/* * Driver for Marvell Discovery (MV643XX) and Marvell Orion ethernet ports * Copyright (C) 2002 Matthew Dharm * * Based on the 64360 driver from: * Copyright (C) 2002 Rabeeh Khoury * Rabeeh Khoury * * Copyright (C) 2003 PMC-Sierra, Inc., * written by Manish Lachwani * * Copyright (C) 2003 Ralf Baechle * * Copyright (C) 2004-2006 MontaVista Software, Inc. * Dale Farnsworth * * Copyright (C) 2004 Steven J. Hill * * * Copyright (C) 2007-2008 Marvell Semiconductor * Lennert Buytenhek * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static char mv643xx_eth_driver_name[] = "mv643xx_eth"; static char mv643xx_eth_driver_version[] = "1.4"; /* * Registers shared between all ports. */ #define PHY_ADDR 0x0000 #define SMI_REG 0x0004 #define SMI_BUSY 0x10000000 #define SMI_READ_VALID 0x08000000 #define SMI_OPCODE_READ 0x04000000 #define SMI_OPCODE_WRITE 0x00000000 #define ERR_INT_CAUSE 0x0080 #define ERR_INT_SMI_DONE 0x00000010 #define ERR_INT_MASK 0x0084 #define WINDOW_BASE(w) (0x0200 + ((w) << 3)) #define WINDOW_SIZE(w) (0x0204 + ((w) << 3)) #define WINDOW_REMAP_HIGH(w) (0x0280 + ((w) << 2)) #define WINDOW_BAR_ENABLE 0x0290 #define WINDOW_PROTECT(w) (0x0294 + ((w) << 4)) /* * Main per-port registers. These live at offset 0x0400 for * port #0, 0x0800 for port #1, and 0x0c00 for port #2. */ #define PORT_CONFIG 0x0000 #define UNICAST_PROMISCUOUS_MODE 0x00000001 #define PORT_CONFIG_EXT 0x0004 #define MAC_ADDR_LOW 0x0014 #define MAC_ADDR_HIGH 0x0018 #define SDMA_CONFIG 0x001c #define PORT_SERIAL_CONTROL 0x003c #define PORT_STATUS 0x0044 #define TX_FIFO_EMPTY 0x00000400 #define TX_IN_PROGRESS 0x00000080 #define PORT_SPEED_MASK 0x00000030 #define PORT_SPEED_1000 0x00000010 #define PORT_SPEED_100 0x00000020 #define PORT_SPEED_10 0x00000000 #define FLOW_CONTROL_ENABLED 0x00000008 #define FULL_DUPLEX 0x00000004 #define LINK_UP 0x00000002 #define TXQ_COMMAND 0x0048 #define TXQ_FIX_PRIO_CONF 0x004c #define TX_BW_RATE 0x0050 #define TX_BW_MTU 0x0058 #define TX_BW_BURST 0x005c #define INT_CAUSE 0x0060 #define INT_TX_END 0x07f80000 #define INT_RX 0x000003fc #define INT_EXT 0x00000002 #define INT_CAUSE_EXT 0x0064 #define INT_EXT_LINK_PHY 0x00110000 #define INT_EXT_TX 0x000000ff #define INT_MASK 0x0068 #define INT_MASK_EXT 0x006c #define TX_FIFO_URGENT_THRESHOLD 0x0074 #define TXQ_FIX_PRIO_CONF_MOVED 0x00dc #define TX_BW_RATE_MOVED 0x00e0 #define TX_BW_MTU_MOVED 0x00e8 #define TX_BW_BURST_MOVED 0x00ec #define RXQ_CURRENT_DESC_PTR(q) (0x020c + ((q) << 4)) #define RXQ_COMMAND 0x0280 #define TXQ_CURRENT_DESC_PTR(q) (0x02c0 + ((q) << 2)) #define TXQ_BW_TOKENS(q) (0x0300 + ((q) << 4)) #define TXQ_BW_CONF(q) (0x0304 + ((q) << 4)) #define TXQ_BW_WRR_CONF(q) (0x0308 + ((q) << 4)) /* * Misc per-port registers. */ #define MIB_COUNTERS(p) (0x1000 + ((p) << 7)) #define SPECIAL_MCAST_TABLE(p) (0x1400 + ((p) << 10)) #define OTHER_MCAST_TABLE(p) (0x1500 + ((p) << 10)) #define UNICAST_TABLE(p) (0x1600 + ((p) << 10)) /* * SDMA configuration register. */ #define RX_BURST_SIZE_4_64BIT (2 << 1) #define RX_BURST_SIZE_16_64BIT (4 << 1) #define BLM_RX_NO_SWAP (1 << 4) #define BLM_TX_NO_SWAP (1 << 5) #define TX_BURST_SIZE_4_64BIT (2 << 22) #define TX_BURST_SIZE_16_64BIT (4 << 22) #if defined(__BIG_ENDIAN) #define PORT_SDMA_CONFIG_DEFAULT_VALUE \ (RX_BURST_SIZE_4_64BIT | \ TX_BURST_SIZE_4_64BIT) #elif defined(__LITTLE_ENDIAN) #define PORT_SDMA_CONFIG_DEFAULT_VALUE \ (RX_BURST_SIZE_4_64BIT | \ BLM_RX_NO_SWAP | \ BLM_TX_NO_SWAP | \ TX_BURST_SIZE_4_64BIT) #else #error One of __BIG_ENDIAN or __LITTLE_ENDIAN must be defined #endif /* * Port serial control register. */ #define SET_MII_SPEED_TO_100 (1 << 24) #define SET_GMII_SPEED_TO_1000 (1 << 23) #define SET_FULL_DUPLEX_MODE (1 << 21) #define MAX_RX_PACKET_9700BYTE (5 << 17) #define DISABLE_AUTO_NEG_SPEED_GMII (1 << 13) #define DO_NOT_FORCE_LINK_FAIL (1 << 10) #define SERIAL_PORT_CONTROL_RESERVED (1 << 9) #define DISABLE_AUTO_NEG_FOR_FLOW_CTRL (1 << 3) #define DISABLE_AUTO_NEG_FOR_DUPLEX (1 << 2) #define FORCE_LINK_PASS (1 << 1) #define SERIAL_PORT_ENABLE (1 << 0) #define DEFAULT_RX_QUEUE_SIZE 128 #define DEFAULT_TX_QUEUE_SIZE 256 /* * RX/TX descriptors. */ #if defined(__BIG_ENDIAN) struct rx_desc { u16 byte_cnt; /* Descriptor buffer byte count */ u16 buf_size; /* Buffer size */ u32 cmd_sts; /* Descriptor command status */ u32 next_desc_ptr; /* Next descriptor pointer */ u32 buf_ptr; /* Descriptor buffer pointer */ }; struct tx_desc { u16 byte_cnt; /* buffer byte count */ u16 l4i_chk; /* CPU provided TCP checksum */ u32 cmd_sts; /* Command/status field */ u32 next_desc_ptr; /* Pointer to next descriptor */ u32 buf_ptr; /* pointer to buffer for this descriptor*/ }; #elif defined(__LITTLE_ENDIAN) struct rx_desc { u32 cmd_sts; /* Descriptor command status */ u16 buf_size; /* Buffer size */ u16 byte_cnt; /* Descriptor buffer byte count */ u32 buf_ptr; /* Descriptor buffer pointer */ u32 next_desc_ptr; /* Next descriptor pointer */ }; struct tx_desc { u32 cmd_sts; /* Command/status field */ u16 l4i_chk; /* CPU provided TCP checksum */ u16 byte_cnt; /* buffer byte count */ u32 buf_ptr; /* pointer to buffer for this descriptor*/ u32 next_desc_ptr; /* Pointer to next descriptor */ }; #else #error One of __BIG_ENDIAN or __LITTLE_ENDIAN must be defined #endif /* RX & TX descriptor command */ #define BUFFER_OWNED_BY_DMA 0x80000000 /* RX & TX descriptor status */ #define ERROR_SUMMARY 0x00000001 /* RX descriptor status */ #define LAYER_4_CHECKSUM_OK 0x40000000 #define RX_ENABLE_INTERRUPT 0x20000000 #define RX_FIRST_DESC 0x08000000 #define RX_LAST_DESC 0x04000000 #define RX_IP_HDR_OK 0x02000000 #define RX_PKT_IS_IPV4 0x01000000 #define RX_PKT_IS_ETHERNETV2 0x00800000 #define RX_PKT_LAYER4_TYPE_MASK 0x00600000 #define RX_PKT_LAYER4_TYPE_TCP_IPV4 0x00000000 #define RX_PKT_IS_VLAN_TAGGED 0x00080000 /* TX descriptor command */ #define TX_ENABLE_INTERRUPT 0x00800000 #define GEN_CRC 0x00400000 #define TX_FIRST_DESC 0x00200000 #define TX_LAST_DESC 0x00100000 #define ZERO_PADDING 0x00080000 #define GEN_IP_V4_CHECKSUM 0x00040000 #define GEN_TCP_UDP_CHECKSUM 0x00020000 #define UDP_FRAME 0x00010000 #define MAC_HDR_EXTRA_4_BYTES 0x00008000 #define MAC_HDR_EXTRA_8_BYTES 0x00000200 #define TX_IHL_SHIFT 11 /* global *******************************************************************/ struct mv643xx_eth_shared_private { /* * Ethernet controller base address. */ void __iomem *base; /* * Points at the right SMI instance to use. */ struct mv643xx_eth_shared_private *smi; /* * Provides access to local SMI interface. */ struct mii_bus *smi_bus; /* * If we have access to the error interrupt pin (which is * somewhat misnamed as it not only reflects internal errors * but also reflects SMI completion), use that to wait for * SMI access completion instead of polling the SMI busy bit. */ int err_interrupt; wait_queue_head_t smi_busy_wait; /* * Per-port MBUS window access register value. */ u32 win_protect; /* * Hardware-specific parameters. */ unsigned int t_clk; int extended_rx_coal_limit; int tx_bw_control; }; #define TX_BW_CONTROL_ABSENT 0 #define TX_BW_CONTROL_OLD_LAYOUT 1 #define TX_BW_CONTROL_NEW_LAYOUT 2 static int mv643xx_eth_open(struct net_device *dev); static int mv643xx_eth_stop(struct net_device *dev); /* per-port *****************************************************************/ struct mib_counters { u64 good_octets_received; u32 bad_octets_received; u32 internal_mac_transmit_err; u32 good_frames_received; u32 bad_frames_received; u32 broadcast_frames_received; u32 multicast_frames_received; u32 frames_64_octets; u32 frames_65_to_127_octets; u32 frames_128_to_255_octets; u32 frames_256_to_511_octets; u32 frames_512_to_1023_octets; u32 frames_1024_to_max_octets; u64 good_octets_sent; u32 good_frames_sent; u32 excessive_collision; u32 multicast_frames_sent; u32 broadcast_frames_sent; u32 unrec_mac_control_received; u32 fc_sent; u32 good_fc_received; u32 bad_fc_received; u32 undersize_received; u32 fragments_received; u32 oversize_received; u32 jabber_received; u32 mac_receive_error; u32 bad_crc_event; u32 collision; u32 late_collision; }; struct lro_counters { u32 lro_aggregated; u32 lro_flushed; u32 lro_no_desc; }; struct rx_queue { int index; int rx_ring_size; int rx_desc_count; int rx_curr_desc; int rx_used_desc; struct rx_desc *rx_desc_area; dma_addr_t rx_desc_dma; int rx_desc_area_size; struct sk_buff **rx_skb; #ifdef CONFIG_MV643XX_ETH_LRO struct net_lro_mgr lro_mgr; struct net_lro_desc lro_arr[8]; #endif }; struct tx_queue { int index; int tx_ring_size; int tx_desc_count; int tx_curr_desc; int tx_used_desc; struct tx_desc *tx_desc_area; dma_addr_t tx_desc_dma; int tx_desc_area_size; struct sk_buff_head tx_skb; unsigned long tx_packets; unsigned long tx_bytes; unsigned long tx_dropped; }; struct mv643xx_eth_private { struct mv643xx_eth_shared_private *shared; void __iomem *base; int port_num; struct net_device *dev; struct phy_device *phy; struct timer_list mib_counters_timer; spinlock_t mib_counters_lock; struct mib_counters mib_counters; struct lro_counters lro_counters; struct work_struct tx_timeout_task; struct napi_struct napi; u8 work_link; u8 work_tx; u8 work_tx_end; u8 work_rx; u8 work_rx_refill; u8 work_rx_oom; int skb_size; struct sk_buff_head rx_recycle; /* * RX state. */ int rx_ring_size; unsigned long rx_desc_sram_addr; int rx_desc_sram_size; int rxq_count; struct timer_list rx_oom; struct rx_queue rxq[8]; /* * TX state. */ int tx_ring_size; unsigned long tx_desc_sram_addr; int tx_desc_sram_size; int txq_count; struct tx_queue txq[8]; }; /* port register accessors **************************************************/ static inline u32 rdl(struct mv643xx_eth_private *mp, int offset) { return readl(mp->shared->base + offset); } static inline u32 rdlp(struct mv643xx_eth_private *mp, int offset) { return readl(mp->base + offset); } static inline void wrl(struct mv643xx_eth_private *mp, int offset, u32 data) { writel(data, mp->shared->base + offset); } static inline void wrlp(struct mv643xx_eth_private *mp, int offset, u32 data) { writel(data, mp->base + offset); } /* rxq/txq helper functions *************************************************/ static struct mv643xx_eth_private *rxq_to_mp(struct rx_queue *rxq) { return container_of(rxq, struct mv643xx_eth_private, rxq[rxq->index]); } static struct mv643xx_eth_private *txq_to_mp(struct tx_queue *txq) { return container_of(txq, struct mv643xx_eth_private, txq[txq->index]); } static void rxq_enable(struct rx_queue *rxq) { struct mv643xx_eth_private *mp = rxq_to_mp(rxq); wrlp(mp, RXQ_COMMAND, 1 << rxq->index); } static void rxq_disable(struct rx_queue *rxq) { struct mv643xx_eth_private *mp = rxq_to_mp(rxq); u8 mask = 1 << rxq->index; wrlp(mp, RXQ_COMMAND, mask << 8); while (rdlp(mp, RXQ_COMMAND) & mask) udelay(10); } static void txq_reset_hw_ptr(struct tx_queue *txq) { struct mv643xx_eth_private *mp = txq_to_mp(txq); u32 addr; addr = (u32)txq->tx_desc_dma; addr += txq->tx_curr_desc * sizeof(struct tx_desc); wrlp(mp, TXQ_CURRENT_DESC_PTR(txq->index), addr); } static void txq_enable(struct tx_queue *txq) { struct mv643xx_eth_private *mp = txq_to_mp(txq); wrlp(mp, TXQ_COMMAND, 1 << txq->index); } static void txq_disable(struct tx_queue *txq) { struct mv643xx_eth_private *mp = txq_to_mp(txq); u8 mask = 1 << txq->index; wrlp(mp, TXQ_COMMAND, mask << 8); while (rdlp(mp, TXQ_COMMAND) & mask) udelay(10); } static void txq_maybe_wake(struct tx_queue *txq) { struct mv643xx_eth_private *mp = txq_to_mp(txq); struct netdev_queue *nq = netdev_get_tx_queue(mp->dev, txq->index); if (netif_tx_queue_stopped(nq)) { __netif_tx_lock(nq, smp_processor_id()); if (txq->tx_ring_size - txq->tx_desc_count >= MAX_SKB_FRAGS + 1) netif_tx_wake_queue(nq); __netif_tx_unlock(nq); } } /* rx napi ******************************************************************/ #ifdef CONFIG_MV643XX_ETH_LRO static int mv643xx_get_skb_header(struct sk_buff *skb, void **iphdr, void **tcph, u64 *hdr_flags, void *priv) { unsigned long cmd_sts = (unsigned long)priv; /* * Make sure that this packet is Ethernet II, is not VLAN * tagged, is IPv4, has a valid IP header, and is TCP. */ if ((cmd_sts & (RX_IP_HDR_OK | RX_PKT_IS_IPV4 | RX_PKT_IS_ETHERNETV2 | RX_PKT_LAYER4_TYPE_MASK | RX_PKT_IS_VLAN_TAGGED)) != (RX_IP_HDR_OK | RX_PKT_IS_IPV4 | RX_PKT_IS_ETHERNETV2 | RX_PKT_LAYER4_TYPE_TCP_IPV4)) return -1; skb_reset_network_header(skb); skb_set_transport_header(skb, ip_hdrlen(skb)); *iphdr = ip_hdr(skb); *tcph = tcp_hdr(skb); *hdr_flags = LRO_IPV4 | LRO_TCP; return 0; } #endif static int rxq_process(struct rx_queue *rxq, int budget) { struct mv643xx_eth_private *mp = rxq_to_mp(rxq); struct net_device_stats *stats = &mp->dev->stats; int lro_flush_needed; int rx; lro_flush_needed = 0; rx = 0; while (rx < budget && rxq->rx_desc_count) { struct rx_desc *rx_desc; unsigned int cmd_sts; struct sk_buff *skb; u16 byte_cnt; rx_desc = &rxq->rx_desc_area[rxq->rx_curr_desc]; cmd_sts = rx_desc->cmd_sts; if (cmd_sts & BUFFER_OWNED_BY_DMA) break; rmb(); skb = rxq->rx_skb[rxq->rx_curr_desc]; rxq->rx_skb[rxq->rx_curr_desc] = NULL; rxq->rx_curr_desc++; if (rxq->rx_curr_desc == rxq->rx_ring_size) rxq->rx_curr_desc = 0; dma_unmap_single(NULL, rx_desc->buf_ptr, rx_desc->buf_size, DMA_FROM_DEVICE); rxq->rx_desc_count--; rx++; mp->work_rx_refill |= 1 << rxq->index; byte_cnt = rx_desc->byte_cnt; /* * Update statistics. * * Note that the descriptor byte count includes 2 dummy * bytes automatically inserted by the hardware at the * start of the packet (which we don't count), and a 4 * byte CRC at the end of the packet (which we do count). */ stats->rx_packets++; stats->rx_bytes += byte_cnt - 2; /* * In case we received a packet without first / last bits * on, or the error summary bit is set, the packet needs * to be dropped. */ if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC | ERROR_SUMMARY)) != (RX_FIRST_DESC | RX_LAST_DESC)) goto err; /* * The -4 is for the CRC in the trailer of the * received packet */ skb_put(skb, byte_cnt - 2 - 4); if (cmd_sts & LAYER_4_CHECKSUM_OK) skb->ip_summed = CHECKSUM_UNNECESSARY; skb->protocol = eth_type_trans(skb, mp->dev); #ifdef CONFIG_MV643XX_ETH_LRO if (skb->dev->features & NETIF_F_LRO && skb->ip_summed == CHECKSUM_UNNECESSARY) { lro_receive_skb(&rxq->lro_mgr, skb, (void *)cmd_sts); lro_flush_needed = 1; } else #endif netif_receive_skb(skb); continue; err: stats->rx_dropped++; if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) != (RX_FIRST_DESC | RX_LAST_DESC)) { if (net_ratelimit()) dev_printk(KERN_ERR, &mp->dev->dev, "received packet spanning " "multiple descriptors\n"); } if (cmd_sts & ERROR_SUMMARY) stats->rx_errors++; dev_kfree_skb(skb); } #ifdef CONFIG_MV643XX_ETH_LRO if (lro_flush_needed) lro_flush_all(&rxq->lro_mgr); #endif if (rx < budget) mp->work_rx &= ~(1 << rxq->index); return rx; } static int rxq_refill(struct rx_queue *rxq, int budget) { struct mv643xx_eth_private *mp = rxq_to_mp(rxq); int refilled; refilled = 0; while (refilled < budget && rxq->rx_desc_count < rxq->rx_ring_size) { struct sk_buff *skb; int unaligned; int rx; struct rx_desc *rx_desc; skb = __skb_dequeue(&mp->rx_recycle); if (skb == NULL) skb = dev_alloc_skb(mp->skb_size + dma_get_cache_alignment() - 1); if (skb == NULL) { mp->work_rx_oom |= 1 << rxq->index; goto oom; } unaligned = (u32)skb->data & (dma_get_cache_alignment() - 1); if (unaligned) skb_reserve(skb, dma_get_cache_alignment() - unaligned); refilled++; rxq->rx_desc_count++; rx = rxq->rx_used_desc++; if (rxq->rx_used_desc == rxq->rx_ring_size) rxq->rx_used_desc = 0; rx_desc = rxq->rx_desc_area + rx; rx_desc->buf_ptr = dma_map_single(NULL, skb->data, mp->skb_size, DMA_FROM_DEVICE); rx_desc->buf_size = mp->skb_size; rxq->rx_skb[rx] = skb; wmb(); rx_desc->cmd_sts = BUFFER_OWNED_BY_DMA | RX_ENABLE_INTERRUPT; wmb(); /* * The hardware automatically prepends 2 bytes of * dummy data to each received packet, so that the * IP header ends up 16-byte aligned. */ skb_reserve(skb, 2); } if (refilled < budget) mp->work_rx_refill &= ~(1 << rxq->index); oom: return refilled; } /* tx ***********************************************************************/ static inline unsigned int has_tiny_unaligned_frags(struct sk_buff *skb) { int frag; for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) { skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag]; if (fragp->size <= 8 && fragp->page_offset & 7) return 1; } return 0; } static void txq_submit_frag_skb(struct tx_queue *txq, struct sk_buff *skb) { int nr_frags = skb_shinfo(skb)->nr_frags; int frag; for (frag = 0; frag < nr_frags; frag++) { skb_frag_t *this_frag; int tx_index; struct tx_desc *desc; this_frag = &skb_shinfo(skb)->frags[frag]; tx_index = txq->tx_curr_desc++; if (txq->tx_curr_desc == txq->tx_ring_size) txq->tx_curr_desc = 0; desc = &txq->tx_desc_area[tx_index]; /* * The last fragment will generate an interrupt * which will free the skb on TX completion. */ if (frag == nr_frags - 1) { desc->cmd_sts = BUFFER_OWNED_BY_DMA | ZERO_PADDING | TX_LAST_DESC | TX_ENABLE_INTERRUPT; } else { desc->cmd_sts = BUFFER_OWNED_BY_DMA; } desc->l4i_chk = 0; desc->byte_cnt = this_frag->size; desc->buf_ptr = dma_map_page(NULL, this_frag->page, this_frag->page_offset, this_frag->size, DMA_TO_DEVICE); } } static inline __be16 sum16_as_be(__sum16 sum) { return (__force __be16)sum; } static int txq_submit_skb(struct tx_queue *txq, struct sk_buff *skb) { struct mv643xx_eth_private *mp = txq_to_mp(txq); int nr_frags = skb_shinfo(skb)->nr_frags; int tx_index; struct tx_desc *desc; u32 cmd_sts; u16 l4i_chk; int length; cmd_sts = TX_FIRST_DESC | GEN_CRC | BUFFER_OWNED_BY_DMA; l4i_chk = 0; if (skb->ip_summed == CHECKSUM_PARTIAL) { int tag_bytes; BUG_ON(skb->protocol != htons(ETH_P_IP) && skb->protocol != htons(ETH_P_8021Q)); tag_bytes = (void *)ip_hdr(skb) - (void *)skb->data - ETH_HLEN; if (unlikely(tag_bytes & ~12)) { if (skb_checksum_help(skb) == 0) goto no_csum; kfree_skb(skb); return 1; } if (tag_bytes & 4) cmd_sts |= MAC_HDR_EXTRA_4_BYTES; if (tag_bytes & 8) cmd_sts |= MAC_HDR_EXTRA_8_BYTES; cmd_sts |= GEN_TCP_UDP_CHECKSUM | GEN_IP_V4_CHECKSUM | ip_hdr(skb)->ihl << TX_IHL_SHIFT; switch (ip_hdr(skb)->protocol) { case IPPROTO_UDP: cmd_sts |= UDP_FRAME; l4i_chk = ntohs(sum16_as_be(udp_hdr(skb)->check)); break; case IPPROTO_TCP: l4i_chk = ntohs(sum16_as_be(tcp_hdr(skb)->check)); break; default: BUG(); } } else { no_csum: /* Errata BTS #50, IHL must be 5 if no HW checksum */ cmd_sts |= 5 << TX_IHL_SHIFT; } tx_index = txq->tx_curr_desc++; if (txq->tx_curr_desc == txq->tx_ring_size) txq->tx_curr_desc = 0; desc = &txq->tx_desc_area[tx_index]; if (nr_frags) { txq_submit_frag_skb(txq, skb); length = skb_headlen(skb); } else { cmd_sts |= ZERO_PADDING | TX_LAST_DESC | TX_ENABLE_INTERRUPT; length = skb->len; } desc->l4i_chk = l4i_chk; desc->byte_cnt = length; desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE); __skb_queue_tail(&txq->tx_skb, skb); /* ensure all other descriptors are written before first cmd_sts */ wmb(); desc->cmd_sts = cmd_sts; /* clear TX_END status */ mp->work_tx_end &= ~(1 << txq->index); /* ensure all descriptors are written before poking hardware */ wmb(); txq_enable(txq); txq->tx_desc_count += nr_frags + 1; return 0; } static int mv643xx_eth_xmit(struct sk_buff *skb, struct net_device *dev) { struct mv643xx_eth_private *mp = netdev_priv(dev); int queue; struct tx_queue *txq; struct netdev_queue *nq; queue = skb_get_queue_mapping(skb); txq = mp->txq + queue; nq = netdev_get_tx_queue(dev, queue); if (has_tiny_unaligned_frags(skb) && __skb_linearize(skb)) { txq->tx_dropped++; dev_printk(KERN_DEBUG, &dev->dev, "failed to linearize skb with tiny " "unaligned fragment\n"); return NETDEV_TX_BUSY; } if (txq->tx_ring_size - txq->tx_desc_count < MAX_SKB_FRAGS + 1) { if (net_ratelimit()) dev_printk(KERN_ERR, &dev->dev, "tx queue full?!\n"); kfree_skb(skb); return NETDEV_TX_OK; } if (!txq_submit_skb(txq, skb)) { int entries_left; txq->tx_bytes += skb->len; txq->tx_packets++; dev->trans_start = jiffies; entries_left = txq->tx_ring_size - txq->tx_desc_count; if (entries_left < MAX_SKB_FRAGS + 1) netif_tx_stop_queue(nq); } return NETDEV_TX_OK; } /* tx napi ******************************************************************/ static void txq_kick(struct tx_queue *txq) { struct mv643xx_eth_private *mp = txq_to_mp(txq); struct netdev_queue *nq = netdev_get_tx_queue(mp->dev, txq->index); u32 hw_desc_ptr; u32 expected_ptr; __netif_tx_lock(nq, smp_processor_id()); if (rdlp(mp, TXQ_COMMAND) & (1 << txq->index)) goto out; hw_desc_ptr = rdlp(mp, TXQ_CURRENT_DESC_PTR(txq->index)); expected_ptr = (u32)txq->tx_desc_dma + txq->tx_curr_desc * sizeof(struct tx_desc); if (hw_desc_ptr != expected_ptr) txq_enable(txq); out: __netif_tx_unlock(nq); mp->work_tx_end &= ~(1 << txq->index); } static int txq_reclaim(struct tx_queue *txq, int budget, int force) { struct mv643xx_eth_private *mp = txq_to_mp(txq); struct netdev_queue *nq = netdev_get_tx_queue(mp->dev, txq->index); int reclaimed; __netif_tx_lock(nq, smp_processor_id()); reclaimed = 0; while (reclaimed < budget && txq->tx_desc_count > 0) { int tx_index; struct tx_desc *desc; u32 cmd_sts; struct sk_buff *skb; tx_index = txq->tx_used_desc; desc = &txq->tx_desc_area[tx_index]; cmd_sts = desc->cmd_sts; if (cmd_sts & BUFFER_OWNED_BY_DMA) { if (!force) break; desc->cmd_sts = cmd_sts & ~BUFFER_OWNED_BY_DMA; } txq->tx_used_desc = tx_index + 1; if (txq->tx_used_desc == txq->tx_ring_size) txq->tx_used_desc = 0; reclaimed++; txq->tx_desc_count--; skb = NULL; if (cmd_sts & TX_LAST_DESC) skb = __skb_dequeue(&txq->tx_skb); if (cmd_sts & ERROR_SUMMARY) { dev_printk(KERN_INFO, &mp->dev->dev, "tx error\n"); mp->dev->stats.tx_errors++; } if (cmd_sts & TX_FIRST_DESC) { dma_unmap_single(NULL, desc->buf_ptr, desc->byte_cnt, DMA_TO_DEVICE); } else { dma_unmap_page(NULL, desc->buf_ptr, desc->byte_cnt, DMA_TO_DEVICE); } if (skb != NULL) { if (skb_queue_len(&mp->rx_recycle) < mp->rx_ring_size && skb_recycle_check(skb, mp->skb_size + dma_get_cache_alignment() - 1)) __skb_queue_head(&mp->rx_recycle, skb); else dev_kfree_skb(skb); } } __netif_tx_unlock(nq); if (reclaimed < budget) mp->work_tx &= ~(1 << txq->index); return reclaimed; } /* tx rate control **********************************************************/ /* * Set total maximum TX rate (shared by all TX queues for this port) * to 'rate' bits per second, with a maximum burst of 'burst' bytes. */ static void tx_set_rate(struct mv643xx_eth_private *mp, int rate, int burst) { int token_rate; int mtu; int bucket_size; token_rate = ((rate / 1000) * 64) / (mp->shared->t_clk / 1000); if (token_rate > 1023) token_rate = 1023; mtu = (mp->dev->mtu + 255) >> 8; if (mtu > 63) mtu = 63; bucket_size = (burst + 255) >> 8; if (bucket_size > 65535) bucket_size = 65535; switch (mp->shared->tx_bw_control) { case TX_BW_CONTROL_OLD_LAYOUT: wrlp(mp, TX_BW_RATE, token_rate); wrlp(mp, TX_BW_MTU, mtu); wrlp(mp, TX_BW_BURST, bucket_size); break; case TX_BW_CONTROL_NEW_LAYOUT: wrlp(mp, TX_BW_RATE_MOVED, token_rate); wrlp(mp, TX_BW_MTU_MOVED, mtu); wrlp(mp, TX_BW_BURST_MOVED, bucket_size); break; } } static void txq_set_rate(struct tx_queue *txq, int rate, int burst) { struct mv643xx_eth_private *mp = txq_to_mp(txq); int token_rate; int bucket_size; token_rate = ((rate / 1000) * 64) / (mp->shared->t_clk / 1000); if (token_rate > 1023) token_rate = 1023; bucket_size = (burst + 255) >> 8; if (bucket_size > 65535) bucket_size = 65535; wrlp(mp, TXQ_BW_TOKENS(txq->index), token_rate << 14); wrlp(mp, TXQ_BW_CONF(txq->index), (bucket_size << 10) | token_rate); } static void txq_set_fixed_prio_mode(struct tx_queue *txq) { struct mv643xx_eth_private *mp = txq_to_mp(txq); int off; u32 val; /* * Turn on fixed priority mode. */ off = 0; switch (mp->shared->tx_bw_control) { case TX_BW_CONTROL_OLD_LAYOUT: off = TXQ_FIX_PRIO_CONF; break; case TX_BW_CONTROL_NEW_LAYOUT: off = TXQ_FIX_PRIO_CONF_MOVED; break; } if (off) { val = rdlp(mp, off); val |= 1 << txq->index; wrlp(mp, off, val); } } static void txq_set_wrr(struct tx_queue *txq, int weight) { struct mv643xx_eth_private *mp = txq_to_mp(txq); int off; u32 val; /* * Turn off fixed priority mode. */ off = 0; switch (mp->shared->tx_bw_control) { case TX_BW_CONTROL_OLD_LAYOUT: off = TXQ_FIX_PRIO_CONF; break; case TX_BW_CONTROL_NEW_LAYOUT: off = TXQ_FIX_PRIO_CONF_MOVED; break; } if (off) { val = rdlp(mp, off); val &= ~(1 << txq->index); wrlp(mp, off, val); /* * Configure WRR weight for this queue. */ val = rdlp(mp, off); val = (val & ~0xff) | (weight & 0xff); wrlp(mp, TXQ_BW_WRR_CONF(txq->index), val); } } /* mii management interface *************************************************/ static irqreturn_t mv643xx_eth_err_irq(int irq, void *dev_id) { struct mv643xx_eth_shared_private *msp = dev_id; if (readl(msp->base + ERR_INT_CAUSE) & ERR_INT_SMI_DONE) { writel(~ERR_INT_SMI_DONE, msp->base + ERR_INT_CAUSE); wake_up(&msp->smi_busy_wait); return IRQ_HANDLED; } return IRQ_NONE; } static int smi_is_done(struct mv643xx_eth_shared_private *msp) { return !(readl(msp->base + SMI_REG) & SMI_BUSY); } static int smi_wait_ready(struct mv643xx_eth_shared_private *msp) { if (msp->err_interrupt == NO_IRQ) { int i; for (i = 0; !smi_is_done(msp); i++) { if (i == 10) return -ETIMEDOUT; msleep(10); } return 0; } if (!smi_is_done(msp)) { wait_event_timeout(msp->smi_busy_wait, smi_is_done(msp), msecs_to_jiffies(100)); if (!smi_is_done(msp)) return -ETIMEDOUT; } return 0; } static int smi_bus_read(struct mii_bus *bus, int addr, int reg) { struct mv643xx_eth_shared_private *msp = bus->priv; void __iomem *smi_reg = msp->base + SMI_REG; int ret; if (smi_wait_ready(msp)) { printk(KERN_WARNING "mv643xx_eth: SMI bus busy timeout\n"); return -ETIMEDOUT; } writel(SMI_OPCODE_READ | (reg << 21) | (addr << 16), smi_reg); if (smi_wait_ready(msp)) { printk(KERN_WARNING "mv643xx_eth: SMI bus busy timeout\n"); return -ETIMEDOUT; } ret = readl(smi_reg); if (!(ret & SMI_READ_VALID)) { printk(KERN_WARNING "mv643xx_eth: SMI bus read not valid\n"); return -ENODEV; } return ret & 0xffff; } static int smi_bus_write(struct mii_bus *bus, int addr, int reg, u16 val) { struct mv643xx_eth_shared_private *msp = bus->priv; void __iomem *smi_reg = msp->base + SMI_REG; if (smi_wait_ready(msp)) { printk(KERN_WARNING "mv643xx_eth: SMI bus busy timeout\n"); return -ETIMEDOUT; } writel(SMI_OPCODE_WRITE | (reg << 21) | (addr << 16) | (val & 0xffff), smi_reg); if (smi_wait_ready(msp)) { printk(KERN_WARNING "mv643xx_eth: SMI bus busy timeout\n"); return -ETIMEDOUT; } return 0; } /* statistics ***************************************************************/ static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *dev) { struct mv643xx_eth_private *mp = netdev_priv(dev); struct net_device_stats *stats = &dev->stats; unsigned long tx_packets = 0; unsigned long tx_bytes = 0; unsigned long tx_dropped = 0; int i; for (i = 0; i < mp->txq_count; i++) { struct tx_queue *txq = mp->txq + i; tx_packets += txq->tx_packets; tx_bytes += txq->tx_bytes; tx_dropped += txq->tx_dropped; } stats->tx_packets = tx_packets; stats->tx_bytes = tx_bytes; stats->tx_dropped = tx_dropped; return stats; } static void mv643xx_eth_grab_lro_stats(struct mv643xx_eth_private *mp) { u32 lro_aggregated = 0; u32 lro_flushed = 0; u32 lro_no_desc = 0; int i; #ifdef CONFIG_MV643XX_ETH_LRO for (i = 0; i < mp->rxq_count; i++) { struct rx_queue *rxq = mp->rxq + i; lro_aggregated += rxq->lro_mgr.stats.aggregated; lro_flushed += rxq->lro_mgr.stats.flushed; lro_no_desc += rxq->lro_mgr.stats.no_desc; } #endif mp->lro_counters.lro_aggregated = lro_aggregated; mp->lro_counters.lro_flushed = lro_flushed; mp->lro_counters.lro_no_desc = lro_no_desc; } static inline u32 mib_read(struct mv643xx_eth_private *mp, int offset) { return rdl(mp, MIB_COUNTERS(mp->port_num) + offset); } static void mib_counters_clear(struct mv643xx_eth_private *mp) { int i; for (i = 0; i < 0x80; i += 4) mib_read(mp, i); } static void mib_counters_update(struct mv643xx_eth_private *mp) { struct mib_counters *p = &mp->mib_counters; spin_lock_bh(&mp->mib_counters_lock); p->good_octets_received += mib_read(mp, 0x00); p->good_octets_received += (u64)mib_read(mp, 0x04) << 32; p->bad_octets_received += mib_read(mp, 0x08); p->internal_mac_transmit_err += mib_read(mp, 0x0c); p->good_frames_received += mib_read(mp, 0x10); p->bad_frames_received += mib_read(mp, 0x14); p->broadcast_frames_received += mib_read(mp, 0x18); p->multicast_frames_received += mib_read(mp, 0x1c); p->frames_64_octets += mib_read(mp, 0x20); p->frames_65_to_127_octets += mib_read(mp, 0x24); p->frames_128_to_255_octets += mib_read(mp, 0x28); p->frames_256_to_511_octets += mib_read(mp, 0x2c); p->frames_512_to_1023_octets += mib_read(mp, 0x30); p->frames_1024_to_max_octets += mib_read(mp, 0x34); p->good_octets_sent += mib_read(mp, 0x38); p->good_octets_sent += (u64)mib_read(mp, 0x3c) << 32; p->good_frames_sent += mib_read(mp, 0x40); p->excessive_collision += mib_read(mp, 0x44); p->multicast_frames_sent += mib_read(mp, 0x48); p->broadcast_frames_sent += mib_read(mp, 0x4c); p->unrec_mac_control_received += mib_read(mp, 0x50); p->fc_sent += mib_read(mp, 0x54); p->good_fc_received += mib_read(mp, 0x58); p->bad_fc_received += mib_read(mp, 0x5c); p->undersize_received += mib_read(mp, 0x60); p->fragments_received += mib_read(mp, 0x64); p->oversize_received += mib_read(mp, 0x68); p->jabber_received += mib_read(mp, 0x6c); p->mac_receive_error += mib_read(mp, 0x70); p->bad_crc_event += mib_read(mp, 0x74); p->collision += mib_read(mp, 0x78); p->late_collision += mib_read(mp, 0x7c); spin_unlock_bh(&mp->mib_counters_lock); mod_timer(&mp->mib_counters_timer, jiffies + 30 * HZ); } static void mib_counters_timer_wrapper(unsigned long _mp) { struct mv643xx_eth_private *mp = (void *)_mp; mib_counters_update(mp); } /* interrupt coalescing *****************************************************/ /* * Hardware coalescing parameters are set in units of 64 t_clk * cycles. I.e.: * * coal_delay_in_usec = 64000000 * register_value / t_clk_rate * * register_value = coal_delay_in_usec * t_clk_rate / 64000000 * * In the ->set*() methods, we round the computed register value * to the nearest integer. */ static unsigned int get_rx_coal(struct mv643xx_eth_private *mp) { u32 val = rdlp(mp, SDMA_CONFIG); u64 temp; if (mp->shared->extended_rx_coal_limit) temp = ((val & 0x02000000) >> 10) | ((val & 0x003fff80) >> 7); else temp = (val & 0x003fff00) >> 8; temp *= 64000000; do_div(temp, mp->shared->t_clk); return (unsigned int)temp; } static void set_rx_coal(struct mv643xx_eth_private *mp, unsigned int usec) { u64 temp; u32 val; temp = (u64)usec * mp->shared->t_clk; temp += 31999999; do_div(temp, 64000000); val = rdlp(mp, SDMA_CONFIG); if (mp->shared->extended_rx_coal_limit) { if (temp > 0xffff) temp = 0xffff; val &= ~0x023fff80; val |= (temp & 0x8000) << 10; val |= (temp & 0x7fff) << 7; } else { if (temp > 0x3fff) temp = 0x3fff; val &= ~0x003fff00; val |= (temp & 0x3fff) << 8; } wrlp(mp, SDMA_CONFIG, val); } static unsigned int get_tx_coal(struct mv643xx_eth_private *mp) { u64 temp; temp = (rdlp(mp, TX_FIFO_URGENT_THRESHOLD) & 0x3fff0) >> 4; temp *= 64000000; do_div(temp, mp->shared->t_clk); return (unsigned int)temp; } static void set_tx_coal(struct mv643xx_eth_private *mp, unsigned int usec) { u64 temp; temp = (u64)usec * mp->shared->t_clk; temp += 31999999; do_div(temp, 64000000); if (temp > 0x3fff) temp = 0x3fff; wrlp(mp, TX_FIFO_URGENT_THRESHOLD, temp << 4); } /* ethtool ******************************************************************/ struct mv643xx_eth_stats { char stat_string[ETH_GSTRING_LEN]; int sizeof_stat; int netdev_off; int mp_off; }; #define SSTAT(m) \ { #m, FIELD_SIZEOF(struct net_device_stats, m), \ offsetof(struct net_device, stats.m), -1 } #define MIBSTAT(m) \ { #m, FIELD_SIZEOF(struct mib_counters, m), \ -1, offsetof(struct mv643xx_eth_private, mib_counters.m) } #define LROSTAT(m) \ { #m, FIELD_SIZEOF(struct lro_counters, m), \ -1, offsetof(struct mv643xx_eth_private, lro_counters.m) } static const struct mv643xx_eth_stats mv643xx_eth_stats[] = { SSTAT(rx_packets), SSTAT(tx_packets), SSTAT(rx_bytes), SSTAT(tx_bytes), SSTAT(rx_errors), SSTAT(tx_errors), SSTAT(rx_dropped), SSTAT(tx_dropped), MIBSTAT(good_octets_received), MIBSTAT(bad_octets_received), MIBSTAT(internal_mac_transmit_err), MIBSTAT(good_frames_received), MIBSTAT(bad_frames_received), MIBSTAT(broadcast_frames_received), MIBSTAT(multicast_frames_received), MIBSTAT(frames_64_octets), MIBSTAT(frames_65_to_127_octets), MIBSTAT(frames_128_to_255_octets), MIBSTAT(frames_256_to_511_octets), MIBSTAT(frames_512_to_1023_octets), MIBSTAT(frames_1024_to_max_octets), MIBSTAT(good_octets_sent), MIBSTAT(good_frames_sent), MIBSTAT(excessive_collision), MIBSTAT(multicast_frames_sent), MIBSTAT(broadcast_frames_sent), MIBSTAT(unrec_mac_control_received), MIBSTAT(fc_sent), MIBSTAT(good_fc_received), MIBSTAT(bad_fc_received), MIBSTAT(undersize_received), MIBSTAT(fragments_received), MIBSTAT(oversize_received), MIBSTAT(jabber_received), MIBSTAT(mac_receive_error), MIBSTAT(bad_crc_event), MIBSTAT(collision), MIBSTAT(late_collision), LROSTAT(lro_aggregated), LROSTAT(lro_flushed), LROSTAT(lro_no_desc), }; static int mv643xx_eth_get_settings_phy(struct mv643xx_eth_private *mp, struct ethtool_cmd *cmd) { int err; err = phy_read_status(mp->phy); if (err == 0) err = phy_ethtool_gset(mp->phy, cmd); /* * The MAC does not support 1000baseT_Half. */ cmd->supported &= ~SUPPORTED_1000baseT_Half; cmd->advertising &= ~ADVERTISED_1000baseT_Half; return err; } static int mv643xx_eth_get_settings_phyless(struct mv643xx_eth_private *mp, struct ethtool_cmd *cmd) { u32 port_status; port_status = rdlp(mp, PORT_STATUS); cmd->supported = SUPPORTED_MII; cmd->advertising = ADVERTISED_MII; switch (port_status & PORT_SPEED_MASK) { case PORT_SPEED_10: cmd->speed = SPEED_10; break; case PORT_SPEED_100: cmd->speed = SPEED_100; break; case PORT_SPEED_1000: cmd->speed = SPEED_1000; break; default: cmd->speed = -1; break; } cmd->duplex = (port_status & FULL_DUPLEX) ? DUPLEX_FULL : DUPLEX_HALF; cmd->port = PORT_MII; cmd->phy_address = 0; cmd->transceiver = XCVR_INTERNAL; cmd->autoneg = AUTONEG_DISABLE; cmd->maxtxpkt = 1; cmd->maxrxpkt = 1; return 0; } static int mv643xx_eth_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct mv643xx_eth_private *mp = netdev_priv(dev); if (mp->phy != NULL) return mv643xx_eth_get_settings_phy(mp, cmd); else return mv643xx_eth_get_settings_phyless(mp, cmd); } static int mv643xx_eth_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct mv643xx_eth_private *mp = netdev_priv(dev); if (mp->phy == NULL) return -EINVAL; /* * The MAC does not support 1000baseT_Half. */ cmd->advertising &= ~ADVERTISED_1000baseT_Half; return phy_ethtool_sset(mp->phy, cmd); } static void mv643xx_eth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *drvinfo) { strncpy(drvinfo->driver, mv643xx_eth_driver_name, 32); strncpy(drvinfo->version, mv643xx_eth_driver_version, 32); strncpy(drvinfo->fw_version, "N/A", 32); strncpy(drvinfo->bus_info, "platform", 32); drvinfo->n_stats = ARRAY_SIZE(mv643xx_eth_stats); } static int mv643xx_eth_nway_reset(struct net_device *dev) { struct mv643xx_eth_private *mp = netdev_priv(dev); if (mp->phy == NULL) return -EINVAL; return genphy_restart_aneg(mp->phy); } static u32 mv643xx_eth_get_link(struct net_device *dev) { return !!netif_carrier_ok(dev); } static int mv643xx_eth_get_coalesce(struct net_device *dev, struct ethtool_coalesce *ec) { struct mv643xx_eth_private *mp = netdev_priv(dev); ec->rx_coalesce_usecs = get_rx_coal(mp); ec->tx_coalesce_usecs = get_tx_coal(mp); return 0; } static int mv643xx_eth_set_coalesce(struct net_device *dev, struct ethtool_coalesce *ec) { struct mv643xx_eth_private *mp = netdev_priv(dev); set_rx_coal(mp, ec->rx_coalesce_usecs); set_tx_coal(mp, ec->tx_coalesce_usecs); return 0; } static void mv643xx_eth_get_ringparam(struct net_device *dev, struct ethtool_ringparam *er) { struct mv643xx_eth_private *mp = netdev_priv(dev); er->rx_max_pending = 4096; er->tx_max_pending = 4096; er->rx_mini_max_pending = 0; er->rx_jumbo_max_pending = 0; er->rx_pending = mp->rx_ring_size; er->tx_pending = mp->tx_ring_size; er->rx_mini_pending = 0; er->rx_jumbo_pending = 0; } static int mv643xx_eth_set_ringparam(struct net_device *dev, struct ethtool_ringparam *er) { struct mv643xx_eth_private *mp = netdev_priv(dev); if (er->rx_mini_pending || er->rx_jumbo_pending) return -EINVAL; mp->rx_ring_size = er->rx_pending < 4096 ? er->rx_pending : 4096; mp->tx_ring_size = er->tx_pending < 4096 ? er->tx_pending : 4096; if (netif_running(dev)) { mv643xx_eth_stop(dev); if (mv643xx_eth_open(dev)) { dev_printk(KERN_ERR, &dev->dev, "fatal error on re-opening device after " "ring param change\n"); return -ENOMEM; } } return 0; } static u32 mv643xx_eth_get_rx_csum(struct net_device *dev) { struct mv643xx_eth_private *mp = netdev_priv(dev); return !!(rdlp(mp, PORT_CONFIG) & 0x02000000); } static int mv643xx_eth_set_rx_csum(struct net_device *dev, u32 rx_csum) { struct mv643xx_eth_private *mp = netdev_priv(dev); wrlp(mp, PORT_CONFIG, rx_csum ? 0x02000000 : 0x00000000); return 0; } static void mv643xx_eth_get_strings(struct net_device *dev, uint32_t stringset, uint8_t *data) { int i; if (stringset == ETH_SS_STATS) { for (i = 0; i < ARRAY_SIZE(mv643xx_eth_stats); i++) { memcpy(data + i * ETH_GSTRING_LEN, mv643xx_eth_stats[i].stat_string, ETH_GSTRING_LEN); } } } static void mv643xx_eth_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, uint64_t *data) { struct mv643xx_eth_private *mp = netdev_priv(dev); int i; mv643xx_eth_get_stats(dev); mib_counters_update(mp); mv643xx_eth_grab_lro_stats(mp); for (i = 0; i < ARRAY_SIZE(mv643xx_eth_stats); i++) { const struct mv643xx_eth_stats *stat; void *p; stat = mv643xx_eth_stats + i; if (stat->netdev_off >= 0) p = ((void *)mp->dev) + stat->netdev_off; else p = ((void *)mp) + stat->mp_off; data[i] = (stat->sizeof_stat == 8) ? *(uint64_t *)p : *(uint32_t *)p; } } static int mv643xx_eth_get_sset_count(struct net_device *dev, int sset) { if (sset == ETH_SS_STATS) return ARRAY_SIZE(mv643xx_eth_stats); return -EOPNOTSUPP; } static const struct ethtool_ops mv643xx_eth_ethtool_ops = { .get_settings = mv643xx_eth_get_settings, .set_settings = mv643xx_eth_set_settings, .get_drvinfo = mv643xx_eth_get_drvinfo, .nway_reset = mv643xx_eth_nway_reset, .get_link = mv643xx_eth_get_link, .get_coalesce = mv643xx_eth_get_coalesce, .set_coalesce = mv643xx_eth_set_coalesce, .get_ringparam = mv643xx_eth_get_ringparam, .set_ringparam = mv643xx_eth_set_ringparam, .get_rx_csum = mv643xx_eth_get_rx_csum, .set_rx_csum = mv643xx_eth_set_rx_csum, .set_tx_csum = ethtool_op_set_tx_csum, .set_sg = ethtool_op_set_sg, .get_strings = mv643xx_eth_get_strings, .get_ethtool_stats = mv643xx_eth_get_ethtool_stats, .get_flags = ethtool_op_get_flags, .set_flags = ethtool_op_set_flags, .get_sset_count = mv643xx_eth_get_sset_count, }; /* address handling *********************************************************/ static void uc_addr_get(struct mv643xx_eth_private *mp, unsigned char *addr) { unsigned int mac_h = rdlp(mp, MAC_ADDR_HIGH); unsigned int mac_l = rdlp(mp, MAC_ADDR_LOW); addr[0] = (mac_h >> 24) & 0xff; addr[1] = (mac_h >> 16) & 0xff; addr[2] = (mac_h >> 8) & 0xff; addr[3] = mac_h & 0xff; addr[4] = (mac_l >> 8) & 0xff; addr[5] = mac_l & 0xff; } static void uc_addr_set(struct mv643xx_eth_private *mp, unsigned char *addr) { wrlp(mp, MAC_ADDR_HIGH, (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3]); wrlp(mp, MAC_ADDR_LOW, (addr[4] << 8) | addr[5]); } static u32 uc_addr_filter_mask(struct net_device *dev) { struct dev_addr_list *uc_ptr; u32 nibbles; if (dev->flags & IFF_PROMISC) return 0; nibbles = 1 << (dev->dev_addr[5] & 0x0f); for (uc_ptr = dev->uc_list; uc_ptr != NULL; uc_ptr = uc_ptr->next) { if (memcmp(dev->dev_addr, uc_ptr->da_addr, 5)) return 0; if ((dev->dev_addr[5] ^ uc_ptr->da_addr[5]) & 0xf0) return 0; nibbles |= 1 << (uc_ptr->da_addr[5] & 0x0f); } return nibbles; } static void mv643xx_eth_program_unicast_filter(struct net_device *dev) { struct mv643xx_eth_private *mp = netdev_priv(dev); u32 port_config; u32 nibbles; int i; uc_addr_set(mp, dev->dev_addr); port_config = rdlp(mp, PORT_CONFIG); nibbles = uc_addr_filter_mask(dev); if (!nibbles) { port_config |= UNICAST_PROMISCUOUS_MODE; wrlp(mp, PORT_CONFIG, port_config); return; } for (i = 0; i < 16; i += 4) { int off = UNICAST_TABLE(mp->port_num) + i; u32 v; v = 0; if (nibbles & 1) v |= 0x00000001; if (nibbles & 2) v |= 0x00000100; if (nibbles & 4) v |= 0x00010000; if (nibbles & 8) v |= 0x01000000; nibbles >>= 4; wrl(mp, off, v); } port_config &= ~UNICAST_PROMISCUOUS_MODE; wrlp(mp, PORT_CONFIG, port_config); } static int addr_crc(unsigned char *addr) { int crc = 0; int i; for (i = 0; i < 6; i++) { int j; crc = (crc ^ addr[i]) << 8; for (j = 7; j >= 0; j--) { if (crc & (0x100 << j)) crc ^= 0x107 << j; } } return crc; } static void mv643xx_eth_program_multicast_filter(struct net_device *dev) { struct mv643xx_eth_private *mp = netdev_priv(dev); u32 *mc_spec; u32 *mc_other; struct dev_addr_list *addr; int i; if (dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) { int port_num; u32 accept; int i; oom: port_num = mp->port_num; accept = 0x01010101; for (i = 0; i < 0x100; i += 4) { wrl(mp, SPECIAL_MCAST_TABLE(port_num) + i, accept); wrl(mp, OTHER_MCAST_TABLE(port_num) + i, accept); } return; } mc_spec = kmalloc(0x200, GFP_ATOMIC); if (mc_spec == NULL) goto oom; mc_other = mc_spec + (0x100 >> 2); memset(mc_spec, 0, 0x100); memset(mc_other, 0, 0x100); for (addr = dev->mc_list; addr != NULL; addr = addr->next) { u8 *a = addr->da_addr; u32 *table; int entry; if (memcmp(a, "\x01\x00\x5e\x00\x00", 5) == 0) { table = mc_spec; entry = a[5]; } else { table = mc_other; entry = addr_crc(a); } table[entry >> 2] |= 1 << (8 * (entry & 3)); } for (i = 0; i < 0x100; i += 4) { wrl(mp, SPECIAL_MCAST_TABLE(mp->port_num) + i, mc_spec[i >> 2]); wrl(mp, OTHER_MCAST_TABLE(mp->port_num) + i, mc_other[i >> 2]); } kfree(mc_spec); } static void mv643xx_eth_set_rx_mode(struct net_device *dev) { mv643xx_eth_program_unicast_filter(dev); mv643xx_eth_program_multicast_filter(dev); } static int mv643xx_eth_set_mac_address(struct net_device *dev, void *addr) { struct sockaddr *sa = addr; memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN); netif_addr_lock_bh(dev); mv643xx_eth_program_unicast_filter(dev); netif_addr_unlock_bh(dev); return 0; } /* rx/tx queue initialisation ***********************************************/ static int rxq_init(struct mv643xx_eth_private *mp, int index) { struct rx_queue *rxq = mp->rxq + index; struct rx_desc *rx_desc; int size; int i; rxq->index = index; rxq->rx_ring_size = mp->rx_ring_size; rxq->rx_desc_count = 0; rxq->rx_curr_desc = 0; rxq->rx_used_desc = 0; size = rxq->rx_ring_size * sizeof(struct rx_desc); if (index == 0 && size <= mp->rx_desc_sram_size) { rxq->rx_desc_area = ioremap(mp->rx_desc_sram_addr, mp->rx_desc_sram_size); rxq->rx_desc_dma = mp->rx_desc_sram_addr; } else { rxq->rx_desc_area = dma_alloc_coherent(NULL, size, &rxq->rx_desc_dma, GFP_KERNEL); } if (rxq->rx_desc_area == NULL) { dev_printk(KERN_ERR, &mp->dev->dev, "can't allocate rx ring (%d bytes)\n", size); goto out; } memset(rxq->rx_desc_area, 0, size); rxq->rx_desc_area_size = size; rxq->rx_skb = kmalloc(rxq->rx_ring_size * sizeof(*rxq->rx_skb), GFP_KERNEL); if (rxq->rx_skb == NULL) { dev_printk(KERN_ERR, &mp->dev->dev, "can't allocate rx skb ring\n"); goto out_free; } rx_desc = (struct rx_desc *)rxq->rx_desc_area; for (i = 0; i < rxq->rx_ring_size; i++) { int nexti; nexti = i + 1; if (nexti == rxq->rx_ring_size) nexti = 0; rx_desc[i].next_desc_ptr = rxq->rx_desc_dma + nexti * sizeof(struct rx_desc); } #ifdef CONFIG_MV643XX_ETH_LRO rxq->lro_mgr.dev = mp->dev; memset(&rxq->lro_mgr.stats, 0, sizeof(rxq->lro_mgr.stats)); rxq->lro_mgr.features = LRO_F_NAPI; rxq->lro_mgr.ip_summed = CHECKSUM_UNNECESSARY; rxq->lro_mgr.ip_summed_aggr = CHECKSUM_UNNECESSARY; rxq->lro_mgr.max_desc = ARRAY_SIZE(rxq->lro_arr); rxq->lro_mgr.max_aggr = 32; rxq->lro_mgr.frag_align_pad = 0; rxq->lro_mgr.lro_arr = rxq->lro_arr; rxq->lro_mgr.get_skb_header = mv643xx_get_skb_header; memset(&rxq->lro_arr, 0, sizeof(rxq->lro_arr)); #endif return 0; out_free: if (index == 0 && size <= mp->rx_desc_sram_size) iounmap(rxq->rx_desc_area); else dma_free_coherent(NULL, size, rxq->rx_desc_area, rxq->rx_desc_dma); out: return -ENOMEM; } static void rxq_deinit(struct rx_queue *rxq) { struct mv643xx_eth_private *mp = rxq_to_mp(rxq); int i; rxq_disable(rxq); for (i = 0; i < rxq->rx_ring_size; i++) { if (rxq->rx_skb[i]) { dev_kfree_skb(rxq->rx_skb[i]); rxq->rx_desc_count--; } } if (rxq->rx_desc_count) { dev_printk(KERN_ERR, &mp->dev->dev, "error freeing rx ring -- %d skbs stuck\n", rxq->rx_desc_count); } if (rxq->index == 0 && rxq->rx_desc_area_size <= mp->rx_desc_sram_size) iounmap(rxq->rx_desc_area); else dma_free_coherent(NULL, rxq->rx_desc_area_size, rxq->rx_desc_area, rxq->rx_desc_dma); kfree(rxq->rx_skb); } static int txq_init(struct mv643xx_eth_private *mp, int index) { struct tx_queue *txq = mp->txq + index; struct tx_desc *tx_desc; int size; int i; txq->index = index; txq->tx_ring_size = mp->tx_ring_size; txq->tx_desc_count = 0; txq->tx_curr_desc = 0; txq->tx_used_desc = 0; size = txq->tx_ring_size * sizeof(struct tx_desc); if (index == 0 && size <= mp->tx_desc_sram_size) { txq->tx_desc_area = ioremap(mp->tx_desc_sram_addr, mp->tx_desc_sram_size); txq->tx_desc_dma = mp->tx_desc_sram_addr; } else { txq->tx_desc_area = dma_alloc_coherent(NULL, size, &txq->tx_desc_dma, GFP_KERNEL); } if (txq->tx_desc_area == NULL) { dev_printk(KERN_ERR, &mp->dev->dev, "can't allocate tx ring (%d bytes)\n", size); return -ENOMEM; } memset(txq->tx_desc_area, 0, size); txq->tx_desc_area_size = size; tx_desc = (struct tx_desc *)txq->tx_desc_area; for (i = 0; i < txq->tx_ring_size; i++) { struct tx_desc *txd = tx_desc + i; int nexti; nexti = i + 1; if (nexti == txq->tx_ring_size) nexti = 0; txd->cmd_sts = 0; txd->next_desc_ptr = txq->tx_desc_dma + nexti * sizeof(struct tx_desc); } skb_queue_head_init(&txq->tx_skb); return 0; } static void txq_deinit(struct tx_queue *txq) { struct mv643xx_eth_private *mp = txq_to_mp(txq); txq_disable(txq); txq_reclaim(txq, txq->tx_ring_size, 1); BUG_ON(txq->tx_used_desc != txq->tx_curr_desc); if (txq->index == 0 && txq->tx_desc_area_size <= mp->tx_desc_sram_size) iounmap(txq->tx_desc_area); else dma_free_coherent(NULL, txq->tx_desc_area_size, txq->tx_desc_area, txq->tx_desc_dma); } /* netdev ops and related ***************************************************/ static int mv643xx_eth_collect_events(struct mv643xx_eth_private *mp) { u32 int_cause; u32 int_cause_ext; int_cause = rdlp(mp, INT_CAUSE) & (INT_TX_END | INT_RX | INT_EXT); if (int_cause == 0) return 0; int_cause_ext = 0; if (int_cause & INT_EXT) int_cause_ext = rdlp(mp, INT_CAUSE_EXT); int_cause &= INT_TX_END | INT_RX; if (int_cause) { wrlp(mp, INT_CAUSE, ~int_cause); mp->work_tx_end |= ((int_cause & INT_TX_END) >> 19) & ~(rdlp(mp, TXQ_COMMAND) & 0xff); mp->work_rx |= (int_cause & INT_RX) >> 2; } int_cause_ext &= INT_EXT_LINK_PHY | INT_EXT_TX; if (int_cause_ext) { wrlp(mp, INT_CAUSE_EXT, ~int_cause_ext); if (int_cause_ext & INT_EXT_LINK_PHY) mp->work_link = 1; mp->work_tx |= int_cause_ext & INT_EXT_TX; } return 1; } static irqreturn_t mv643xx_eth_irq(int irq, void *dev_id) { struct net_device *dev = (struct net_device *)dev_id; struct mv643xx_eth_private *mp = netdev_priv(dev); if (unlikely(!mv643xx_eth_collect_events(mp))) return IRQ_NONE; wrlp(mp, INT_MASK, 0); napi_schedule(&mp->napi); return IRQ_HANDLED; } static void handle_link_event(struct mv643xx_eth_private *mp) { struct net_device *dev = mp->dev; u32 port_status; int speed; int duplex; int fc; port_status = rdlp(mp, PORT_STATUS); if (!(port_status & LINK_UP)) { if (netif_carrier_ok(dev)) { int i; printk(KERN_INFO "%s: link down\n", dev->name); netif_carrier_off(dev); for (i = 0; i < mp->txq_count; i++) { struct tx_queue *txq = mp->txq + i; txq_reclaim(txq, txq->tx_ring_size, 1); txq_reset_hw_ptr(txq); } } return; } switch (port_status & PORT_SPEED_MASK) { case PORT_SPEED_10: speed = 10; break; case PORT_SPEED_100: speed = 100; break; case PORT_SPEED_1000: speed = 1000; break; default: speed = -1; break; } duplex = (port_status & FULL_DUPLEX) ? 1 : 0; fc = (port_status & FLOW_CONTROL_ENABLED) ? 1 : 0; printk(KERN_INFO "%s: link up, %d Mb/s, %s duplex, " "flow control %sabled\n", dev->name, speed, duplex ? "full" : "half", fc ? "en" : "dis"); if (!netif_carrier_ok(dev)) netif_carrier_on(dev); } static int mv643xx_eth_poll(struct napi_struct *napi, int budget) { struct mv643xx_eth_private *mp; int work_done; mp = container_of(napi, struct mv643xx_eth_private, napi); mp->work_rx_refill |= mp->work_rx_oom; mp->work_rx_oom = 0; work_done = 0; while (work_done < budget) { u8 queue_mask; int queue; int work_tbd; if (mp->work_link) { mp->work_link = 0; handle_link_event(mp); continue; } queue_mask = mp->work_tx | mp->work_tx_end | mp->work_rx | mp->work_rx_refill; if (!queue_mask) { if (mv643xx_eth_collect_events(mp)) continue; break; } queue = fls(queue_mask) - 1; queue_mask = 1 << queue; work_tbd = budget - work_done; if (work_tbd > 16) work_tbd = 16; if (mp->work_tx_end & queue_mask) { txq_kick(mp->txq + queue); } else if (mp->work_tx & queue_mask) { work_done += txq_reclaim(mp->txq + queue, work_tbd, 0); txq_maybe_wake(mp->txq + queue); } else if (mp->work_rx & queue_mask) { work_done += rxq_process(mp->rxq + queue, work_tbd); } else if (mp->work_rx_refill & queue_mask) { work_done += rxq_refill(mp->rxq + queue, work_tbd); } else { BUG(); } } if (work_done < budget) { if (mp->work_rx_oom) mod_timer(&mp->rx_oom, jiffies + (HZ / 10)); napi_complete(napi); wrlp(mp, INT_MASK, INT_TX_END | INT_RX | INT_EXT); } return work_done; } static inline void oom_timer_wrapper(unsigned long data) { struct mv643xx_eth_private *mp = (void *)data; napi_schedule(&mp->napi); } static void phy_reset(struct mv643xx_eth_private *mp) { int data; data = phy_read(mp->phy, MII_BMCR); if (data < 0) return; data |= BMCR_RESET; if (phy_write(mp->phy, MII_BMCR, data) < 0) return; do { data = phy_read(mp->phy, MII_BMCR); } while (data >= 0 && data & BMCR_RESET); } static void port_start(struct mv643xx_eth_private *mp) { u32 pscr; int i; /* * Perform PHY reset, if there is a PHY. */ if (mp->phy != NULL) { struct ethtool_cmd cmd; mv643xx_eth_get_settings(mp->dev, &cmd); phy_reset(mp); mv643xx_eth_set_settings(mp->dev, &cmd); } /* * Configure basic link parameters. */ pscr = rdlp(mp, PORT_SERIAL_CONTROL); pscr |= SERIAL_PORT_ENABLE; wrlp(mp, PORT_SERIAL_CONTROL, pscr); pscr |= DO_NOT_FORCE_LINK_FAIL; if (mp->phy == NULL) pscr |= FORCE_LINK_PASS; wrlp(mp, PORT_SERIAL_CONTROL, pscr); wrlp(mp, SDMA_CONFIG, PORT_SDMA_CONFIG_DEFAULT_VALUE); /* * Configure TX path and queues. */ tx_set_rate(mp, 1000000000, 16777216); for (i = 0; i < mp->txq_count; i++) { struct tx_queue *txq = mp->txq + i; txq_reset_hw_ptr(txq); txq_set_rate(txq, 1000000000, 16777216); txq_set_fixed_prio_mode(txq); } /* * Add configured unicast address to address filter table. */ mv643xx_eth_program_unicast_filter(mp->dev); /* * Receive all unmatched unicast, TCP, UDP, BPDU and broadcast * frames to RX queue #0, and include the pseudo-header when * calculating receive checksums. */ wrlp(mp, PORT_CONFIG, 0x02000000); /* * Treat BPDUs as normal multicasts, and disable partition mode. */ wrlp(mp, PORT_CONFIG_EXT, 0x00000000); /* * Enable the receive queues. */ for (i = 0; i < mp->rxq_count; i++) { struct rx_queue *rxq = mp->rxq + i; u32 addr; addr = (u32)rxq->rx_desc_dma; addr += rxq->rx_curr_desc * sizeof(struct rx_desc); wrlp(mp, RXQ_CURRENT_DESC_PTR(i), addr); rxq_enable(rxq); } } static void mv643xx_eth_recalc_skb_size(struct mv643xx_eth_private *mp) { int skb_size; /* * Reserve 2+14 bytes for an ethernet header (the hardware * automatically prepends 2 bytes of dummy data to each * received packet), 16 bytes for up to four VLAN tags, and * 4 bytes for the trailing FCS -- 36 bytes total. */ skb_size = mp->dev->mtu + 36; /* * Make sure that the skb size is a multiple of 8 bytes, as * the lower three bits of the receive descriptor's buffer * size field are ignored by the hardware. */ mp->skb_size = (skb_size + 7) & ~7; } static int mv643xx_eth_open(struct net_device *dev) { struct mv643xx_eth_private *mp = netdev_priv(dev); int err; int i; wrlp(mp, INT_CAUSE, 0); wrlp(mp, INT_CAUSE_EXT, 0); rdlp(mp, INT_CAUSE_EXT); err = request_irq(dev->irq, mv643xx_eth_irq, IRQF_SHARED, dev->name, dev); if (err) { dev_printk(KERN_ERR, &dev->dev, "can't assign irq\n"); return -EAGAIN; } mv643xx_eth_recalc_skb_size(mp); napi_enable(&mp->napi); skb_queue_head_init(&mp->rx_recycle); for (i = 0; i < mp->rxq_count; i++) { err = rxq_init(mp, i); if (err) { while (--i >= 0) rxq_deinit(mp->rxq + i); goto out; } rxq_refill(mp->rxq + i, INT_MAX); } if (mp->work_rx_oom) { mp->rx_oom.expires = jiffies + (HZ / 10); add_timer(&mp->rx_oom); } for (i = 0; i < mp->txq_count; i++) { err = txq_init(mp, i); if (err) { while (--i >= 0) txq_deinit(mp->txq + i); goto out_free; } } netif_carrier_off(dev); port_start(mp); set_rx_coal(mp, 0); set_tx_coal(mp, 0); wrlp(mp, INT_MASK_EXT, INT_EXT_LINK_PHY | INT_EXT_TX); wrlp(mp, INT_MASK, INT_TX_END | INT_RX | INT_EXT); return 0; out_free: for (i = 0; i < mp->rxq_count; i++) rxq_deinit(mp->rxq + i); out: free_irq(dev->irq, dev); return err; } static void port_reset(struct mv643xx_eth_private *mp) { unsigned int data; int i; for (i = 0; i < mp->rxq_count; i++) rxq_disable(mp->rxq + i); for (i = 0; i < mp->txq_count; i++) txq_disable(mp->txq + i); while (1) { u32 ps = rdlp(mp, PORT_STATUS); if ((ps & (TX_IN_PROGRESS | TX_FIFO_EMPTY)) == TX_FIFO_EMPTY) break; udelay(10); } /* Reset the Enable bit in the Configuration Register */ data = rdlp(mp, PORT_SERIAL_CONTROL); data &= ~(SERIAL_PORT_ENABLE | DO_NOT_FORCE_LINK_FAIL | FORCE_LINK_PASS); wrlp(mp, PORT_SERIAL_CONTROL, data); } static int mv643xx_eth_stop(struct net_device *dev) { struct mv643xx_eth_private *mp = netdev_priv(dev); int i; wrlp(mp, INT_MASK_EXT, 0x00000000); wrlp(mp, INT_MASK, 0x00000000); rdlp(mp, INT_MASK); napi_disable(&mp->napi); del_timer_sync(&mp->rx_oom); netif_carrier_off(dev); free_irq(dev->irq, dev); port_reset(mp); mv643xx_eth_get_stats(dev); mib_counters_update(mp); del_timer_sync(&mp->mib_counters_timer); skb_queue_purge(&mp->rx_recycle); for (i = 0; i < mp->rxq_count; i++) rxq_deinit(mp->rxq + i); for (i = 0; i < mp->txq_count; i++) txq_deinit(mp->txq + i); return 0; } static int mv643xx_eth_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { struct mv643xx_eth_private *mp = netdev_priv(dev); if (mp->phy != NULL) return phy_mii_ioctl(mp->phy, if_mii(ifr), cmd); return -EOPNOTSUPP; } static int mv643xx_eth_change_mtu(struct net_device *dev, int new_mtu) { struct mv643xx_eth_private *mp = netdev_priv(dev); if (new_mtu < 64 || new_mtu > 9500) return -EINVAL; dev->mtu = new_mtu; mv643xx_eth_recalc_skb_size(mp); tx_set_rate(mp, 1000000000, 16777216); if (!netif_running(dev)) return 0; /* * Stop and then re-open the interface. This will allocate RX * skbs of the new MTU. * There is a possible danger that the open will not succeed, * due to memory being full. */ mv643xx_eth_stop(dev); if (mv643xx_eth_open(dev)) { dev_printk(KERN_ERR, &dev->dev, "fatal error on re-opening device after " "MTU change\n"); } return 0; } static void tx_timeout_task(struct work_struct *ugly) { struct mv643xx_eth_private *mp; mp = container_of(ugly, struct mv643xx_eth_private, tx_timeout_task); if (netif_running(mp->dev)) { netif_tx_stop_all_queues(mp->dev); port_reset(mp); port_start(mp); netif_tx_wake_all_queues(mp->dev); } } static void mv643xx_eth_tx_timeout(struct net_device *dev) { struct mv643xx_eth_private *mp = netdev_priv(dev); dev_printk(KERN_INFO, &dev->dev, "tx timeout\n"); schedule_work(&mp->tx_timeout_task); } #ifdef CONFIG_NET_POLL_CONTROLLER static void mv643xx_eth_netpoll(struct net_device *dev) { struct mv643xx_eth_private *mp = netdev_priv(dev); wrlp(mp, INT_MASK, 0x00000000); rdlp(mp, INT_MASK); mv643xx_eth_irq(dev->irq, dev); wrlp(mp, INT_MASK, INT_TX_END | INT_RX | INT_EXT); } #endif /* platform glue ************************************************************/ static void mv643xx_eth_conf_mbus_windows(struct mv643xx_eth_shared_private *msp, struct mbus_dram_target_info *dram) { void __iomem *base = msp->base; u32 win_enable; u32 win_protect; int i; for (i = 0; i < 6; i++) { writel(0, base + WINDOW_BASE(i)); writel(0, base + WINDOW_SIZE(i)); if (i < 4) writel(0, base + WINDOW_REMAP_HIGH(i)); } win_enable = 0x3f; win_protect = 0; for (i = 0; i < dram->num_cs; i++) { struct mbus_dram_window *cs = dram->cs + i; writel((cs->base & 0xffff0000) | (cs->mbus_attr << 8) | dram->mbus_dram_target_id, base + WINDOW_BASE(i)); writel((cs->size - 1) & 0xffff0000, base + WINDOW_SIZE(i)); win_enable &= ~(1 << i); win_protect |= 3 << (2 * i); } writel(win_enable, base + WINDOW_BAR_ENABLE); msp->win_protect = win_protect; } static void infer_hw_params(struct mv643xx_eth_shared_private *msp) { /* * Check whether we have a 14-bit coal limit field in bits * [21:8], or a 16-bit coal limit in bits [25,21:7] of the * SDMA config register. */ writel(0x02000000, msp->base + 0x0400 + SDMA_CONFIG); if (readl(msp->base + 0x0400 + SDMA_CONFIG) & 0x02000000) msp->extended_rx_coal_limit = 1; else msp->extended_rx_coal_limit = 0; /* * Check whether the MAC supports TX rate control, and if * yes, whether its associated registers are in the old or * the new place. */ writel(1, msp->base + 0x0400 + TX_BW_MTU_MOVED); if (readl(msp->base + 0x0400 + TX_BW_MTU_MOVED) & 1) { msp->tx_bw_control = TX_BW_CONTROL_NEW_LAYOUT; } else { writel(7, msp->base + 0x0400 + TX_BW_RATE); if (readl(msp->base + 0x0400 + TX_BW_RATE) & 7) msp->tx_bw_control = TX_BW_CONTROL_OLD_LAYOUT; else msp->tx_bw_control = TX_BW_CONTROL_ABSENT; } } static int mv643xx_eth_shared_probe(struct platform_device *pdev) { static int mv643xx_eth_version_printed; struct mv643xx_eth_shared_platform_data *pd = pdev->dev.platform_data; struct mv643xx_eth_shared_private *msp; struct resource *res; int ret; if (!mv643xx_eth_version_printed++) printk(KERN_NOTICE "MV-643xx 10/100/1000 ethernet " "driver version %s\n", mv643xx_eth_driver_version); ret = -EINVAL; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (res == NULL) goto out; ret = -ENOMEM; msp = kmalloc(sizeof(*msp), GFP_KERNEL); if (msp == NULL) goto out; memset(msp, 0, sizeof(*msp)); msp->base = ioremap(res->start, res->end - res->start + 1); if (msp->base == NULL) goto out_free; /* * Set up and register SMI bus. */ if (pd == NULL || pd->shared_smi == NULL) { msp->smi_bus = mdiobus_alloc(); if (msp->smi_bus == NULL) goto out_unmap; msp->smi_bus->priv = msp; msp->smi_bus->name = "mv643xx_eth smi"; msp->smi_bus->read = smi_bus_read; msp->smi_bus->write = smi_bus_write, snprintf(msp->smi_bus->id, MII_BUS_ID_SIZE, "%d", pdev->id); msp->smi_bus->parent = &pdev->dev; msp->smi_bus->phy_mask = 0xffffffff; if (mdiobus_register(msp->smi_bus) < 0) goto out_free_mii_bus; msp->smi = msp; } else { msp->smi = platform_get_drvdata(pd->shared_smi); } msp->err_interrupt = NO_IRQ; init_waitqueue_head(&msp->smi_busy_wait); /* * Check whether the error interrupt is hooked up. */ res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); if (res != NULL) { int err; err = request_irq(res->start, mv643xx_eth_err_irq, IRQF_SHARED, "mv643xx_eth", msp); if (!err) { writel(ERR_INT_SMI_DONE, msp->base + ERR_INT_MASK); msp->err_interrupt = res->start; } } /* * (Re-)program MBUS remapping windows if we are asked to. */ if (pd != NULL && pd->dram != NULL) mv643xx_eth_conf_mbus_windows(msp, pd->dram); /* * Detect hardware parameters. */ msp->t_clk = (pd != NULL && pd->t_clk != 0) ? pd->t_clk : 133000000; infer_hw_params(msp); platform_set_drvdata(pdev, msp); return 0; out_free_mii_bus: mdiobus_free(msp->smi_bus); out_unmap: iounmap(msp->base); out_free: kfree(msp); out: return ret; } static int mv643xx_eth_shared_remove(struct platform_device *pdev) { struct mv643xx_eth_shared_private *msp = platform_get_drvdata(pdev); struct mv643xx_eth_shared_platform_data *pd = pdev->dev.platform_data; if (pd == NULL || pd->shared_smi == NULL) { mdiobus_unregister(msp->smi_bus); mdiobus_free(msp->smi_bus); } if (msp->err_interrupt != NO_IRQ) free_irq(msp->err_interrupt, msp); iounmap(msp->base); kfree(msp); return 0; } static struct platform_driver mv643xx_eth_shared_driver = { .probe = mv643xx_eth_shared_probe, .remove = mv643xx_eth_shared_remove, .driver = { .name = MV643XX_ETH_SHARED_NAME, .owner = THIS_MODULE, }, }; static void phy_addr_set(struct mv643xx_eth_private *mp, int phy_addr) { int addr_shift = 5 * mp->port_num; u32 data; data = rdl(mp, PHY_ADDR); data &= ~(0x1f << addr_shift); data |= (phy_addr & 0x1f) << addr_shift; wrl(mp, PHY_ADDR, data); } static int phy_addr_get(struct mv643xx_eth_private *mp) { unsigned int data; data = rdl(mp, PHY_ADDR); return (data >> (5 * mp->port_num)) & 0x1f; } static void set_params(struct mv643xx_eth_private *mp, struct mv643xx_eth_platform_data *pd) { struct net_device *dev = mp->dev; if (is_valid_ether_addr(pd->mac_addr)) memcpy(dev->dev_addr, pd->mac_addr, 6); else uc_addr_get(mp, dev->dev_addr); mp->rx_ring_size = DEFAULT_RX_QUEUE_SIZE; if (pd->rx_queue_size) mp->rx_ring_size = pd->rx_queue_size; mp->rx_desc_sram_addr = pd->rx_sram_addr; mp->rx_desc_sram_size = pd->rx_sram_size; mp->rxq_count = pd->rx_queue_count ? : 1; mp->tx_ring_size = DEFAULT_TX_QUEUE_SIZE; if (pd->tx_queue_size) mp->tx_ring_size = pd->tx_queue_size; mp->tx_desc_sram_addr = pd->tx_sram_addr; mp->tx_desc_sram_size = pd->tx_sram_size; mp->txq_count = pd->tx_queue_count ? : 1; } static struct phy_device *phy_scan(struct mv643xx_eth_private *mp, int phy_addr) { struct mii_bus *bus = mp->shared->smi->smi_bus; struct phy_device *phydev; int start; int num; int i; if (phy_addr == MV643XX_ETH_PHY_ADDR_DEFAULT) { start = phy_addr_get(mp) & 0x1f; num = 32; } else { start = phy_addr & 0x1f; num = 1; } phydev = NULL; for (i = 0; i < num; i++) { int addr = (start + i) & 0x1f; if (bus->phy_map[addr] == NULL) mdiobus_scan(bus, addr); if (phydev == NULL) { phydev = bus->phy_map[addr]; if (phydev != NULL) phy_addr_set(mp, addr); } } return phydev; } static void phy_init(struct mv643xx_eth_private *mp, int speed, int duplex) { struct phy_device *phy = mp->phy; phy_reset(mp); phy_attach(mp->dev, dev_name(&phy->dev), 0, PHY_INTERFACE_MODE_GMII); if (speed == 0) { phy->autoneg = AUTONEG_ENABLE; phy->speed = 0; phy->duplex = 0; phy->advertising = phy->supported | ADVERTISED_Autoneg; } else { phy->autoneg = AUTONEG_DISABLE; phy->advertising = 0; phy->speed = speed; phy->duplex = duplex; } phy_start_aneg(phy); } static void init_pscr(struct mv643xx_eth_private *mp, int speed, int duplex) { u32 pscr; pscr = rdlp(mp, PORT_SERIAL_CONTROL); if (pscr & SERIAL_PORT_ENABLE) { pscr &= ~SERIAL_PORT_ENABLE; wrlp(mp, PORT_SERIAL_CONTROL, pscr); } pscr = MAX_RX_PACKET_9700BYTE | SERIAL_PORT_CONTROL_RESERVED; if (mp->phy == NULL) { pscr |= DISABLE_AUTO_NEG_SPEED_GMII; if (speed == SPEED_1000) pscr |= SET_GMII_SPEED_TO_1000; else if (speed == SPEED_100) pscr |= SET_MII_SPEED_TO_100; pscr |= DISABLE_AUTO_NEG_FOR_FLOW_CTRL; pscr |= DISABLE_AUTO_NEG_FOR_DUPLEX; if (duplex == DUPLEX_FULL) pscr |= SET_FULL_DUPLEX_MODE; } wrlp(mp, PORT_SERIAL_CONTROL, pscr); } static int mv643xx_eth_probe(struct platform_device *pdev) { struct mv643xx_eth_platform_data *pd; struct mv643xx_eth_private *mp; struct net_device *dev; struct resource *res; int err; pd = pdev->dev.platform_data; if (pd == NULL) { dev_printk(KERN_ERR, &pdev->dev, "no mv643xx_eth_platform_data\n"); return -ENODEV; } if (pd->shared == NULL) { dev_printk(KERN_ERR, &pdev->dev, "no mv643xx_eth_platform_data->shared\n"); return -ENODEV; } dev = alloc_etherdev_mq(sizeof(struct mv643xx_eth_private), 8); if (!dev) return -ENOMEM; mp = netdev_priv(dev); platform_set_drvdata(pdev, mp); mp->shared = platform_get_drvdata(pd->shared); mp->base = mp->shared->base + 0x0400 + (pd->port_number << 10); mp->port_num = pd->port_number; mp->dev = dev; set_params(mp, pd); dev->real_num_tx_queues = mp->txq_count; if (pd->phy_addr != MV643XX_ETH_PHY_NONE) mp->phy = phy_scan(mp, pd->phy_addr); if (mp->phy != NULL) phy_init(mp, pd->speed, pd->duplex); SET_ETHTOOL_OPS(dev, &mv643xx_eth_ethtool_ops); init_pscr(mp, pd->speed, pd->duplex); mib_counters_clear(mp); init_timer(&mp->mib_counters_timer); mp->mib_counters_timer.data = (unsigned long)mp; mp->mib_counters_timer.function = mib_counters_timer_wrapper; mp->mib_counters_timer.expires = jiffies + 30 * HZ; add_timer(&mp->mib_counters_timer); spin_lock_init(&mp->mib_counters_lock); INIT_WORK(&mp->tx_timeout_task, tx_timeout_task); netif_napi_add(dev, &mp->napi, mv643xx_eth_poll, 128); init_timer(&mp->rx_oom); mp->rx_oom.data = (unsigned long)mp; mp->rx_oom.function = oom_timer_wrapper; res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); BUG_ON(!res); dev->irq = res->start; dev->get_stats = mv643xx_eth_get_stats; dev->hard_start_xmit = mv643xx_eth_xmit; dev->open = mv643xx_eth_open; dev->stop = mv643xx_eth_stop; dev->set_rx_mode = mv643xx_eth_set_rx_mode; dev->set_mac_address = mv643xx_eth_set_mac_address; dev->do_ioctl = mv643xx_eth_ioctl; dev->change_mtu = mv643xx_eth_change_mtu; dev->tx_timeout = mv643xx_eth_tx_timeout; #ifdef CONFIG_NET_POLL_CONTROLLER dev->poll_controller = mv643xx_eth_netpoll; #endif dev->watchdog_timeo = 2 * HZ; dev->base_addr = 0; dev->features = NETIF_F_SG | NETIF_F_IP_CSUM; dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM; SET_NETDEV_DEV(dev, &pdev->dev); if (mp->shared->win_protect) wrl(mp, WINDOW_PROTECT(mp->port_num), mp->shared->win_protect); err = register_netdev(dev); if (err) goto out; dev_printk(KERN_NOTICE, &dev->dev, "port %d with MAC address %pM\n", mp->port_num, dev->dev_addr); if (mp->tx_desc_sram_size > 0) dev_printk(KERN_NOTICE, &dev->dev, "configured with sram\n"); return 0; out: free_netdev(dev); return err; } static int mv643xx_eth_remove(struct platform_device *pdev) { struct mv643xx_eth_private *mp = platform_get_drvdata(pdev); unregister_netdev(mp->dev); if (mp->phy != NULL) phy_detach(mp->phy); flush_scheduled_work(); free_netdev(mp->dev); platform_set_drvdata(pdev, NULL); return 0; } static void mv643xx_eth_shutdown(struct platform_device *pdev) { struct mv643xx_eth_private *mp = platform_get_drvdata(pdev); /* Mask all interrupts on ethernet port */ wrlp(mp, INT_MASK, 0); rdlp(mp, INT_MASK); if (netif_running(mp->dev)) port_reset(mp); } static struct platform_driver mv643xx_eth_driver = { .probe = mv643xx_eth_probe, .remove = mv643xx_eth_remove, .shutdown = mv643xx_eth_shutdown, .driver = { .name = MV643XX_ETH_NAME, .owner = THIS_MODULE, }, }; static int __init mv643xx_eth_init_module(void) { int rc; rc = platform_driver_register(&mv643xx_eth_shared_driver); if (!rc) { rc = platform_driver_register(&mv643xx_eth_driver); if (rc) platform_driver_unregister(&mv643xx_eth_shared_driver); } return rc; } module_init(mv643xx_eth_init_module); static void __exit mv643xx_eth_cleanup_module(void) { platform_driver_unregister(&mv643xx_eth_driver); platform_driver_unregister(&mv643xx_eth_shared_driver); } module_exit(mv643xx_eth_cleanup_module); MODULE_AUTHOR("Rabeeh Khoury, Assaf Hoffman, Matthew Dharm, " "Manish Lachwani, Dale Farnsworth and Lennert Buytenhek"); MODULE_DESCRIPTION("Ethernet driver for Marvell MV643XX"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:" MV643XX_ETH_SHARED_NAME); MODULE_ALIAS("platform:" MV643XX_ETH_NAME);