phycount; /* number of phys found */ int options; unsigned int shared_irq:1, /* shared irq possible */ dxsuflo:1, /* disable transmit stop on uflo */ mii:1; /* mii port available */ struct net_device *next; struct mii_if_info mii_if; struct timer_list watchdog_timer; struct timer_list blink_timer; u32 msg_enable; /* debug message level */ /* each bit indicates an available PHY */ u32 phymask; unsigned short chip_version; /* which variant this is */ }; static int pcnet32_probe_pci(struct pci_dev *, const struct pci_device_id *); static int pcnet32_probe1(unsigned long, int, struct pci_dev *); static int pcnet32_open(struct net_device *); static int pcnet32_init_ring(struct net_device *); static int pcnet32_start_xmit(struct sk_buff *, struct net_device *); static void pcnet32_tx_timeout(struct net_device *dev); static irqreturn_t pcnet32_interrupt(int, void *); static int pcnet32_close(struct net_device *); static struct net_device_stats *pcnet32_get_stats(struct net_device *); static void pcnet32_load_multicast(struct net_device *dev); static void pcnet32_set_multicast_list(struct net_device *); static int pcnet32_ioctl(struct net_device *, struct ifreq *, int); static void pcnet32_watchdog(struct net_device *); static int mdio_read(struct net_device *dev, int phy_id, int reg_num); static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val); static void pcnet32_restart(struct net_device *dev, unsigned int csr0_bits); static void pcnet32_ethtool_test(struct net_device *dev, struct ethtool_test *eth_test, u64 * data); static int pcnet32_loopback_test(struct net_device *dev, uint64_t * data1); static int pcnet32_phys_id(struct net_device *dev, u32 data); static void pcnet32_led_blink_callback(struct net_device *dev); static int pcnet32_get_regs_len(struct net_device *dev); static void pcnet32_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *ptr); static void pcnet32_purge_tx_ring(struct net_device *dev); static int pcnet32_alloc_ring(struct net_device *dev, const char *name); static void pcnet32_free_ring(struct net_device *dev); static void pcnet32_check_media(struct net_device *dev, int verbose); static u16 pcnet32_wio_read_csr(unsigned long addr, int index) { outw(index, addr + PCNET32_WIO_RAP); return inw(addr + PCNET32_WIO_RDP); } static void pcnet32_wio_write_csr(unsigned long addr, int index, u16 val) { outw(index, addr + PCNET32_WIO_RAP); outw(val, addr + PCNET32_WIO_RDP); } static u16 pcnet32_wio_read_bcr(unsigned long addr, int index) { outw(index, addr + PCNET32_WIO_RAP); return inw(addr + PCNET32_WIO_BDP); } static void pcnet32_wio_write_bcr(unsigned long addr, int index, u16 val) { outw(index, addr + PCNET32_WIO_RAP); outw(val, addr + PCNET32_WIO_BDP); } static u16 pcnet32_wio_read_rap(unsigned long addr) { return inw(addr + PCNET32_WIO_RAP); } static void pcnet32_wio_write_rap(unsigned long addr, u16 val) { outw(val, addr + PCNET32_WIO_RAP); } static void pcnet32_wio_reset(unsigned long addr) { inw(addr + PCNET32_WIO_RESET); } static int pcnet32_wio_check(unsigned long addr) { outw(88, addr + PCNET32_WIO_RAP); return (inw(addr + PCNET32_WIO_RAP) == 88); } static struct pcnet32_access pcnet32_wio = { .read_csr = pcnet32_wio_read_csr, .write_csr = pcnet32_wio_write_csr, .read_bcr = pcnet32_wio_read_bcr, .write_bcr = pcnet32_wio_write_bcr, .read_rap = pcnet32_wio_read_rap, .write_rap = pcnet32_wio_write_rap, .reset = pcnet32_wio_reset }; static u16 pcnet32_dwio_read_csr(unsigned long addr, int index) { outl(index, addr + PCNET32_DWIO_RAP); return (inl(addr + PCNET32_DWIO_RDP) & 0xffff); } static void pcnet32_dwio_write_csr(unsigned long addr, int index, u16 val) { outl(index, addr + PCNET32_DWIO_RAP); outl(val, addr + PCNET32_DWIO_RDP); } static u16 pcnet32_dwio_read_bcr(unsigned long addr, int index) { outl(index, addr + PCNET32_DWIO_RAP); return (inl(addr + PCNET32_DWIO_BDP) & 0xffff); } static void pcnet32_dwio_write_bcr(unsigned long addr, int index, u16 val) { outl(index, addr + PCNET32_DWIO_RAP); outl(val, addr + PCNET32_DWIO_BDP); } static u16 pcnet32_dwio_read_rap(unsigned long addr) { return (inl(addr + PCNET32_DWIO_RAP) & 0xffff); } static void pcnet32_dwio_write_rap(unsigned long addr, u16 val) { outl(val, addr + PCNET32_DWIO_RAP); } static void pcnet32_dwio_reset(unsigned long addr) { inl(addr + PCNET32_DWIO_RESET); } static int pcnet32_dwio_check(unsigned long addr) { outl(88, addr + PCNET32_DWIO_RAP); return ((inl(addr + PCNET32_DWIO_RAP) & 0xffff) == 88); } static struct pcnet32_access pcnet32_dwio = { .read_csr = pcnet32_dwio_read_csr, .write_csr = pcnet32_dwio_write_csr, .read_bcr = pcnet32_dwio_read_bcr, .write_bcr = pcnet32_dwio_write_bcr, .read_rap = pcnet32_dwio_read_rap, .write_rap = pcnet32_dwio_write_rap, .reset = pcnet32_dwio_reset }; static void pcnet32_netif_stop(struct net_device *dev) { struct pcnet32_private *lp = netdev_priv(dev); dev->trans_start = jiffies; napi_disable(&lp->napi); netif_tx_disable(dev); } static void pcnet32_netif_start(struct net_device *dev) { struct pcnet32_private *lp = netdev_priv(dev); ulong ioaddr = dev->base_addr; u16 val; netif_wake_queue(dev); val = lp->a.read_csr(ioaddr, CSR3); val &= 0x00ff; lp->a.write_csr(ioaddr, CSR3, val); napi_enable(&lp->napi); } /* * Allocate space for the new sized tx ring. * Free old resources * Save new resources. * Any failure keeps old resources. * Must be called with lp->lock held. */ static void pcnet32_realloc_tx_ring(struct net_device *dev, struct pcnet32_private *lp, unsigned int size) { dma_addr_t new_ring_dma_addr; dma_addr_t *new_dma_addr_list; struct pcnet32_tx_head *new_tx_ring; struct sk_buff **new_skb_list; pcnet32_purge_tx_ring(dev); new_tx_ring = pci_alloc_consistent(lp->pci_dev, sizeof(struct pcnet32_tx_head) * (1 << size), &new_ring_dma_addr); if (new_tx_ring == NULL) { if (netif_msg_drv(lp)) printk("\n" KERN_ERR "%s: Consistent memory allocation failed.\n", dev->name); return; } memset(new_tx_ring, 0, sizeof(struct pcnet32_tx_head) * (1 << size)); new_dma_addr_list = kcalloc((1 << size), sizeof(dma_addr_t), GFP_ATOMIC); if (!new_dma_addr_list) { if (netif_msg_drv(lp)) printk("\n" KERN_ERR "%s: Memory allocation failed.\n", dev->name); goto free_new_tx_ring; } new_skb_list = kcalloc((1 << size), sizeof(struct sk_buff *), GFP_ATOMIC); if (!new_skb_list) { if (netif_msg_drv(lp)) printk("\n" KERN_ERR "%s: Memory allocation failed.\n", dev->name); goto free_new_lists; } kfree(lp->tx_skbuff); kfree(lp->tx_dma_addr); pci_free_consistent(lp->pci_dev, sizeof(struct pcnet32_tx_head) * lp->tx_ring_size, lp->tx_ring, lp->tx_ring_dma_addr); lp->tx_ring_size = (1 << size); lp->tx_mod_mask = lp->tx_ring_size - 1; lp->tx_len_bits = (size << 12); lp->tx_ring = new_tx_ring; lp->tx_ring_dma_addr = new_ring_dma_addr; lp->tx_dma_addr = new_dma_addr_list; lp->tx_skbuff = new_skb_list; return; free_new_lists: kfree(new_dma_addr_list); free_new_tx_ring: pci_free_consistent(lp->pci_dev, sizeof(struct pcnet32_tx_head) * (1 << size), new_tx_ring, new_ring_dma_addr); return; } /* * Allocate space for the new sized rx ring. * Re-use old receive buffers. * alloc extra buffers * free unneeded buffers * free unneeded buffers * Save new resources. * Any failure keeps old resources. * Must be called with lp->lock held. */ static void pcnet32_realloc_rx_ring(struct net_device *dev, struct pcnet32_private *lp, unsigned int size) { dma_addr_t new_ring_dma_addr; dma_addr_t *new_dma_addr_list; struct pcnet32_rx_head *new_rx_ring; struct sk_buff **new_skb_list; int new, overlap; new_rx_ring = pci_alloc_consistent(lp->pci_dev, sizeof(struct pcnet32_rx_head) * (1 << size), &new_ring_dma_addr); if (new_rx_ring == NULL) { if (netif_msg_drv(lp)) printk("\n" KERN_ERR "%s: Consistent memory allocation failed.\n", dev->name); return; } memset(new_rx_ring, 0, sizeof(struct pcnet32_rx_head) * (1 << size)); new_dma_addr_list = kcalloc((1 << size), sizeof(dma_addr_t), GFP_ATOMIC); if (!new_dma_addr_list) { if (netif_msg_drv(lp)) printk("\n" KERN_ERR "%s: Memory allocation failed.\n", dev->name); goto free_new_rx_ring; } new_skb_list = kcalloc((1 << size), sizeof(struct sk_buff *), GFP_ATOMIC); if (!new_skb_list) { if (netif_msg_drv(lp)) printk("\n" KERN_ERR "%s: Memory allocation failed.\n", dev->name); goto free_new_lists; } /* first copy the current receive buffers */ overlap = min(size, lp->rx_ring_size); for (new = 0; new < overlap; new++) { new_rx_ring[new] = lp->rx_ring[new]; new_dma_addr_list[new] = lp->rx_dma_addr[new]; new_skb_list[new] = lp->rx_skbuff[new]; } /* now allocate any new buffers needed */ for (; new < size; new++ ) { struct sk_buff *rx_skbuff; new_skb_list[new] = dev_alloc_skb(PKT_BUF_SKB); if (!(rx_skbuff = new_skb_list[new])) { /* keep the original lists and buffers */ if (netif_msg_drv(lp)) printk(KERN_ERR "%s: pcnet32_realloc_rx_ring dev_alloc_skb failed.\n", dev->name); goto free_all_new; } skb_reserve(rx_skbuff, NET_IP_ALIGN); new_dma_addr_list[new] = pci_map_single(lp->pci_dev, rx_skbuff->data, PKT_BUF_SIZE, PCI_DMA_FROMDEVICE); new_rx_ring[new].base = cpu_to_le32(new_dma_addr_list[new]); new_rx_ring[new].buf_length = cpu_to_le16(NEG_BUF_SIZE); new_rx_ring[new].status = cpu_to_le16(0x8000); } /* and free any unneeded buffers */ for (; new < lp->rx_ring_size; new++) { if (lp->rx_skbuff[new]) { pci_unmap_single(lp->pci_dev, lp->rx_dma_addr[new], PKT_BUF_SIZE, PCI_DMA_FROMDEVICE); dev_kfree_skb(lp->rx_skbuff[new]); } } kfree(lp->rx_skbuff); kfree(lp->rx_dma_addr); pci_free_consistent(lp->pci_dev, sizeof(struct pcnet32_rx_head) * lp->rx_ring_size, lp->rx_ring, lp->rx_ring_dma_addr); lp->rx_ring_size = (1 << size); lp->rx_mod_mask = lp->rx_ring_size - 1; lp->rx_len_bits = (size << 4); lp->rx_ring = new_rx_ring; lp->rx_ring_dma_addr = new_ring_dma_addr; lp->rx_dma_addr = new_dma_addr_list; lp->rx_skbuff = new_skb_list; return; free_all_new: for (; --new >= lp->rx_ring_size; ) { if (new_skb_list[new]) { pci_unmap_single(lp->pci_dev, new_dma_addr_list[new], PKT_BUF_SIZE, PCI_DMA_FROMDEVICE); dev_kfree_skb(new_skb_list[new]); } } kfree(new_skb_list); free_new_lists: kfree(new_dma_addr_list); free_new_rx_ring: pci_free_consistent(lp->pci_dev, sizeof(struct pcnet32_rx_head) * (1 << size), new_rx_ring, new_ring_dma_addr); return; } static void pcnet32_purge_rx_ring(struct net_device *dev) { struct pcnet32_private *lp = netdev_priv(dev); int i; /* free all allocated skbuffs */ for (i = 0; i < lp->rx_ring_size; i++) { lp->rx_ring[i].status = 0; /* CPU owns buffer */ wmb(); /* Make sure adapter sees owner change */ if (lp->rx_skbuff[i]) { pci_unmap_single(lp->pci_dev, lp->rx_dma_addr[i], PKT_BUF_SIZE, PCI_DMA_FROMDEVICE); dev_kfree_skb_any(lp->rx_skbuff[i]); } lp->rx_skbuff[i] = NULL; lp->rx_dma_addr[i] = 0; } } #ifdef CONFIG_NET_POLL_CONTROLLER static void pcnet32_poll_controller(struct net_device *dev) { disable_irq(dev->irq); pcnet32_interrupt(0, dev); enable_irq(dev->irq); } #endif static int pcnet32_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct pcnet32_private *lp = netdev_priv(dev); unsigned long flags; int r = -EOPNOTSUPP; if (lp->mii) { spin_lock_irqsave(&lp->lock, flags); mii_ethtool_gset(&lp->mii_if, cmd); spin_unlock_irqrestore(&lp->lock, flags); r = 0; } return r; } static int pcnet32_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct pcnet32_private *lp = netdev_priv(dev); unsigned long flags; int r = -EOPNOTSUPP; if (lp->mii) { spin_lock_irqsave(&lp->lock, flags); r = mii_ethtool_sset(&lp->mii_if, cmd); spin_unlock_irqrestore(&lp->lock, flags); } return r; } static void pcnet32_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct pcnet32_private *lp = netdev_priv(dev); strcpy(info->driver, DRV_NAME); strcpy(info->version, DRV_VERSION); if (lp->pci_dev) strcpy(info->bus_info, pci_name(lp->pci_dev)); else sprintf(info->bus_info, "VLB 0x%lx", dev->base_addr); } static u32 pcnet32_get_link(struct net_device *dev) { struct pcnet32_private *lp = netdev_priv(dev); unsigned long flags; int r; spin_lock_irqsave(&lp->lock, flags); if (lp->mii) { r = mii_link_ok(&lp->mii_if); } else if (lp->chip_version >= PCNET32_79C970A) { ulong ioaddr = dev->base_addr; /* card base I/O address */ r = (lp->a.read_bcr(ioaddr, 4) != 0xc0); } else { /* can not detect link on really old chips */ r = 1; } spin_unlock_irqrestore(&lp->lock, flags); return r; } static u32 pcnet32_get_msglevel(struct net_device *dev) { struct pcnet32_private *lp = netdev_priv(dev); return lp->msg_enable; } static void pcnet32_set_msglevel(struct net_device *dev, u32 value) { struct pcnet32_private *lp = netdev_priv(dev); lp->msg_enable = value; } static int pcnet32_nway_reset(struct net_device *dev) { struct pcnet32_private *lp = netdev_priv(dev); unsigned long flags; int r = -EOPNOTSUPP; if (lp->mii) { spin_lock_irqsave(&lp->lock, flags); r = mii_nway_restart(&lp->mii_if); spin_unlock_irqrestore(&lp->lock, flags); } return r; } static void pcnet32_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering) { struct pcnet32_private *lp = netdev_priv(dev); ering->tx_max_pending = TX_MAX_RING_SIZE; ering->tx_pending = lp->tx_ring_size; ering->rx_max_pending = RX_MAX_RING_SIZE; ering->rx_pending = lp->rx_ring_size; } static int pcnet32_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering) { struct pcnet32_private *lp = netdev_priv(dev); unsigned long flags; unsigned int size; ulong ioaddr = dev->base_addr; int i; if (ering->rx_mini_pending || ering->rx_jumbo_pending) return -EINVAL; if (netif_running(dev)) pcnet32_netif_stop(dev); spin_lock_irqsave(&lp->lock, flags); lp->a.write_csr(ioaddr, CSR0, CSR0_STOP); /* stop the chip */ size = min(ering->tx_pending, (unsigned int)TX_MAX_RING_SIZE); /* set the minimum ring size to 4, to allow the loopback test to work * unchanged. */ for (i = 2; i <= PCNET32_LOG_MAX_TX_BUFFERS; i++) { if (size <= (1 << i)) break; } if ((1 << i) != lp->tx_ring_size) pcnet32_realloc_tx_ring(dev, lp, i); size = min(ering->rx_pending, (unsigned int)RX_MAX_RING_SIZE); for (i = 2; i <= PCNET32_LOG_MAX_RX_BUFFERS; i++) { if (size <= (1 << i)) break; } if ((1 << i) != lp->rx_ring_size) pcnet32_realloc_rx_ring(dev, lp, i); lp->napi.weight = lp->rx_ring_size / 2; if (netif_running(dev)) { pcnet32_netif_start(dev); pcnet32_restart(dev, CSR0_NORMAL); } spin_unlock_irqrestore(&lp->lock, flags); if (netif_msg_drv(lp)) printk(KERN_INFO "%s: Ring Param Settings: RX: %d, TX: %d\n", dev->name, lp->rx_ring_size, lp->tx_ring_size); return 0; } static void pcnet32_get_strings(struct net_device *dev, u32 stringset, u8 * data) { memcpy(data, pcnet32_gstrings_test, sizeof(pcnet32_gstrings_test)); } static int pcnet32_get_sset_count(struct net_device *dev, int sset) { switch (sset) { case ETH_SS_TEST: return PCNET32_TEST_LEN; default: return -EOPNOTSUPP; } } static void pcnet32_ethtool_test(struct net_device *dev, struct ethtool_test *test, u64 * data) { struct pcnet32_private *lp = netdev_priv(dev); int rc; if (test->flags == ETH_TEST_FL_OFFLINE) { rc = pcnet32_loopback_test(dev, data); if (rc) { if (netif_msg_hw(lp)) printk(KERN_DEBUG "%s: Loopback test failed.\n", dev->name); test->flags |= ETH_TEST_FL_FAILED; } else if (netif_msg_hw(lp)) printk(KERN_DEBUG "%s: Loopback test passed.\n", dev->name); } else if (netif_msg_hw(lp)) printk(KERN_DEBUG "%s: No tests to run (specify 'Offline' on ethtool).", dev->name); } /* end pcnet32_ethtool_test */ static int pcnet32_loopback_test(struct net_device *dev, uint64_t * data1) { struct pcnet32_private *lp = netdev_priv(dev); struct pcnet32_access *a = &lp->a; /* access to registers */ ulong ioaddr = dev->base_addr; /* card base I/O address */ struct sk_buff *skb; /* sk buff */ int x, i; /* counters */ int numbuffs = 4; /* number of TX/RX buffers and descs */ u16 status = 0x8300; /* TX ring status */ __le16 teststatus; /* test of ring status */ int rc; /* return code */ int size; /* size of packets */ unsigned char *packet; /* source packet data */ static const int data_len = 60; /* length of source packets */ unsigned long flags; unsigned long ticks; rc = 1; /* default to fail */ if (netif_running(dev)) pcnet32_netif_stop(dev); spin_lock_irqsave(&lp->lock, flags); lp->a.write_csr(ioaddr, CSR0, CSR0_STOP); /* stop the chip */ numbuffs = min(numbuffs, (int)min(lp->rx_ring_size, lp->tx_ring_size)); /* Reset the PCNET32 */ lp->a.reset(ioaddr); lp->a.write_csr(ioaddr, CSR4, 0x0915); /* auto tx pad */ /* switch pcnet32 to 32bit mode */ lp->a.write_bcr(ioaddr, 20, 2); /* purge & init rings but don't actually restart */ pcnet32_restart(dev, 0x0000); lp->a.write_csr(ioaddr, CSR0, CSR0_STOP); /* Set STOP bit */ /* Initialize Transmit buffers. */ size = data_len + 15; for (x = 0; x < numbuffs; x++) { if (!(skb = dev_alloc_skb(size))) { if (netif_msg_hw(lp)) printk(KERN_DEBUG "%s: Cannot allocate skb at line: %d!\n", dev->name, __LINE__); goto clean_up; } else { packet = skb->data; skb_put(skb, size); /* create space for data */ lp->tx_skbuff[x] = skb; lp->tx_ring[x].length = cpu_to_le16(-skb->len); lp->tx_ring[x].misc = 0; /* put DA and SA into the skb */ for (i = 0; i < 6; i++) *packet++ = dev->dev_addr[i]; for (i = 0; i < 6; i++) *packet++ = dev->dev_addr[i]; /* type */ *packet++ = 0x08; *packet++ = 0x06; /* packet number */ *packet++ = x; /* fill packet with data */ for (i = 0; i < data_len; i++) *packet++ = i; lp->tx_dma_addr[x] = pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE); lp->tx_ring[x].base = cpu_to_le32(lp->tx_dma_addr[x]); wmb(); /* Make sure owner changes after all others are visible */ lp->tx_ring[x].status = cpu_to_le16(status); } } x = a->read_bcr(ioaddr, 32); /* set internal loopback in BCR32 */ a->write_bcr(ioaddr, 32, x | 0x0002); /* set int loopback in CSR15 */ x = a->read_csr(ioaddr, CSR15) & 0xfffc; lp->a.write_csr(ioaddr, CSR15, x | 0x0044); teststatus = cpu_to_le16(0x8000); lp->a.write_csr(ioaddr, CSR0, CSR0_START); /* Set STRT bit */ /* Check status of descriptors */ for (x = 0; x < numbuffs; x++) { ticks = 0; rmb(); while ((lp->rx_ring[x].status & teststatus) && (ticks < 200)) { spin_unlock_irqrestore(&lp->lock, flags); msleep(1); spin_lock_irqsave(&lp->lock, flags); rmb(); ticks++; } if (ticks == 200) { if (netif_msg_hw(lp)) printk("%s: Desc %d failed to reset!\n", dev->name, x); break; } } lp->a.write_csr(ioaddr, CSR0, CSR0_STOP); /* Set STOP bit */ wmb(); if (netif_msg_hw(lp) && netif_msg_pktdata(lp)) { printk(KERN_DEBUG "%s: RX loopback packets:\n", dev->name); for (x = 0; x < numbuffs; x++) { printk(KERN_DEBUG "%s: Packet %d:\n", dev->name, x); skb = lp->rx_skbuff[x]; for (i = 0; i < size; i++) { printk("%02x ", *(skb->data + i)); } printk("\n"); } } x = 0; rc = 0; while (x < numbuffs && !rc) { skb = lp->rx_skbuff[x]; packet = lp->tx_skbuff[x]->data; for (i = 0; i < size; i++) { if (*(skb->data + i) != packet[i]) { if (netif_msg_hw(lp)) printk(KERN_DEBUG "%s: Error in compare! %2x - %02x %02x\n", dev->name, i, *(skb->data + i), packet[i]); rc = 1; break; } } x++; } clean_up: *data1 = rc; pcnet32_purge_tx_ring(dev); x = a->read_csr(ioaddr, CSR15); a->write_csr(ioaddr, CSR15, (x & ~0x0044)); /* reset bits 6 and 2 */ x = a->read_bcr(ioaddr, 32); /* reset internal loopback */ a->write_bcr(ioaddr, 32, (x & ~0x0002)); if (netif_running(dev)) { pcnet32_netif_start(dev); pcnet32_restart(dev, CSR0_NORMAL); } else { pcnet32_purge_rx_ring(dev); lp->a.write_bcr(ioaddr, 20, 4); /* return to 16bit mode */ } spin_unlock_irqrestore(&lp->lock, flags); return (rc); } /* end pcnet32_loopback_test */ static void pcnet32_led_blink_callback(struct net_device *dev) { struct pcnet32_private *lp = netdev_priv(dev); struct pcnet32_access *a = &lp->a; ulong ioaddr = dev->base_addr; unsigned long flags; int i; spin_lock_irqsave(&lp->lock, flags); for (i = 4; i < 8; i++) { a->write_bcr(ioaddr, i, a->read_bcr(ioaddr, i) ^ 0x4000); } spin_unlock_irqrestore(&lp->lock, flags); mod_timer(&lp->blink_timer, PCNET32_BLINK_TIMEOUT); } static int pcnet32_phys_id(struct net_device *dev, u32 data) { struct pcnet32_private *lp = netdev_priv(dev); struct pcnet32_access *a = &lp->a; ulong ioaddr = dev->base_addr; unsigned long flags; int i, regs[4]; if (!lp->blink_timer.function) { init_timer(&lp->blink_timer); lp->blink_timer.function = (void *)pcnet32_led_blink_callback; lp->blink_timer.data = (unsigned long)dev; } /* Save the current value of the bcrs */ spin_lock_irqsave(&lp->lock, flags); for (i = 4; i < 8; i++) { regs[i - 4] = a->read_bcr(ioaddr, i); } spin_unlock_irqrestore(&lp->lock, flags); mod_timer(&lp->blink_timer, jiffies); set_current_state(TASK_INTERRUPTIBLE); /* AV: the limit here makes no sense whatsoever */ if ((!data) || (data > (u32) (MAX_SCHEDULE_TIMEOUT / HZ))) data = (u32) (MAX_SCHEDULE_TIMEOUT / HZ); msleep_interruptible(data * 1000); del_timer_sync(&lp->blink_timer); /* Restore the original value of the bcrs */ spin_lock_irqsave(&lp->lock, flags); for (i = 4; i < 8; i++) { a->write_bcr(ioaddr, i, regs[i - 4]); } spin_unlock_irqrestore(&lp->lock, flags); return 0; } /* * lp->lock must be held. */ static int pcnet32_suspend(struct net_device *dev, unsigned long *flags, int can_sleep) { int csr5; struct pcnet32_private *lp = netdev_priv(dev); struct pcnet32_access *a = &lp->a; ulong ioaddr = dev->base_addr; int ticks; /* really old chips have to be stopped. */ if (lp->chip_version < PCNET32_79C970A) return 0; /* set SUSPEND (SPND) - CSR5 bit 0 */ csr5 = a->read_csr(ioaddr, CSR5); a->write_csr(ioaddr, CSR5, csr5 | CSR5_SUSPEND); /* poll waiting for bit to be set */ ticks = 0; while (!(a->read_csr(ioaddr, CSR5) & CSR5_SUSPEND)) { spin_unlock_irqrestore(&lp->lock, *flags); if (can_sleep) msleep(1); else mdelay(1); spin_lock_irqsave(&lp->lock, *flags); ticks++; if (ticks > 200) { if (netif_msg_hw(lp)) printk(KERN_DEBUG "%s: Error getting into suspend!\n", dev->name); return 0; } } return 1; } /* * process one receive descriptor entry */ static void pcnet32_rx_entry(struct net_device *dev, struct pcnet32_private *lp, struct pcnet32_rx_head *rxp, int entry) { int status = (short)le16_to_cpu(rxp->status) >> 8; int rx_in_place = 0; struct sk_buff *skb; short pkt_len; if (status != 0x03) { /* There was an error. */ /* * There is a tricky error noted by John Murphy, * <murf@perftech.com> to Russ Nelson: Even with full-sized * buffers it's possible for a jabber packet to use two * buffers, with only the last correctly noting the error. */ if (status & 0x01) /* Only count a general error at the */ dev->stats.rx_errors++; /* end of a packet. */ if (status & 0x20) dev->stats.rx_frame_errors++; if (status & 0x10) dev->stats.rx_over_errors++; if (status & 0x08) dev->stats.rx_crc_errors++; if (status & 0x04) dev->stats.rx_fifo_errors++; return; } pkt_len = (le32_to_cpu(rxp->msg_length) & 0xfff) - 4; /* Discard oversize frames. */ if (unlikely(pkt_len > PKT_BUF_SIZE)) { if (netif_msg_drv(lp)) printk(KERN_ERR "%s: Impossible packet size %d!\n", dev->name, pkt_len); dev->stats.rx_errors++; return; } if (pkt_len < 60) { if (netif_msg_rx_err(lp)) printk(KERN_ERR "%s: Runt packet!\n", dev->name); dev->stats.rx_errors++; return; } if (pkt_len > rx_copybreak) { struct sk_buff *newskb; if ((newskb = dev_alloc_skb(PKT_BUF_SKB))) { skb_reserve(newskb, NET_IP_ALIGN); skb = lp->rx_skbuff[entry]; pci_unmap_single(lp->pci_dev, lp->rx_dma_addr[entry], PKT_BUF_SIZE, PCI_DMA_FROMDEVICE); skb_put(skb, pkt_len); lp->rx_skbuff[entry] = newskb; lp->rx_dma_addr[entry] = pci_map_single(lp->pci_dev, newskb->data, PKT_BUF_SIZE, PCI_DMA_FROMDEVICE); rxp->base = cpu_to_le32(lp->rx_dma_addr[entry]); rx_in_place = 1; } else skb = NULL; } else { skb = dev_alloc_skb(pkt_len + NET_IP_ALIGN); } if (skb == NULL) { if (netif_msg_drv(lp)) printk(KERN_ERR "%s: Memory squeeze, dropping packet.\n", dev->name); dev->stats.rx_dropped++; return; } skb->dev = dev; if (!rx_in_place) { skb_reserve(skb, NET_IP_ALIGN); skb_put(skb, pkt_len); /* Make room */ pci_dma_sync_single_for_cpu(lp->pci_dev, lp->rx_dma_addr[entry], pkt_len, PCI_DMA_FROMDEVICE); skb_copy_to_linear_data(skb, (unsigned char *)(lp->rx_skbuff[entry]->data), pkt_len); pci_dma_sync_single_for_device(lp->pci_dev, lp->rx_dma_addr[entry], pkt_len, PCI_DMA_FROMDEVICE); } dev->stats.rx_bytes += skb->len; skb->protocol = eth_type_trans(skb, dev); netif_receive_skb(skb); dev->stats.rx_packets++; return; } static int pcnet32_rx(struct net_device *dev, int budget) { struct pcnet32_private *lp = netdev_priv(dev); int entry = lp->cur_rx & lp->rx_mod_mask; struct pcnet32_rx_head *rxp = &lp->rx_ring[entry]; int npackets = 0; /* If we own the next entry, it's a new packet. Send it up. */ while (npackets < budget && (short)le16_to_cpu(rxp->status) >= 0) { pcnet32_rx_entry(dev, lp, rxp, entry); npackets += 1; /* * The docs say that the buffer length isn't touched, but Andrew * Boyd of QNX reports that some revs of the 79C965 clear it. */ rxp->buf_length = cpu_to_le16(NEG_BUF_SIZE); wmb(); /* Make sure owner changes after others are visible */ rxp->status = cpu_to_le16(0x8000); entry = (++lp->cur_rx) & lp->rx_mod_mask; rxp = &lp->rx_ring[entry]; } return npackets; } static int pcnet32_tx(struct net_device *dev) { struct pcnet32_private *lp = netdev_priv(dev); unsigned int dirty_tx = lp->dirty_tx; int delta; int must_restart = 0; while (dirty_tx != lp->cur_tx) { int entry = dirty_tx & lp->tx_mod_mask; int status = (short)le16_to_cpu(lp->tx_ring[entry].status); if (status < 0) break; /* It still hasn't been Txed */ lp->tx_ring[entry].base = 0; if (status & 0x4000) { /* There was a major error, log it. */ int err_status = le32_to_cpu(lp->tx_ring[entry].misc); dev->stats.tx_errors++; if (netif_msg_tx_err(lp)) printk(KERN_ERR "%s: Tx error status=%04x err_status=%08x\n", dev->name, status, err_status); if (err_status & 0x04000000) dev->stats.tx_aborted_errors++; if (err_status & 0x08000000) dev->stats.tx_carrier_errors++; if (err_status & 0x10000000) dev->stats.tx_window_errors++; #ifndef DO_DXSUFLO if (err_status & 0x40000000) { dev->stats.tx_fifo_errors++; /* Ackk! On FIFO errors the Tx unit is turned off! */ /* Remove this verbosity later! */ if (netif_msg_tx_err(lp)) printk(KERN_ERR "%s: Tx FIFO error!\n", dev->name); must_restart = 1; } #else if (err_status & 0x40000000) { dev->stats.tx_fifo_errors++; if (!lp->dxsuflo) { /* If controller doesn't recover ... */ /* Ackk! On FIFO errors the Tx unit is turned off! */ /* Remove this verbosity later! */ if (netif_msg_tx_err(lp)) printk(KERN_ERR "%s: Tx FIFO error!\n", dev->name); must_restart = 1; } } #endif } else { if (status & 0x1800) dev->stats.collisions++; dev->stats.tx_packets++; } /* We must free the original skb */ if (lp->tx_skbuff[entry]) { pci_unmap_single(lp->pci_dev, lp->tx_dma_addr[entry], lp->tx_skbuff[entry]-> len, PCI_DMA_TODEVICE); dev_kfree_skb_any(lp->tx_skbuff[entry]); lp->tx_skbuff[entry] = NULL; lp->tx_dma_addr[entry] = 0; } dirty_tx++; } delta = (lp->cur_tx - dirty_tx) & (lp->tx_mod_mask + lp->tx_ring_size); if (delta > lp->tx_ring_size) { if (netif_msg_drv(lp)) printk(KERN_ERR "%s: out-of-sync dirty pointer, %d vs. %d, full=%d.\n", dev->name, dirty_tx, lp->cur_tx, lp->tx_full); dirty_tx += lp->tx_ring_size; delta -= lp->tx_ring_size; } if (lp->tx_full && netif_queue_stopped(dev) && delta < lp->tx_ring_size - 2) { /* The ring is no longer full, clear tbusy. */ lp->tx_full = 0; netif_wake_queue(dev); } lp->dirty_tx = dirty_tx; return must_restart; } static int pcnet32_poll(struct napi_struct *napi, int budget) { struct pcnet32_private *lp = container_of(napi, struct pcnet32_private, napi); struct net_device *dev = lp->dev; unsigned long ioaddr = dev->base_addr; unsigned long flags; int work_done; u16 val; work_done = pcnet32_rx(dev, budget); spin_lock_irqsave(&lp->lock, flags); if (pcnet32_tx(dev)) { /* reset the chip to clear the error condition, then restart */ lp->a.reset(ioaddr); lp->a.write_csr(ioaddr, CSR4, 0x0915); /* auto tx pad */ pcnet32_restart(dev, CSR0_START); netif_wake_queue(dev); } spin_unlock_irqrestore(&lp->lock, flags); if (work_done < budget) { spin_lock_irqsave(&lp->lock, flags); __napi_complete(napi); /* clear interrupt masks */ val = lp->a.read_csr(ioaddr, CSR3); val &= 0x00ff; lp->a.write_csr(ioaddr, CSR3, val); /* Set interrupt enable. */ lp->a.write_csr(ioaddr, CSR0, CSR0_INTEN); mmiowb(); spin_unlock_irqrestore(&lp->lock, flags); } return work_done; } #define PCNET32_REGS_PER_PHY 32 #define PCNET32_MAX_PHYS 32 static int pcnet32_get_regs_len(struct net_device *dev) { struct pcnet32_private *lp = netdev_priv(dev); int j = lp->phycount * PCNET32_REGS_PER_PHY; return ((PCNET32_NUM_REGS + j) * sizeof(u16)); } static void pcnet32_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *ptr) { int i, csr0; u16 *buff = ptr; struct pcnet32_private *lp = netdev_priv(dev); struct pcnet32_access *a = &lp->a; ulong ioaddr = dev->base_addr; unsigned long flags; spin_lock_irqsave(&lp->lock, flags); csr0 = a->read_csr(ioaddr, CSR0); if (!(csr0 & CSR0_STOP)) /* If not stopped */ pcnet32_suspend(dev, &flags, 1); /* read address PROM */ for (i = 0; i < 16; i += 2) *buff++ = inw(ioaddr + i); /* read control and status registers */ for (i = 0; i < 90; i++) { *buff++ = a->read_csr(ioaddr, i); } *buff++ = a->read_csr(ioaddr, 112); *buff++ = a->read_csr(ioaddr, 114); /* read bus configuration registers */ for (i = 0; i < 30; i++) { *buff++ = a->read_bcr(ioaddr, i); } *buff++ = 0; /* skip bcr30 so as not to hang 79C976 */ for (i = 31; i < 36; i++) { *buff++ = a->read_bcr(ioaddr, i); } /* read mii phy registers */ if (lp->mii) { int j; for (j = 0; j < PCNET32_MAX_PHYS; j++) { if (lp->phymask & (1 << j)) { for (i = 0; i < PCNET32_REGS_PER_PHY; i++) { lp->a.write_bcr(ioaddr, 33, (j << 5) | i); *buff++ = lp->a.read_bcr(ioaddr, 34); } } } } if (!(csr0 & CSR0_STOP)) { /* If not stopped */ int csr5; /* clear SUSPEND (SPND) - CSR5 bit 0 */ csr5 = a->read_csr(ioaddr, CSR5); a->write_csr(ioaddr, CSR5, csr5 & (~CSR5_SUSPEND)); } spin_unlock_irqrestore(&lp->lock, flags); } static const struct ethtool_ops pcnet32_ethtool_ops = { .get_settings = pcnet32_get_settings, .set_settings = pcnet32_set_settings, .get_drvinfo = pcnet32_get_drvinfo, .get_msglevel = pcnet32_get_msglevel, .set_msglevel = pcnet32_set_msglevel, .nway_reset = pcnet32_nway_reset, .get_link = pcnet32_get_link, .get_ringparam = pcnet32_get_ringparam, .set_ringparam = pcnet32_set_ringparam, .get_strings = pcnet32_get_strings, .self_test = pcnet32_ethtool_test, .phys_id = pcnet32_phys_id, .get_regs_len = pcnet32_get_regs_len, .get_regs = pcnet32_get_regs, .get_sset_count = pcnet32_get_sset_count, }; /* only probes for non-PCI devices, the rest are handled by * pci_register_driver via pcnet32_probe_pci */ static void __devinit pcnet32_probe_vlbus(unsigned int *pcnet32_portlist) { unsigned int *port, ioaddr; /* search for PCnet32 VLB cards at known addresses */ for (port = pcnet32_portlist; (ioaddr = *port); port++) { if (request_region (ioaddr, PCNET32_TOTAL_SIZE, "pcnet32_probe_vlbus")) { /* check if there is really a pcnet chip on that ioaddr */ if ((inb(ioaddr + 14) == 0x57) && (inb(ioaddr + 15) == 0x57)) { pcnet32_probe1(ioaddr, 0, NULL); } else { release_region(ioaddr, PCNET32_TOTAL_SIZE); } } } } static int __devinit pcnet32_probe_pci(struct pci_dev *pdev, const struct pci_device_id *ent) { unsigned long ioaddr; int err; err = pci_enable_device(pdev); if (err < 0) { if (pcnet32_debug & NETIF_MSG_PROBE) printk(KERN_ERR PFX "failed to enable device -- err=%d\n", err); return err; } pci_set_master(pdev); ioaddr = pci_resource_start(pdev, 0); if (!ioaddr) { if (pcnet32_debug & NETIF_MSG_PROBE) printk(KERN_ERR PFX "card has no PCI IO resources, aborting\n"); return -ENODEV; } if (!pci_dma_supported(pdev, PCNET32_DMA_MASK)) { if (pcnet32_debug & NETIF_MSG_PROBE) printk(KERN_ERR PFX "architecture does not support 32bit PCI busmaster DMA\n"); return -ENODEV; } if (request_region(ioaddr, PCNET32_TOTAL_SIZE, "pcnet32_probe_pci") == NULL) { if (pcnet32_debug & NETIF_MSG_PROBE) printk(KERN_ERR PFX "io address range already allocated\n"); return -EBUSY; } err = pcnet32_probe1(ioaddr, 1, pdev); if (err < 0) { pci_disable_device(pdev); } return err; } static const struct net_device_ops pcnet32_netdev_ops = { .ndo_open = pcnet32_open, .ndo_stop = pcnet32_close, .ndo_start_xmit = pcnet32_start_xmit, .ndo_tx_timeout = pcnet32_tx_timeout, .ndo_get_stats = pcnet32_get_stats, .ndo_set_multicast_list = pcnet32_set_multicast_list, .ndo_do_ioctl = pcnet32_ioctl, .ndo_change_mtu = eth_change_mtu, .ndo_set_mac_address = eth_mac_addr, .ndo_validate_addr = eth_validate_addr, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = pcnet32_poll_controller, #endif }; /* pcnet32_probe1 * Called from both pcnet32_probe_vlbus and pcnet_probe_pci. * pdev will be NULL when called from pcnet32_probe_vlbus. */ static int __devinit pcnet32_probe1(unsigned long ioaddr, int shared, struct pci_dev *pdev) { struct pcnet32_private *lp; int i, media; int fdx, mii, fset, dxsuflo; int chip_version; char *chipname; struct net_device *dev; struct pcnet32_access *a = NULL; u8 promaddr[6]; int ret = -ENODEV; /* reset the chip */ pcnet32_wio_reset(ioaddr); /* NOTE: 16-bit check is first, otherwise some older PCnet chips fail */ if (pcnet32_wio_read_csr(ioaddr, 0) == 4 && pcnet32_wio_check(ioaddr)) { a = &pcnet32_wio; } else { pcnet32_dwio_reset(ioaddr); if (pcnet32_dwio_read_csr(ioaddr, 0) == 4 && pcnet32_dwio_check(ioaddr)) { a = &pcnet32_dwio; } else goto err_release_region; } chip_version = a->read_csr(ioaddr, 88) | (a->read_csr(ioaddr, 89) << 16); if ((pcnet32_debug & NETIF_MSG_PROBE) && (pcnet32_debug & NETIF_MSG_HW)) printk(KERN_INFO " PCnet chip version is %#x.\n", chip_version); if ((chip_version & 0xfff) != 0x003) { if (pcnet32_debug & NETIF_MSG_PROBE) printk(KERN_INFO PFX "Unsupported chip version.\n"); goto err_release_region; } /* initialize variables */ fdx = mii = fset = dxsuflo = 0; chip_version = (chip_version >> 12) & 0xffff; switch (chip_version) { case 0x2420: chipname = "PCnet/PCI 79C970"; /* PCI */ break; case 0x2430: if (shared) chipname = "PCnet/PCI 79C970"; /* 970 gives the wrong chip id back */ else chipname = "PCnet/32 79C965"; /* 486/VL bus */ break; case 0x2621: chipname = "PCnet/PCI II 79C970A"; /* PCI */ fdx = 1; break; case 0x2623: chipname = "PCnet/FAST 79C971"; /* PCI */ fdx = 1; mii = 1; fset = 1; break; case 0x2624: chipname = "PCnet/FAST+ 79C972"; /* PCI */ fdx = 1; mii = 1; fset = 1; break; case 0x2625: chipname = "PCnet/FAST III 79C973"; /* PCI */ fdx = 1; mii = 1; break; case 0x2626: chipname = "PCnet/Home 79C978"; /* PCI */ fdx = 1; /* * This is based on specs published at www.amd.com. This section * assumes that a card with a 79C978 wants to go into standard * ethernet mode. The 79C978 can also go into 1Mb HomePNA mode, * and the module option homepna=1 can select this instead. */ media = a->read_bcr(ioaddr, 49); media &= ~3; /* default to 10Mb ethernet */ if (cards_found < MAX_UNITS && homepna[cards_found]) media |= 1; /* switch to home wiring mode */ if (pcnet32_debug & NETIF_MSG_PROBE) printk(KERN_DEBUG PFX "media set to %sMbit mode.\n", (media & 1) ? "1" : "10"); a->write_bcr(ioaddr, 49, media); break; case 0x2627: chipname = "PCnet/FAST III 79C975"; /* PCI */ fdx = 1; mii = 1; break; case 0x2628: chipname = "PCnet/PRO 79C976"; fdx = 1; mii = 1; break; default: if (pcnet32_debug & NETIF_MSG_PROBE) printk(KERN_INFO PFX "PCnet version %#x, no PCnet32 chip.\n", chip_version); goto err_release_region; } /* * On selected chips turn on the BCR18:NOUFLO bit. This stops transmit * starting until the packet is loaded. Strike one for reliability, lose * one for latency - although on PCI this isnt a big loss. Older chips * have FIFO's smaller than a packet, so you can't do this. * Turn on BCR18:BurstRdEn and BCR18:BurstWrEn. */ if (fset) { a->write_bcr(ioaddr, 18, (a->read_bcr(ioaddr, 18) | 0x0860)); a->write_csr(ioaddr, 80, (a->read_csr(ioaddr, 80) & 0x0C00) | 0x0c00); dxsuflo = 1; } dev = alloc_etherdev(sizeof(*lp)); if (!dev) { if (pcnet32_debug & NETIF_MSG_PROBE) printk(KERN_ERR PFX "Memory allocation failed.\n"); ret = -ENOMEM; goto err_release_region; } SET_NETDEV_DEV(dev, &pdev->dev); if (pcnet32_debug & NETIF_MSG_PROBE) printk(KERN_INFO PFX "%s at %#3lx,", chipname, ioaddr); /* In most chips, after a chip reset, the ethernet address is read from the * station address PROM at the base address and programmed into the * "Physical Address Registers" CSR12-14. * As a precautionary measure, we read the PROM values and complain if * they disagree with the CSRs. If they miscompare, and the PROM addr * is valid, then the PROM addr is used. */ for (i = 0; i < 3; i++) { unsigned int val; val = a->read_csr(ioaddr, i + 12) & 0x0ffff; /* There may be endianness issues here. */ dev->dev_addr[2 * i] = val & 0x0ff; dev->dev_addr[2 * i + 1] = (val >> 8) & 0x0ff; } /* read PROM address and compare with CSR address */ for (i = 0; i < 6; i++) promaddr[i] = inb(ioaddr + i); if (memcmp(promaddr, dev->dev_addr, 6) || !is_valid_ether_addr(dev->dev_addr)) { if (is_valid_ether_addr(promaddr)) { if (pcnet32_debug & NETIF_MSG_PROBE) { printk(" warning: CSR address invalid,\n"); printk(KERN_INFO " using instead PROM address of"); } memcpy(dev->dev_addr, promaddr, 6); } } memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); /* if the ethernet address is not valid, force to 00:00:00:00:00:00 */ if (!is_valid_ether_addr(dev->perm_addr)) memset(dev->dev_addr, 0, sizeof(dev->dev_addr)); if (pcnet32_debug & NETIF_MSG_PROBE) { printk(" %pM", dev->dev_addr); /* Version 0x2623 and 0x2624 */ if (((chip_version + 1) & 0xfffe) == 0x2624) { i = a->read_csr(ioaddr, 80) & 0x0C00; /* Check tx_start_pt */ printk("\n" KERN_INFO " tx_start_pt(0x%04x):", i); switch (i >> 10) { case 0: printk(" 20 bytes,"); break; case 1: printk(" 64 bytes,"); break; case 2: printk(" 128 bytes,"); break; case 3: printk("~220 bytes,"); break; } i = a->read_bcr(ioaddr, 18); /* Check Burst/Bus control */ printk(" BCR18(%x):", i & 0xffff); if (i & (1 << 5)) printk("BurstWrEn "); if (i & (1 << 6)) printk("BurstRdEn "); if (i & (1 << 7)) printk("DWordIO "); if (i & (1 << 11)) printk("NoUFlow "); i = a->read_bcr(ioaddr, 25); printk("\n" KERN_INFO " SRAMSIZE=0x%04x,", i << 8); i = a->read_bcr(ioaddr, 26); printk(" SRAM_BND=0x%04x,", i << 8); i = a->read_bcr(ioaddr, 27); if (i & (1 << 14)) printk("LowLatRx"); } } dev->base_addr = ioaddr; lp = netdev_priv(dev); /* pci_alloc_consistent returns page-aligned memory, so we do not have to check the alignment */ if ((lp->init_block = pci_alloc_consistent(pdev, sizeof(*lp->init_block), &lp->init_dma_addr)) == NULL) { if (pcnet32_debug & NETIF_MSG_PROBE) printk(KERN_ERR PFX "Consistent memory allocation failed.\n"); ret = -ENOMEM; goto err_free_netdev; } lp->pci_dev = pdev; lp->dev = dev; spin_lock_init(&lp->lock); SET_NETDEV_DEV(dev, &pdev->dev); lp->name = chipname; lp->shared_irq = shared; lp->tx_ring_size = TX_RING_SIZE; /* default tx ring size */ lp->rx_ring_size = RX_RING_SIZE; /* default rx ring size */ lp->tx_mod_mask = lp->tx_ring_size - 1; lp->rx_mod_mask = lp->rx_ring_size - 1; lp->tx_len_bits = (PCNET32_LOG_TX_BUFFERS << 12); lp->rx_len_bits = (PCNET32_LOG_RX_BUFFERS << 4); lp->mii_if.full_duplex = fdx; lp->mii_if.phy_id_mask = 0x1f; lp->mii_if.reg_num_mask = 0x1f; lp->dxsuflo = dxsuflo; lp->mii = mii; lp->chip_version = chip_version; lp->msg_enable = pcnet32_debug; if ((cards_found >= MAX_UNITS) || (options[cards_found] > sizeof(options_mapping))) lp->options = PCNET32_PORT_ASEL; else lp->options = options_mapping[options[cards_found]]; lp->mii_if.dev = dev; lp->mii_if.mdio_read = mdio_read; lp->mii_if.mdio_write = mdio_write; /* napi.weight is used in both the napi and non-napi cases */ lp->napi.weight = lp->rx_ring_size / 2; netif_napi_add(dev, &lp->napi, pcnet32_poll, lp->rx_ring_size / 2); if (fdx && !(lp->options & PCNET32_PORT_ASEL) && ((cards_found >= MAX_UNITS) || full_duplex[cards_found])) lp->options |= PCNET32_PORT_FD; if (!a) { if (pcnet32_debug & NETIF_MSG_PROBE) printk(KERN_ERR PFX "No access methods\n"); ret = -ENODEV; goto err_free_consistent; } lp->a = *a; /* prior to register_netdev, dev->name is not yet correct */ if (pcnet32_alloc_ring(dev, pci_name(lp->pci_dev))) { ret = -ENOMEM; goto err_free_ring; } /* detect special T1/E1 WAN card by checking for MAC address */ if (dev->dev_addr[0] == 0x00 && dev->dev_addr[1] == 0xe0 && dev->dev_addr[2] == 0x75) lp->options = PCNET32_PORT_FD | PCNET32_PORT_GPSI; lp->init_block->mode = cpu_to_le16(0x0003); /* Disable Rx and Tx. */ lp->init_block->tlen_rlen = cpu_to_le16(lp->tx_len_bits | lp->rx_len_bits); for (i = 0; i < 6; i++) lp->init_block->phys_addr[i] = dev->dev_addr[i]; lp->init_block->filter[0] = 0x00000000; lp->init_block->filter[1] = 0x00000000; lp->init_block->rx_ring = cpu_to_le32(lp->rx_ring_dma_addr); lp->init_block->tx_ring = cpu_to_le32(lp->tx_ring_dma_addr); /* switch pcnet32 to 32bit mode */ a->write_bcr(ioaddr, 20, 2); a->write_csr(ioaddr, 1, (lp->init_dma_addr & 0xffff)); a->write_csr(ioaddr, 2, (lp->init_dma_addr >> 16)); if (pdev) { /* use the IRQ provided by PCI */ dev->irq = pdev->irq; if (pcnet32_debug & NETIF_MSG_PROBE) printk(" assigned IRQ %d.\n", dev->irq); } else { unsigned long irq_mask = probe_irq_on(); /* * To auto-IRQ we enable the initialization-done and DMA error * interrupts. For ISA boards we get a DMA error, but VLB and PCI * boards will work. */ /* Trigger an initialization just for the interrupt. */ a->write_csr(ioaddr, CSR0, CSR0_INTEN | CSR0_INIT); mdelay(1); dev->irq = probe_irq_off(irq_mask); if (!dev->irq) { if (pcnet32_debug & NETIF_MSG_PROBE) printk(", failed to detect IRQ line.\n"); ret = -ENODEV; goto err_free_ring; } if (pcnet32_debug & NETIF_MSG_PROBE) printk(", probed IRQ %d.\n", dev->irq); } /* Set the mii phy_id so that we can query the link state */ if (lp->mii) { /* lp->phycount and lp->phymask are set to 0 by memset above */ lp->mii_if.phy_id = ((lp->a.read_bcr(ioaddr, 33)) >> 5) & 0x1f; /* scan for PHYs */ for (i = 0; i < PCNET32_MAX_PHYS; i++) { unsigned short id1, id2; id1 = mdio_read(dev, i, MII_PHYSID1); if (id1 == 0xffff) continue; id2 = mdio_read(dev, i, MII_PHYSID2); if (id2 == 0xffff) continue; if (i == 31 && ((chip_version + 1) & 0xfffe) == 0x2624) continue; /* 79C971 & 79C972 have phantom phy at id 31 */ lp->phycount++; lp->phymask |= (1 << i); lp->mii_if.phy_id = i; if (pcnet32_debug & NETIF_MSG_PROBE) printk(KERN_INFO PFX "Found PHY %04x:%04x at address %d.\n", id1, id2, i); } lp->a.write_bcr(ioaddr, 33, (lp->mii_if.phy_id) << 5); if (lp->phycount > 1) { lp->options |= PCNET32_PORT_MII; } } init_timer(&lp->watchdog_timer); lp->watchdog_timer.data = (unsigned long)dev; lp->watchdog_timer.function = (void *)&pcnet32_watchdog; /* The PCNET32-specific entries in the device structure. */ dev->netdev_ops = &pcnet32_netdev_ops; dev->ethtool_ops = &pcnet32_ethtool_ops; dev->watchdog_timeo = (5 * HZ); /* Fill in the generic fields of the device structure. */ if (register_netdev(dev)) goto err_free_ring; if (pdev) { pci_set_drvdata(pdev, dev); } else { lp->next = pcnet32_dev; pcnet32_dev = dev; } if (pcnet32_debug & NETIF_MSG_PROBE) printk(KERN_INFO "%s: registered as %s\n", dev->name, lp->name); cards_found++; /* enable LED writes */ a->write_bcr(ioaddr, 2, a->read_bcr(ioaddr, 2) | 0x1000); return 0; err_free_ring: pcnet32_free_ring(dev); err_free_consistent: pci_free_consistent(lp->pci_dev, sizeof(*lp->init_block), lp->init_block, lp->init_dma_addr); err_free_netdev: free_netdev(dev); err_release_region: release_region(ioaddr, PCNET32_TOTAL_SIZE); return ret; } /* if any allocation fails, caller must also call pcnet32_free_ring */ static int pcnet32_alloc_ring(struct net_device *dev, const char *name) { struct pcnet32_private *lp = netdev_priv(dev); lp->tx_ring = pci_alloc_consistent(lp->pci_dev, sizeof(struct pcnet32_tx_head) * lp->tx_ring_size, &lp->tx_ring_dma_addr); if (lp->tx_ring == NULL) { if (netif_msg_drv(lp)) printk("\n" KERN_ERR PFX "%s: Consistent memory allocation failed.\n", name); return -ENOMEM; } lp->rx_ring = pci_alloc_consistent(lp->pci_dev, sizeof(struct pcnet32_rx_head) * lp->rx_ring_size, &lp->rx_ring_dma_addr); if (lp->rx_ring == NULL) { if (netif_msg_drv(lp)) printk("\n" KERN_ERR PFX "%s: Consistent memory allocation failed.\n", name); return -ENOMEM; } lp->tx_dma_addr = kcalloc(lp->tx_ring_size, sizeof(dma_addr_t), GFP_ATOMIC); if (!lp->tx_dma_addr) { if (netif_msg_drv(lp)) printk("\n" KERN_ERR PFX "%s: Memory allocation failed.\n", name); return -ENOMEM; } lp->rx_dma_addr = kcalloc(lp->rx_ring_size, sizeof(dma_addr_t), GFP_ATOMIC); if (!lp->rx_dma_addr) { if (netif_msg_drv(lp)) printk("\n" KERN_ERR PFX "%s: Memory allocation failed.\n", name); return -ENOMEM; } lp->tx_skbuff = kcalloc(lp->tx_ring_size, sizeof(struct sk_buff *), GFP_ATOMIC); if (!lp->tx_skbuff) { if (netif_msg_drv(lp)) printk("\n" KERN_ERR PFX "%s: Memory allocation failed.\n", name); return -ENOMEM; } lp->rx_skbuff = kcalloc(lp->rx_ring_size, sizeof(struct sk_buff *), GFP_ATOMIC); if (!lp->rx_skbuff) { if (netif_msg_drv(lp)) printk("\n" KERN_ERR PFX "%s: Memory allocation failed.\n", name); return -ENOMEM; } return 0; } static void pcnet32_free_ring(struct net_device *dev) { struct pcnet32_private *lp = netdev_priv(dev); kfree(lp->tx_skbuff); lp->tx_skbuff = NULL; kfree(lp->rx_skbuff); lp->rx_skbuff = NULL; kfree(lp->tx_dma_addr); lp->tx_dma_addr = NULL; kfree(lp->rx_dma_addr); lp->rx_dma_addr = NULL; if (lp->tx_ring) { pci_free_consistent(lp->pci_dev, sizeof(struct pcnet32_tx_head) * lp->tx_ring_size, lp->tx_ring, lp->tx_ring_dma_addr); lp->tx_ring = NULL; } if (lp->rx_ring) { pci_free_consistent(lp->pci_dev, sizeof(struct pcnet32_rx_head) * lp->rx_ring_size, lp->rx_ring, lp->rx_ring_dma_addr); lp->rx_ring = NULL; } } static int pcnet32_open(struct net_device *dev) { struct pcnet32_private *lp = netdev_priv(dev); unsigned long ioaddr = dev->base_addr; u16 val; int i; int rc; unsigned long flags; if (request_irq(dev->irq, &pcnet32_interrupt, lp->shared_irq ? IRQF_SHARED : 0, dev->name, (void *)dev)) { return -EAGAIN; } spin_lock_irqsave(&lp->lock, flags); /* Check for a valid station address */ if (!is_valid_ether_addr(dev->dev_addr)) { rc = -EINVAL; goto err_free_irq; } /* Reset the PCNET32 */ lp->a.reset(ioaddr); /* switch pcnet32 to 32bit mode */ lp->a.write_bcr(ioaddr, 20, 2); if (netif_msg_ifup(lp)) printk(KERN_DEBUG "%s: pcnet32_open() irq %d tx/rx rings %#x/%#x init %#x.\n", dev->name, dev->irq, (u32) (lp->tx_ring_dma_addr), (u32) (lp->rx_ring_dma_addr), (u32) (lp->init_dma_addr)); /* set/reset autoselect bit */ val = lp->a.read_bcr(ioaddr, 2) & ~2; if (lp->options & PCNET32_PORT_ASEL) val |= 2; lp->a.write_bcr(ioaddr, 2, val); /* handle full duplex setting */ if (lp->mii_if.full_duplex) { val = lp->a.read_bcr(ioaddr, 9) & ~3; if (lp->options & PCNET32_PORT_FD) { val |= 1; if (lp->options == (PCNET32_PORT_FD | PCNET32_PORT_AUI)) val |= 2; } else if (lp->options & PCNET32_PORT_ASEL) { /* workaround of xSeries250, turn on for 79C975 only */ if (lp->chip_version == 0x2627) val |= 3; } lp->a.write_bcr(ioaddr, 9, val); } /* set/reset GPSI bit in test register */ val = lp->a.read_csr(ioaddr, 124) & ~0x10; if ((lp->options & PCNET32_PORT_PORTSEL) == PCNET32_PORT_GPSI) val |= 0x10; lp->a.write_csr(ioaddr, 124, val); /* Allied Telesyn AT 2700/2701 FX are 100Mbit only and do not negotiate */ if (lp->pci_dev->subsystem_vendor == PCI_VENDOR_ID_AT && (lp->pci_dev->subsystem_device == PCI_SUBDEVICE_ID_AT_2700FX || lp->pci_dev->subsystem_device == PCI_SUBDEVICE_ID_AT_2701FX)) { if (lp->options & PCNET32_PORT_ASEL) { lp->options = PCNET32_PORT_FD | PCNET32_PORT_100; if (netif_msg_link(lp)) printk(KERN_DEBUG "%s: Setting 100Mb-Full Duplex.\n", dev->name); } } if (lp->phycount < 2) { /* * 24 Jun 2004 according AMD, in order to change the PHY, * DANAS (or DISPM for 79C976) must be set; then select the speed, * duplex, and/or enable auto negotiation, and clear DANAS */ if (lp->mii && !(lp->options & PCNET32_PORT_ASEL)) { lp->a.write_bcr(ioaddr, 32, lp->a.read_bcr(ioaddr, 32) | 0x0080); /* disable Auto Negotiation, set 10Mpbs, HD */ val = lp->a.read_bcr(ioaddr, 32) & ~0xb8; if (lp->options & PCNET32_PORT_FD) val |= 0x10; if (lp->options & PCNET32_PORT_100) val |= 0x08; lp->a.write_bcr(ioaddr, 32, val); } else { if (lp->options & PCNET32_PORT_ASEL) { lp->a.write_bcr(ioaddr, 32, lp->a.read_bcr(ioaddr, 32) | 0x0080); /* enable auto negotiate, setup, disable fd */ val = lp->a.read_bcr(ioaddr, 32) & ~0x98; val |= 0x20; lp->a.write_bcr(ioaddr, 32, val); } } } else { int first_phy = -1; u16 bmcr; u32 bcr9; struct ethtool_cmd ecmd; /* * There is really no good other way to handle multiple PHYs * other than turning off all automatics */ val = lp->a.read_bcr(ioaddr, 2); lp->a.write_bcr(ioaddr, 2, val & ~2); val = lp->a.read_bcr(ioaddr, 32); lp->a.write_bcr(ioaddr, 32, val & ~(1 << 7)); /* stop MII manager */ if (!(lp->options & PCNET32_PORT_ASEL)) { /* setup ecmd */ ecmd.port = PORT_MII; ecmd.transceiver = XCVR_INTERNAL; ecmd.autoneg = AUTONEG_DISABLE; ecmd.speed = lp-> options & PCNET32_PORT_100 ? SPEED_100 : SPEED_10; bcr9 = lp->a.read_bcr(ioaddr, 9); if (lp->options & PCNET32_PORT_FD) { ecmd.duplex = DUPLEX_FULL; bcr9 |= (1 << 0); } else { ecmd.duplex = DUPLEX_HALF; bcr9 |= ~(1 << 0); } lp->a.write_bcr(ioaddr, 9, bcr9); } for (i = 0; i < PCNET32_MAX_PHYS; i++) { if (lp->phymask & (1 << i)) { /* isolate all but the first PHY */ bmcr = mdio_read(dev, i, MII_BMCR); if (first_phy == -1) { first_phy = i; mdio_write(dev, i, MII_BMCR, bmcr & ~BMCR_ISOLATE); } else { mdio_write(dev, i, MII_BMCR, bmcr | BMCR_ISOLATE); } /* use mii_ethtool_sset to setup PHY */ lp->mii_if.phy_id = i; ecmd.phy_address = i; if (lp->options & PCNET32_PORT_ASEL) { mii_ethtool_gset(&lp->mii_if, &ecmd); ecmd.autoneg = AUTONEG_ENABLE; } mii_ethtool_sset(&lp->mii_if, &ecmd); } } lp->mii_if.phy_id = first_phy; if (netif_msg_link(lp)) printk(KERN_INFO "%s: Using PHY number %d.\n", dev->name, first_phy); } #ifdef DO_DXSUFLO if (lp->dxsuflo) { /* Disable transmit stop on underflow */ val = lp->a.read_csr(ioaddr, CSR3); val |= 0x40; lp->a.write_csr(ioaddr, CSR3, val); } #endif lp->init_block->mode = cpu_to_le16((lp->options & PCNET32_PORT_PORTSEL) << 7); pcnet32_load_multicast(dev); if (pcnet32_init_ring(dev)) { rc = -ENOMEM; goto err_free_ring; } napi_enable(&lp->napi); /* Re-initialize the PCNET32, and start it when done. */ lp->a.write_csr(ioaddr, 1, (lp->init_dma_addr & 0xffff)); lp->a.write_csr(ioaddr, 2, (lp->init_dma_addr >> 16)); lp->a.write_csr(ioaddr, CSR4, 0x0915); /* auto tx pad */ lp->a.write_csr(ioaddr, CSR0, CSR0_INIT); netif_start_queue(dev); if (lp->chip_version >= PCNET32_79C970A) { /* Print the link status and start the watchdog */ pcnet32_check_media(dev, 1); mod_timer(&lp->watchdog_timer, PCNET32_WATCHDOG_TIMEOUT); } i = 0; while (i++ < 100) if (lp->a.read_csr(ioaddr, CSR0) & CSR0_IDON) break; /* * We used to clear the InitDone bit, 0x0100, here but Mark Stockton * reports that doing so triggers a bug in the '974. */ lp->a.write_csr(ioaddr, CSR0, CSR0_NORMAL); if (netif_msg_ifup(lp)) printk(KERN_DEBUG "%s: pcnet32 open after %d ticks, init block %#x csr0 %4.4x.\n", dev->name, i, (u32) (lp->init_dma_addr), lp->a.read_csr(ioaddr, CSR0)); spin_unlock_irqrestore(&lp->lock, flags); return 0; /* Always succeed */ err_free_ring: /* free any allocated skbuffs */ pcnet32_purge_rx_ring(dev); /* * Switch back to 16bit mode to avoid problems with dumb * DOS packet driver after a warm reboot */ lp->a.write_bcr(ioaddr, 20, 4); err_free_irq: spin_unlock_irqrestore(&lp->lock, flags); free_irq(dev->irq, dev); return rc; } /* * The LANCE has been halted for one reason or another (busmaster memory * arbitration error, Tx FIFO underflow, driver stopped it to reconfigure, * etc.). Modern LANCE variants always reload their ring-buffer * configuration when restarted, so we must reinitialize our ring * context before restarting. As part of this reinitialization, * find all packets still on the Tx ring and pretend that they had been * sent (in effect, drop the packets on the floor) - the higher-level * protocols will time out and retransmit. It'd be better to shuffle * these skbs to a temp list and then actually re-Tx them after * restarting the chip, but I'm too lazy to do so right now. dplatt@3do.com */ static void pcnet32_purge_tx_ring(struct net_device *dev) { struct pcnet32_private *lp = netdev_priv(dev); int i; for (i = 0; i < lp->tx_ring_size; i++) { lp->tx_ring[i].status = 0; /* CPU owns buffer */ wmb(); /* Make sure adapter sees owner change */ if (lp->tx_skbuff[i]) { pci_unmap_single(lp->pci_dev, lp->tx_dma_addr[i], lp->tx_skbuff[i]->len, PCI_DMA_TODEVICE); dev_kfree_skb_any(lp->tx_skbuff[i]); } lp->tx_skbuff[i] = NULL; lp->tx_dma_addr[i] = 0; } } /* Initialize the PCNET32 Rx and Tx rings. */ static int pcnet32_init_ring(struct net_device *dev) { struct pcnet32_private *lp = netdev_priv(dev); int i; lp->tx_full = 0; lp->cur_rx = lp->cur_tx = 0; lp->dirty_rx = lp->dirty_tx = 0; for (i = 0; i < lp->rx_ring_size; i++) { struct sk_buff *rx_skbuff = lp->rx_skbuff[i]; if (rx_skbuff == NULL) { if (! (rx_skbuff = lp->rx_skbuff[i] = dev_alloc_skb(PKT_BUF_SKB))) { /* there is not much, we can do at this point */ if (netif_msg_drv(lp)) printk(KERN_ERR "%s: pcnet32_init_ring dev_alloc_skb failed.\n", dev->name); return -1; } skb_reserve(rx_skbuff, NET_IP_ALIGN); } rmb(); if (lp->rx_dma_addr[i] == 0) lp->rx_dma_addr[i] = pci_map_single(lp->pci_dev, rx_skbuff->data, PKT_BUF_SIZE, PCI_DMA_FROMDEVICE); lp->rx_ring[i].base = cpu_to_le32(lp->rx_dma_addr[i]); lp->rx_ring[i].buf_length = cpu_to_le16(NEG_BUF_SIZE); wmb(); /* Make sure owner changes after all others are visible */ lp->rx_ring[i].status = cpu_to_le16(0x8000); } /* The Tx buffer address is filled in as needed, but we do need to clear * the upper ownership bit. */ for (i = 0; i < lp->tx_ring_size; i++) { lp->tx_ring[i].status = 0; /* CPU owns buffer */ wmb(); /* Make sure adapter sees owner change */ lp->tx_ring[i].base = 0; lp->tx_dma_addr[i] = 0; } lp->init_block->tlen_rlen = cpu_to_le16(lp->tx_len_bits | lp->rx_len_bits); for (i = 0; i < 6; i++) lp->init_block->phys_addr[i] = dev->dev_addr[i]; lp->init_block->rx_ring = cpu_to_le32(lp->rx_ring_dma_addr); lp->init_block->tx_ring = cpu_to_le32(lp->tx_ring_dma_addr); wmb(); /* Make sure all changes are visible */ return 0; } /* the pcnet32 has been issued a stop or reset. Wait for the stop bit * then flush the pending transmit operations, re-initialize the ring, * and tell the chip to initialize. */ static void pcnet32_restart(struct net_device *dev, unsigned int csr0_bits) { struct pcnet32_private *lp = netdev_priv(dev); unsigned long ioaddr = dev->base_addr; int i; /* wait for stop */ for (i = 0; i < 100; i++) if (lp->a.read_csr(ioaddr, CSR0) & CSR0_STOP) break; if (i >= 100 && netif_msg_drv(lp)) printk(KERN_ERR "%s: pcnet32_restart timed out waiting for stop.\n", dev->name); pcnet32_purge_tx_ring(dev); if (pcnet32_init_ring(dev)) return; /* ReInit Ring */ lp->a.write_csr(ioaddr, CSR0, CSR0_INIT); i = 0; while (i++ < 1000) if (lp->a.read_csr(ioaddr, CSR0) & CSR0_IDON) break; lp->a.write_csr(ioaddr, CSR0, csr0_bits); } static void pcnet32_tx_timeout(struct net_device *dev) { struct pcnet32_private *lp = netdev_priv(dev); unsigned long ioaddr = dev->base_addr, flags; spin_lock_irqsave(&lp->lock, flags); /* Transmitter timeout, serious problems. */ if (pcnet32_debug & NETIF_MSG_DRV) printk(KERN_ERR "%s: transmit timed out, status %4.4x, resetting.\n", dev->name, lp->a.read_csr(ioaddr, CSR0)); lp->a.write_csr(ioaddr, CSR0, CSR0_STOP); dev->stats.tx_errors++; if (netif_msg_tx_err(lp)) { int i; printk(KERN_DEBUG " Ring data dump: dirty_tx %d cur_tx %d%s cur_rx %d.", lp->dirty_tx, lp->cur_tx, lp->tx_full ? " (full)" : "", lp->cur_rx); for (i = 0; i < lp->rx_ring_size; i++) printk("%s %08x %04x %08x %04x", i & 1 ? "" : "\n ", le32_to_cpu(lp->rx_ring[i].base), (-le16_to_cpu(lp->rx_ring[i].buf_length)) & 0xffff, le32_to_cpu(lp->rx_ring[i].msg_length), le16_to_cpu(lp->rx_ring[i].status)); for (i = 0; i < lp->tx_ring_size; i++) printk("%s %08x %04x %08x %04x", i & 1 ? "" : "\n ", le32_to_cpu(lp->tx_ring[i].base), (-le16_to_cpu(lp->tx_ring[i].length)) & 0xffff, le32_to_cpu(lp->tx_ring[i].misc), le16_to_cpu(lp->tx_ring[i].status)); printk("\n"); } pcnet32_restart(dev, CSR0_NORMAL); dev->trans_start = jiffies; netif_wake_queue(dev); spin_unlock_irqrestore(&lp->lock, flags); } static int pcnet32_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct pcnet32_private *lp = netdev_priv(dev); unsigned long ioaddr = dev->base_addr; u16 status; int entry; unsigned long flags; spin_lock_irqsave(&lp->lock, flags); if (netif_msg_tx_queued(lp)) { printk(KERN_DEBUG "%s: pcnet32_start_xmit() called, csr0 %4.4x.\n", dev->name, lp->a.read_csr(ioaddr, CSR0)); } /* Default status -- will not enable Successful-TxDone * interrupt when that option is available to us. */ status = 0x8300; /* Fill in a Tx ring entry */ /* Mask to ring buffer boundary. */ entry = lp->cur_tx & lp->tx_mod_mask; /* Caution: the write order is important here, set the status * with the "ownership" bits last. */ lp->tx_ring[entry].length = cpu_to_le16(-skb->len); lp->tx_ring[entry].misc = 0x00000000; lp->tx_skbuff[entry] = skb; lp->tx_dma_addr[entry] = pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE); lp->tx_ring[entry].base = cpu_to_le32(lp->tx_dma_addr[entry]); wmb(); /* Make sure owner changes after all others are visible */ lp->tx_ring[entry].status = cpu_to_le16(status); lp->cur_tx++; dev->stats.tx_bytes += skb->len; /* Trigger an immediate send poll. */ lp->a.write_csr(ioaddr, CSR0, CSR0_INTEN | CSR0_TXPOLL); dev->trans_start = jiffies; if (lp->tx_ring[(entry + 1) & lp->tx_mod_mask].base != 0) { lp->tx_full = 1; netif_stop_queue(dev); } spin_unlock_irqrestore(&lp->lock, flags); return 0; } /* The PCNET32 interrupt handler. */ static irqreturn_t pcnet32_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; struct pcnet32_private *lp; unsigned long ioaddr; u16 csr0; int boguscnt = max_interrupt_work; ioaddr = dev->base_addr; lp = netdev_priv(dev); spin_lock(&lp->lock); csr0 = lp->a.read_csr(ioaddr, CSR0); while ((csr0 & 0x8f00) && --boguscnt >= 0) { if (csr0 == 0xffff) { break; /* PCMCIA remove happened */ } /* Acknowledge all of the current interrupt sources ASAP. */ lp->a.write_csr(ioaddr, CSR0, csr0 & ~0x004f); if (netif_msg_intr(lp)) printk(KERN_DEBUG "%s: interrupt csr0=%#2.2x new csr=%#2.2x.\n", dev->name, csr0, lp->a.read_csr(ioaddr, CSR0)); /* Log misc errors. */ if (csr0 & 0x4000) dev->stats.tx_errors++; /* Tx babble. */ if (csr0 & 0x1000) { /* * This happens when our receive ring is full. This * shouldn't be a problem as we will see normal rx * interrupts for the frames in the receive ring. But * there are some PCI chipsets (I can reproduce this * on SP3G with Intel saturn chipset) which have * sometimes problems and will fill up the receive * ring with error descriptors. In this situation we * don't get a rx interrupt, but a missed frame * interrupt sooner or later. */ dev->stats.rx_errors++; /* Missed a Rx frame. */ } if (csr0 & 0x0800) { if (netif_msg_drv(lp)) printk(KERN_ERR "%s: Bus master arbitration failure, status %4.4x.\n", dev->name, csr0); /* unlike for the lance, there is no restart needed */ } if (napi_schedule_prep(&lp->napi)) { u16 val; /* set interrupt masks */ val = lp->a.read_csr(ioaddr, CSR3); val |= 0x5f00; lp->a.write_csr(ioaddr, CSR3, val); mmiowb(); __napi_schedule(&lp->napi); break; } csr0 = lp->a.read_csr(ioaddr, CSR0); } if (netif_msg_intr(lp)) printk(KERN_DEBUG "%s: exiting interrupt, csr0=%#4.4x.\n", dev->name, lp->a.read_csr(ioaddr, CSR0)); spin_unlock(&lp->lock); return IRQ_HANDLED; } static int pcnet32_close(struct net_device *dev) { unsigned long ioaddr = dev->base_addr; struct pcnet32_private *lp = netdev_priv(dev); unsigned long flags; del_timer_sync(&lp->watchdog_timer); netif_stop_queue(dev); napi_disable(&lp->napi); spin_lock_irqsave(&lp->lock, flags); dev->stats.rx_missed_errors = lp->a.read_csr(ioaddr, 112); if (netif_msg_ifdown(lp)) printk(KERN_DEBUG "%s: Shutting down ethercard, status was %2.2x.\n", dev->name, lp->a.read_csr(ioaddr, CSR0)); /* We stop the PCNET32 here -- it occasionally polls memory if we don't. */ lp->a.write_csr(ioaddr, CSR0, CSR0_STOP); /* * Switch back to 16bit mode to avoid problems with dumb * DOS packet driver after a warm reboot */ lp->a.write_bcr(ioaddr, 20, 4); spin_unlock_irqrestore(&lp->lock, flags); free_irq(dev->irq, dev); spin_lock_irqsave(&lp->lock, flags); pcnet32_purge_rx_ring(dev); pcnet32_purge_tx_ring(dev); spin_unlock_irqrestore(&lp->lock, flags); return 0; } static struct net_device_stats *pcnet32_get_stats(struct net_device *dev) { struct pcnet32_private *lp = netdev_priv(dev); unsigned long ioaddr = dev->base_addr; unsigned long flags; spin_lock_irqsave(&lp->lock, flags); dev->stats.rx_missed_errors = lp->a.read_csr(ioaddr, 112); spin_unlock_irqrestore(&lp->lock, flags); return &dev->stats; } /* taken from the sunlance driver, which it took from the depca driver */ static void pcnet32_load_multicast(struct net_device *dev) { struct pcnet32_private *lp = netdev_priv(dev); volatile struct pcnet32_init_block *ib = lp->init_block; volatile __le16 *mcast_table = (__le16 *)ib->filter; struct dev_mc_list *dmi = dev->mc_list; unsigned long ioaddr = dev->base_addr; char *addrs; int i; u32 crc; /* set all multicast bits */ if (dev->flags & IFF_ALLMULTI) { ib->filter[0] = cpu_to_le32(~0U); ib->filter[1] = cpu_to_le32(~0U); lp->a.write_csr(ioaddr, PCNET32_MC_FILTER, 0xffff); lp->a.write_csr(ioaddr, PCNET32_MC_FILTER+1, 0xffff); lp->a.write_csr(ioaddr, PCNET32_MC_FILTER+2, 0xffff); lp->a.write_csr(ioaddr, PCNET32_MC_FILTER+3, 0xffff); return; } /* clear the multicast filter */ ib->filter[0] = 0; ib->filter[1] = 0; /* Add addresses */ for (i = 0; i < dev->mc_count; i++) { addrs = dmi->dmi_addr; dmi = dmi->next; /* multicast address? */ if (!(*addrs & 1)) continue; crc = ether_crc_le(6, addrs); crc = crc >> 26; mcast_table[crc >> 4] |= cpu_to_le16(1 << (crc & 0xf)); } for (i = 0; i < 4; i++) lp->a.write_csr(ioaddr, PCNET32_MC_FILTER + i, le16_to_cpu(mcast_table[i])); return; } /* * Set or clear the multicast filter for this adaptor. */ static void pcnet32_set_multicast_list(struct net_device *dev) { unsigned long ioaddr = dev->base_addr, flags; struct pcnet32_private *lp = netdev_priv(dev); int csr15, suspended; spin_lock_irqsave(&lp->lock, flags); suspended = pcnet32_suspend(dev, &flags, 0); csr15 = lp->a.read_csr(ioaddr, CSR15); if (dev->flags & IFF_PROMISC) { /* Log any net taps. */ if (netif_msg_hw(lp)) printk(KERN_INFO "%s: Promiscuous mode enabled.\n", dev->name); lp->init_block->mode = cpu_to_le16(0x8000 | (lp->options & PCNET32_PORT_PORTSEL) << 7); lp->a.write_csr(ioaddr, CSR15, csr15 | 0x8000); } else { lp->init_block->mode = cpu_to_le16((lp->options & PCNET32_PORT_PORTSEL) << 7); lp->a.write_csr(ioaddr, CSR15, csr15 & 0x7fff); pcnet32_load_multicast(dev); } if (suspended) { int csr5; /* clear SUSPEND (SPND) - CSR5 bit 0 */ csr5 = lp->a.read_csr(ioaddr, CSR5); lp->a.write_csr(ioaddr, CSR5, csr5 & (~CSR5_SUSPEND)); } else { lp->a.write_csr(ioaddr, CSR0, CSR0_STOP); pcnet32_restart(dev, CSR0_NORMAL); netif_wake_queue(dev); } spin_unlock_irqrestore(&lp->lock, flags); } /* This routine assumes that the lp->lock is held */ static int mdio_read(struct net_device *dev, int phy_id, int reg_num) { struct pcnet32_private *lp = netdev_priv(dev); unsigned long ioaddr = dev->base_addr; u16 val_out; if (!lp->mii) return 0; lp->a.write_bcr(ioaddr, 33, ((phy_id & 0x1f) << 5) | (reg_num & 0x1f)); val_out = lp->a.read_bcr(ioaddr, 34); return val_out; } /* This routine assumes that the lp->lock is held */ static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val) { struct pcnet32_private *lp = netdev_priv(dev); unsigned long ioaddr = dev->base_addr; if (!lp->mii) return; lp->a.write_bcr(ioaddr, 33, ((phy_id & 0x1f) << 5) | (reg_num & 0x1f)); lp->a.write_bcr(ioaddr, 34, val); } static int pcnet32_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct pcnet32_private *lp = netdev_priv(dev); int rc; unsigned long flags; /* SIOC[GS]MIIxxx ioctls */ if (lp->mii) { spin_lock_irqsave(&lp->lock, flags); rc = generic_mii_ioctl(&lp->mii_if, if_mii(rq), cmd, NULL); spin_unlock_irqrestore(&lp->lock, flags); } else { rc = -EOPNOTSUPP; } return rc; } static int pcnet32_check_otherphy(struct net_device *dev) { struct pcnet32_private *lp = netdev_priv(dev); struct mii_if_info mii = lp->mii_if; u16 bmcr; int i; for (i = 0; i < PCNET32_MAX_PHYS; i++) { if (i == lp->mii_if.phy_id) continue; /* skip active phy */ if (lp->phymask & (1 << i)) { mii.phy_id = i; if (mii_link_ok(&mii)) { /* found PHY with active link */ if (netif_msg_link(lp)) printk(KERN_INFO "%s: Using PHY number %d.\n", dev->name, i); /* isolate inactive phy */ bmcr = mdio_read(dev, lp->mii_if.phy_id, MII_BMCR); mdio_write(dev, lp->mii_if.phy_id, MII_BMCR, bmcr | BMCR_ISOLATE); /* de-isolate new phy */ bmcr = mdio_read(dev, i, MII_BMCR); mdio_write(dev, i, MII_BMCR, bmcr & ~BMCR_ISOLATE); /* set new phy address */ lp->mii_if.phy_id = i; return 1; } } } return 0; } /* * Show the status of the media. Similar to mii_check_media however it * correctly shows the link speed for all (tested) pcnet32 variants. * Devices with no mii just report link state without speed. * * Caller is assumed to hold and release the lp->lock. */ static void pcnet32_check_media(struct net_device *dev, int verbose) { struct pcnet32_private *lp = netdev_priv(dev); int curr_link; int prev_link = netif_carrier_ok(dev) ? 1 : 0; u32 bcr9; if (lp->mii) { curr_link = mii_link_ok(&lp->mii_if); } else { ulong ioaddr = dev->base_addr; /* card base I/O address */ curr_link = (lp->a.read_bcr(ioaddr, 4) != 0xc0); } if (!curr_link) { if (prev_link || verbose) { netif_carrier_off(dev); if (netif_msg_link(lp)) printk(KERN_INFO "%s: link down\n", dev->name); } if (lp->phycount > 1) { curr_link = pcnet32_check_otherphy(dev); prev_link = 0; } } else if (verbose || !prev_link) { netif_carrier_on(dev); if (lp->mii) { if (netif_msg_link(lp)) { struct ethtool_cmd ecmd; mii_ethtool_gset(&lp->mii_if, &ecmd); printk(KERN_INFO "%s: link up, %sMbps, %s-duplex\n", dev->name, (ecmd.speed == SPEED_100) ? "100" : "10", (ecmd.duplex == DUPLEX_FULL) ? "full" : "half"); } bcr9 = lp->a.read_bcr(dev->base_addr, 9); if ((bcr9 & (1 << 0)) != lp->mii_if.full_duplex) { if (lp->mii_if.full_duplex) bcr9 |= (1 << 0); else bcr9 &= ~(1 << 0); lp->a.write_bcr(dev->base_addr, 9, bcr9); } } else { if (netif_msg_link(lp)) printk(KERN_INFO "%s: link up\n", dev->name); } } } /* * Check for loss of link and link establishment. * Can not use mii_check_media because it does nothing if mode is forced. */ static void pcnet32_watchdog(struct net_device *dev) { struct pcnet32_private *lp = netdev_priv(dev); unsigned long flags; /* Print the link status if it has changed */ spin_lock_irqsave(&lp->lock, flags); pcnet32_check_media(dev, 0); spin_unlock_irqrestore(&lp->lock, flags); mod_timer(&lp->watchdog_timer, round_jiffies(PCNET32_WATCHDOG_TIMEOUT)); } static int pcnet32_pm_suspend(struct pci_dev *pdev, pm_message_t state) { struct net_device *dev = pci_get_drvdata(pdev); if (netif_running(dev)) { netif_device_detach(dev); pcnet32_close(dev); } pci_save_state(pdev); pci_set_power_state(pdev, pci_choose_state(pdev, state)); return 0; } static int pcnet32_pm_resume(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); pci_set_power_state(pdev, PCI_D0); pci_restore_state(pdev); if (netif_running(dev)) { pcnet32_open(dev); netif_device_attach(dev); } return 0; } static void __devexit pcnet32_remove_one(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); if (dev) { struct pcnet32_private *lp = netdev_priv(dev); unregister_netdev(dev); pcnet32_free_ring(dev); release_region(dev->base_addr, PCNET32_TOTAL_SIZE); pci_free_consistent(lp->pci_dev, sizeof(*lp->init_block), lp->init_block, lp->init_dma_addr); free_netdev(dev); pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); } } static struct pci_driver pcnet32_driver = { .name = DRV_NAME, .probe = pcnet32_probe_pci, .remove = __devexit_p(pcnet32_remove_one), .id_table = pcnet32_pci_tbl, .suspend = pcnet32_pm_suspend, .resume = pcnet32_pm_resume, }; /* An additional parameter that may be passed in... */ static int debug = -1; static int tx_start_pt = -1; static int pcnet32_have_pci; module_param(debug, int, 0); MODULE_PARM_DESC(debug, DRV_NAME " debug level"); module_param(max_interrupt_work, int, 0); MODULE_PARM_DESC(max_interrupt_work, DRV_NAME " maximum events handled per interrupt"); module_param(rx_copybreak, int, 0); MODULE_PARM_DESC(rx_copybreak, DRV_NAME " copy breakpoint for copy-only-tiny-frames"); module_param(tx_start_pt, int, 0); MODULE_PARM_DESC(tx_start_pt, DRV_NAME " transmit start point (0-3)"); module_param(pcnet32vlb, int, 0); MODULE_PARM_DESC(pcnet32vlb, DRV_NAME " Vesa local bus (VLB) support (0/1)"); module_param_array(options, int, NULL, 0); MODULE_PARM_DESC(options, DRV_NAME " initial option setting(s) (0-15)"); module_param_array(full_duplex, int, NULL, 0); MODULE_PARM_DESC(full_duplex, DRV_NAME " full duplex setting(s) (1)"); /* Module Parameter for HomePNA cards added by Patrick Simmons, 2004 */ module_param_array(homepna, int, NULL, 0); MODULE_PARM_DESC(homepna, DRV_NAME " mode for 79C978 cards (1 for HomePNA, 0 for Ethernet, default Ethernet"); MODULE_AUTHOR("Thomas Bogendoerfer"); MODULE_DESCRIPTION("Driver for PCnet32 and PCnetPCI based ethercards"); MODULE_LICENSE("GPL"); #define PCNET32_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK) static int __init pcnet32_init_module(void) { printk(KERN_INFO "%s", version); pcnet32_debug = netif_msg_init(debug, PCNET32_MSG_DEFAULT); if ((tx_start_pt >= 0) && (tx_start_pt <= 3)) tx_start = tx_start_pt; /* find the PCI devices */ if (!pci_register_driver(&pcnet32_driver)) pcnet32_have_pci = 1; /* should we find any remaining VLbus devices ? */ if (pcnet32vlb) pcnet32_probe_vlbus(pcnet32_portlist); if (cards_found && (pcnet32_debug & NETIF_MSG_PROBE)) printk(KERN_INFO PFX "%d cards_found.\n", cards_found); return (pcnet32_have_pci + cards_found) ? 0 : -ENODEV; } static void __exit pcnet32_cleanup_module(void) { struct net_device *next_dev; while (pcnet32_dev) { struct pcnet32_private *lp = netdev_priv(pcnet32_dev); next_dev = lp->next; unregister_netdev(pcnet32_dev); pcnet32_free_ring(pcnet32_dev); release_region(pcnet32_dev->base_addr, PCNET32_TOTAL_SIZE); pci_free_consistent(lp->pci_dev, sizeof(*lp->init_block), lp->init_block, lp->init_dma_addr); free_netdev(pcnet32_dev); pcnet32_dev = next_dev; } if (pcnet32_have_pci) pci_unregister_driver(&pcnet32_driver); } module_init(pcnet32_init_module); module_exit(pcnet32_cleanup_module); /* * Local variables: * c-indent-level: 4 * tab-width: 8 * End: */