/* * meth.c -- O2 Builtin 10/100 Ethernet driver * * Copyright (C) 2001-2003 Ilya Volynets * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/errno.h> #include <linux/types.h> #include <linux/interrupt.h> #include <linux/in.h> #include <linux/in6.h> #include <linux/device.h> /* struct device, et al */ #include <linux/netdevice.h> /* struct device, and other headers */ #include <linux/etherdevice.h> /* eth_type_trans */ #include <linux/ip.h> /* struct iphdr */ #include <linux/tcp.h> /* struct tcphdr */ #include <linux/skbuff.h> #include <linux/mii.h> /* MII definitions */ #include <asm/ip32/mace.h> #include <asm/ip32/ip32_ints.h> #include <asm/io.h> #include "meth.h" #ifndef MFE_DEBUG #define MFE_DEBUG 0 #endif #if MFE_DEBUG>=1 #define DPRINTK(str,args...) printk(KERN_DEBUG "meth: %s: " str, __FUNCTION__ , ## args) #define MFE_RX_DEBUG 2 #else #define DPRINTK(str,args...) #define MFE_RX_DEBUG 0 #endif static const char *meth_str="SGI O2 Fast Ethernet"; #define HAVE_TX_TIMEOUT /* The maximum time waited (in jiffies) before assuming a Tx failed. (400ms) */ #define TX_TIMEOUT (400*HZ/1000) #ifdef HAVE_TX_TIMEOUT static int timeout = TX_TIMEOUT; module_param(timeout, int, 0); #endif /* * This structure is private to each device. It is used to pass * packets in and out, so there is place for a packet */ struct meth_private { /* in-memory copy of MAC Control register */ unsigned long mac_ctrl; /* in-memory copy of DMA Control register */ unsigned long dma_ctrl; /* address of PHY, used by mdio_* functions, initialized in mdio_probe */ unsigned long phy_addr; tx_packet *tx_ring; dma_addr_t tx_ring_dma; struct sk_buff *tx_skbs[TX_RING_ENTRIES]; dma_addr_t tx_skb_dmas[TX_RING_ENTRIES]; unsigned long tx_read, tx_write, tx_count; rx_packet *rx_ring[RX_RING_ENTRIES]; dma_addr_t rx_ring_dmas[RX_RING_ENTRIES]; struct sk_buff *rx_skbs[RX_RING_ENTRIES]; unsigned long rx_write; spinlock_t meth_lock; }; static void meth_tx_timeout(struct net_device *dev); static irqreturn_t meth_interrupt(int irq, void *dev_id); /* global, initialized in ip32-setup.c */ char o2meth_eaddr[8]={0,0,0,0,0,0,0,0}; static inline void load_eaddr(struct net_device *dev) { int i; DECLARE_MAC_BUF(mac); u64 macaddr; DPRINTK("Loading MAC Address: %s\n", print_mac(mac, dev->dev_addr)); macaddr = 0; for (i = 0; i < 6; i++) macaddr |= dev->dev_addr[i] << ((5 - i) * 8); mace->eth.mac_addr = macaddr; } /* * Waits for BUSY status of mdio bus to clear */ #define WAIT_FOR_PHY(___rval) \ while ((___rval = mace->eth.phy_data) & MDIO_BUSY) { \ udelay(25); \ } /*read phy register, return value read */ static unsigned long mdio_read(struct meth_private *priv, unsigned long phyreg) { unsigned long rval; WAIT_FOR_PHY(rval); mace->eth.phy_regs = (priv->phy_addr << 5) | (phyreg & 0x1f); udelay(25); mace->eth.phy_trans_go = 1; udelay(25); WAIT_FOR_PHY(rval); return rval & MDIO_DATA_MASK; } static int mdio_probe(struct meth_private *priv) { int i; unsigned long p2, p3; /* check if phy is detected already */ if(priv->phy_addr>=0&&priv->phy_addr<32) return 0; spin_lock(&priv->meth_lock); for (i=0;i<32;++i){ priv->phy_addr=i; p2=mdio_read(priv,2); p3=mdio_read(priv,3); #if MFE_DEBUG>=2 switch ((p2<<12)|(p3>>4)){ case PHY_QS6612X: DPRINTK("PHY is QS6612X\n"); break; case PHY_ICS1889: DPRINTK("PHY is ICS1889\n"); break; case PHY_ICS1890: DPRINTK("PHY is ICS1890\n"); break; case PHY_DP83840: DPRINTK("PHY is DP83840\n"); break; } #endif if(p2!=0xffff&&p2!=0x0000){ DPRINTK("PHY code: %x\n",(p2<<12)|(p3>>4)); break; } } spin_unlock(&priv->meth_lock); if(priv->phy_addr<32) { return 0; } DPRINTK("Oopsie! PHY is not known!\n"); priv->phy_addr=-1; return -ENODEV; } static void meth_check_link(struct net_device *dev) { struct meth_private *priv = netdev_priv(dev); unsigned long mii_advertising = mdio_read(priv, 4); unsigned long mii_partner = mdio_read(priv, 5); unsigned long negotiated = mii_advertising & mii_partner; unsigned long duplex, speed; if (mii_partner == 0xffff) return; speed = (negotiated & 0x0380) ? METH_100MBIT : 0; duplex = ((negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040) ? METH_PHY_FDX : 0; if ((priv->mac_ctrl & METH_PHY_FDX) ^ duplex) { DPRINTK("Setting %s-duplex\n", duplex ? "full" : "half"); if (duplex) priv->mac_ctrl |= METH_PHY_FDX; else priv->mac_ctrl &= ~METH_PHY_FDX; mace->eth.mac_ctrl = priv->mac_ctrl; } if ((priv->mac_ctrl & METH_100MBIT) ^ speed) { DPRINTK("Setting %dMbs mode\n", speed ? 100 : 10); if (duplex) priv->mac_ctrl |= METH_100MBIT; else priv->mac_ctrl &= ~METH_100MBIT; mace->eth.mac_ctrl = priv->mac_ctrl; } } static int meth_init_tx_ring(struct meth_private *priv) { /* Init TX ring */ priv->tx_ring = dma_alloc_coherent(NULL, TX_RING_BUFFER_SIZE, &priv->tx_ring_dma, GFP_ATOMIC); if (!priv->tx_ring) return -ENOMEM; memset(priv->tx_ring, 0, TX_RING_BUFFER_SIZE); priv->tx_count = priv->tx_read = priv->tx_write = 0; mace->eth.tx_ring_base = priv->tx_ring_dma; /* Now init skb save area */ memset(priv->tx_skbs, 0, sizeof(priv->tx_skbs)); memset(priv->tx_skb_dmas, 0, sizeof(priv->tx_skb_dmas)); return 0; } static int meth_init_rx_ring(struct meth_private *priv) { int i; for (i = 0; i < RX_RING_ENTRIES; i++) { priv->rx_skbs[i] = alloc_skb(METH_RX_BUFF_SIZE, 0); /* 8byte status vector + 3quad padding + 2byte padding, * to put data on 64bit aligned boundary */ skb_reserve(priv->rx_skbs[i],METH_RX_HEAD); priv->rx_ring[i]=(rx_packet*)(priv->rx_skbs[i]->head); /* I'll need to re-sync it after each RX */ priv->rx_ring_dmas[i] = dma_map_single(NULL, priv->rx_ring[i], METH_RX_BUFF_SIZE, DMA_FROM_DEVICE); mace->eth.rx_fifo = priv->rx_ring_dmas[i]; } priv->rx_write = 0; return 0; } static void meth_free_tx_ring(struct meth_private *priv) { int i; /* Remove any pending skb */ for (i = 0; i < TX_RING_ENTRIES; i++) { if (priv->tx_skbs[i]) dev_kfree_skb(priv->tx_skbs[i]); priv->tx_skbs[i] = NULL; } dma_free_coherent(NULL, TX_RING_BUFFER_SIZE, priv->tx_ring, priv->tx_ring_dma); } /* Presumes RX DMA engine is stopped, and RX fifo ring is reset */ static void meth_free_rx_ring(struct meth_private *priv) { int i; for (i = 0; i < RX_RING_ENTRIES; i++) { dma_unmap_single(NULL, priv->rx_ring_dmas[i], METH_RX_BUFF_SIZE, DMA_FROM_DEVICE); priv->rx_ring[i] = 0; priv->rx_ring_dmas[i] = 0; kfree_skb(priv->rx_skbs[i]); } } int meth_reset(struct net_device *dev) { struct meth_private *priv = netdev_priv(dev); /* Reset card */ mace->eth.mac_ctrl = SGI_MAC_RESET; udelay(1); mace->eth.mac_ctrl = 0; udelay(25); /* Load ethernet address */ load_eaddr(dev); /* Should load some "errata", but later */ /* Check for device */ if (mdio_probe(priv) < 0) { DPRINTK("Unable to find PHY\n"); return -ENODEV; } /* Initial mode: 10 | Half-duplex | Accept normal packets */ priv->mac_ctrl = METH_ACCEPT_MCAST | METH_DEFAULT_IPG; if (dev->flags | IFF_PROMISC) priv->mac_ctrl |= METH_PROMISC; mace->eth.mac_ctrl = priv->mac_ctrl; /* Autonegotiate speed and duplex mode */ meth_check_link(dev); /* Now set dma control, but don't enable DMA, yet */ priv->dma_ctrl = (4 << METH_RX_OFFSET_SHIFT) | (RX_RING_ENTRIES << METH_RX_DEPTH_SHIFT); mace->eth.dma_ctrl = priv->dma_ctrl; return 0; } /*============End Helper Routines=====================*/ /* * Open and close */ static int meth_open(struct net_device *dev) { struct meth_private *priv = netdev_priv(dev); int ret; priv->phy_addr = -1; /* No PHY is known yet... */ /* Initialize the hardware */ ret = meth_reset(dev); if (ret < 0) return ret; /* Allocate the ring buffers */ ret = meth_init_tx_ring(priv); if (ret < 0) return ret; ret = meth_init_rx_ring(priv); if (ret < 0) goto out_free_tx_ring; ret = request_irq(dev->irq, meth_interrupt, 0, meth_str, dev); if (ret) { printk(KERN_ERR "%s: Can't get irq %d\n", dev->name, dev->irq); goto out_free_rx_ring; } /* Start DMA */ priv->dma_ctrl |= METH_DMA_TX_EN | /*METH_DMA_TX_INT_EN |*/ METH_DMA_RX_EN | METH_DMA_RX_INT_EN; mace->eth.dma_ctrl = priv->dma_ctrl; DPRINTK("About to start queue\n"); netif_start_queue(dev); return 0; out_free_rx_ring: meth_free_rx_ring(priv); out_free_tx_ring: meth_free_tx_ring(priv); return ret; } static int meth_release(struct net_device *dev) { struct meth_private *priv = netdev_priv(dev); DPRINTK("Stopping queue\n"); netif_stop_queue(dev); /* can't transmit any more */ /* shut down DMA */ priv->dma_ctrl &= ~(METH_DMA_TX_EN | METH_DMA_TX_INT_EN | METH_DMA_RX_EN | METH_DMA_RX_INT_EN); mace->eth.dma_ctrl = priv->dma_ctrl; free_irq(dev->irq, dev); meth_free_tx_ring(priv); meth_free_rx_ring(priv); return 0; } /* * Receive a packet: retrieve, encapsulate and pass over to upper levels */ static void meth_rx(struct net_device* dev, unsigned long int_status) { struct sk_buff *skb; unsigned long status; struct meth_private *priv = netdev_priv(dev); unsigned long fifo_rptr = (int_status & METH_INT_RX_RPTR_MASK) >> 8; spin_lock(&priv->meth_lock); priv->dma_ctrl &= ~METH_DMA_RX_INT_EN; mace->eth.dma_ctrl = priv->dma_ctrl; spin_unlock(&priv->meth_lock); if (int_status & METH_INT_RX_UNDERFLOW) { fifo_rptr = (fifo_rptr - 1) & 0x0f; } while (priv->rx_write != fifo_rptr) { dma_unmap_single(NULL, priv->rx_ring_dmas[priv->rx_write], METH_RX_BUFF_SIZE, DMA_FROM_DEVICE); status = priv->rx_ring[priv->rx_write]->status.raw; #if MFE_DEBUG if (!(status & METH_RX_ST_VALID)) { DPRINTK("Not received? status=%016lx\n",status); } #endif if ((!(status & METH_RX_STATUS_ERRORS)) && (status & METH_RX_ST_VALID)) { int len = (status & 0xffff) - 4; /* omit CRC */ /* length sanity check */ if (len < 60 || len > 1518) { printk(KERN_DEBUG "%s: bogus packet size: %ld, status=%#2lx.\n", dev->name, priv->rx_write, priv->rx_ring[priv->rx_write]->status.raw); dev->stats.rx_errors++; dev->stats.rx_length_errors++; skb = priv->rx_skbs[priv->rx_write]; } else { skb = alloc_skb(METH_RX_BUFF_SIZE, GFP_ATOMIC); if (!skb) { /* Ouch! No memory! Drop packet on the floor */ DPRINTK("No mem: dropping packet\n"); dev->stats.rx_dropped++; skb = priv->rx_skbs[priv->rx_write]; } else { struct sk_buff *skb_c = priv->rx_skbs[priv->rx_write]; /* 8byte status vector + 3quad padding + 2byte padding, * to put data on 64bit aligned boundary */ skb_reserve(skb, METH_RX_HEAD); /* Write metadata, and then pass to the receive level */ skb_put(skb_c, len); priv->rx_skbs[priv->rx_write] = skb; skb_c->protocol = eth_type_trans(skb_c, dev); dev->last_rx = jiffies; dev->stats.rx_packets++; dev->stats.rx_bytes += len; netif_rx(skb_c); } } } else { dev->stats.rx_errors++; skb=priv->rx_skbs[priv->rx_write]; #if MFE_DEBUG>0 printk(KERN_WARNING "meth: RX error: status=0x%016lx\n",status); if(status&METH_RX_ST_RCV_CODE_VIOLATION) printk(KERN_WARNING "Receive Code Violation\n"); if(status&METH_RX_ST_CRC_ERR) printk(KERN_WARNING "CRC error\n"); if(status&METH_RX_ST_INV_PREAMBLE_CTX) printk(KERN_WARNING "Invalid Preamble Context\n"); if(status&METH_RX_ST_LONG_EVT_SEEN) printk(KERN_WARNING "Long Event Seen...\n"); if(status&METH_RX_ST_BAD_PACKET) printk(KERN_WARNING "Bad Packet\n"); if(status&METH_RX_ST_CARRIER_EVT_SEEN) printk(KERN_WARNING "Carrier Event Seen\n"); #endif } priv->rx_ring[priv->rx_write] = (rx_packet*)skb->head; priv->rx_ring[priv->rx_write]->status.raw = 0; priv->rx_ring_dmas[priv->rx_write] = dma_map_single(NULL, priv->rx_ring[priv->rx_write], METH_RX_BUFF_SIZE, DMA_FROM_DEVICE); mace->eth.rx_fifo = priv->rx_ring_dmas[priv->rx_write]; ADVANCE_RX_PTR(priv->rx_write); } spin_lock(&priv->meth_lock); /* In case there was underflow, and Rx DMA was disabled */ priv->dma_ctrl |= METH_DMA_RX_INT_EN | METH_DMA_RX_EN; mace->eth.dma_ctrl = priv->dma_ctrl; mace->eth.int_stat = METH_INT_RX_THRESHOLD; spin_unlock(&priv->meth_lock); } static int meth_tx_full(struct net_device *dev) { struct meth_private *priv = netdev_priv(dev); return (priv->tx_count >= TX_RING_ENTRIES - 1); } static void meth_tx_cleanup(struct net_device* dev, unsigned long int_status) { struct meth_private *priv = netdev_priv(dev); unsigned long status; struct sk_buff *skb; unsigned long rptr = (int_status&TX_INFO_RPTR) >> 16; spin_lock(&priv->meth_lock); /* Stop DMA notification */ priv->dma_ctrl &= ~(METH_DMA_TX_INT_EN); mace->eth.dma_ctrl = priv->dma_ctrl; while (priv->tx_read != rptr) { skb = priv->tx_skbs[priv->tx_read]; status = priv->tx_ring[priv->tx_read].header.raw; #if MFE_DEBUG>=1 if (priv->tx_read == priv->tx_write) DPRINTK("Auchi! tx_read=%d,tx_write=%d,rptr=%d?\n", priv->tx_read, priv->tx_write,rptr); #endif if (status & METH_TX_ST_DONE) { if (status & METH_TX_ST_SUCCESS){ dev->stats.tx_packets++; dev->stats.tx_bytes += skb->len; } else { dev->stats.tx_errors++; #if MFE_DEBUG>=1 DPRINTK("TX error: status=%016lx <",status); if(status & METH_TX_ST_SUCCESS) printk(" SUCCESS"); if(status & METH_TX_ST_TOOLONG) printk(" TOOLONG"); if(status & METH_TX_ST_UNDERRUN) printk(" UNDERRUN"); if(status & METH_TX_ST_EXCCOLL) printk(" EXCCOLL"); if(status & METH_TX_ST_DEFER) printk(" DEFER"); if(status & METH_TX_ST_LATECOLL) printk(" LATECOLL"); printk(" >\n"); #endif } } else { DPRINTK("RPTR points us here, but packet not done?\n"); break; } dev_kfree_skb_irq(skb); priv->tx_skbs[priv->tx_read] = NULL; priv->tx_ring[priv->tx_read].header.raw = 0; priv->tx_read = (priv->tx_read+1)&(TX_RING_ENTRIES-1); priv->tx_count--; } /* wake up queue if it was stopped */ if (netif_queue_stopped(dev) && !meth_tx_full(dev)) { netif_wake_queue(dev); } mace->eth.int_stat = METH_INT_TX_EMPTY | METH_INT_TX_PKT; spin_unlock(&priv->meth_lock); } static void meth_error(struct net_device* dev, unsigned status) { struct meth_private *priv = netdev_priv(dev); printk(KERN_WARNING "meth: error status: 0x%08x\n",status); /* check for errors too... */ if (status & (METH_INT_TX_LINK_FAIL)) printk(KERN_WARNING "meth: link failure\n"); /* Should I do full reset in this case? */ if (status & (METH_INT_MEM_ERROR)) printk(KERN_WARNING "meth: memory error\n"); if (status & (METH_INT_TX_ABORT)) printk(KERN_WARNING "meth: aborted\n"); if (status & (METH_INT_RX_OVERFLOW)) printk(KERN_WARNING "meth: Rx overflow\n"); if (status & (METH_INT_RX_UNDERFLOW)) { printk(KERN_WARNING "meth: Rx underflow\n"); spin_lock(&priv->meth_lock); mace->eth.int_stat = METH_INT_RX_UNDERFLOW; /* more underflow interrupts will be delivered, * effectively throwing us into an infinite loop. * Thus I stop processing Rx in this case. */ priv->dma_ctrl &= ~METH_DMA_RX_EN; mace->eth.dma_ctrl = priv->dma_ctrl; DPRINTK("Disabled meth Rx DMA temporarily\n"); spin_unlock(&priv->meth_lock); } mace->eth.int_stat = METH_INT_ERROR; } /* * The typical interrupt entry point */ static irqreturn_t meth_interrupt(int irq, void *dev_id) { struct net_device *dev = (struct net_device *)dev_id; struct meth_private *priv = netdev_priv(dev); unsigned long status; status = mace->eth.int_stat; while (status & 0xff) { /* First handle errors - if we get Rx underflow, * Rx DMA will be disabled, and Rx handler will reenable * it. I don't think it's possible to get Rx underflow, * without getting Rx interrupt */ if (status & METH_INT_ERROR) { meth_error(dev, status); } if (status & (METH_INT_TX_EMPTY | METH_INT_TX_PKT)) { /* a transmission is over: free the skb */ meth_tx_cleanup(dev, status); } if (status & METH_INT_RX_THRESHOLD) { if (!(priv->dma_ctrl & METH_DMA_RX_INT_EN)) break; /* send it to meth_rx for handling */ meth_rx(dev, status); } status = mace->eth.int_stat; } return IRQ_HANDLED; } /* * Transmits packets that fit into TX descriptor (are <=120B) */ static void meth_tx_short_prepare(struct meth_private *priv, struct sk_buff *skb) { tx_packet *desc = &priv->tx_ring[priv->tx_write]; int len = (skb->len < ETH_ZLEN) ? ETH_ZLEN : skb->len; desc->header.raw = METH_TX_CMD_INT_EN | (len-1) | ((128-len) << 16); /* maybe I should set whole thing to 0 first... */ skb_copy_from_linear_data(skb, desc->data.dt + (120 - len), skb->len); if (skb->len < len) memset(desc->data.dt + 120 - len + skb->len, 0, len-skb->len); } #define TX_CATBUF1 BIT(25) static void meth_tx_1page_prepare(struct meth_private *priv, struct sk_buff *skb) { tx_packet *desc = &priv->tx_ring[priv->tx_write]; void *buffer_data = (void *)(((unsigned long)skb->data + 7) & ~7); int unaligned_len = (int)((unsigned long)buffer_data - (unsigned long)skb->data); int buffer_len = skb->len - unaligned_len; dma_addr_t catbuf; desc->header.raw = METH_TX_CMD_INT_EN | TX_CATBUF1 | (skb->len - 1); /* unaligned part */ if (unaligned_len) { skb_copy_from_linear_data(skb, desc->data.dt + (120 - unaligned_len), unaligned_len); desc->header.raw |= (128 - unaligned_len) << 16; } /* first page */ catbuf = dma_map_single(NULL, buffer_data, buffer_len, DMA_TO_DEVICE); desc->data.cat_buf[0].form.start_addr = catbuf >> 3; desc->data.cat_buf[0].form.len = buffer_len - 1; } #define TX_CATBUF2 BIT(26) static void meth_tx_2page_prepare(struct meth_private *priv, struct sk_buff *skb) { tx_packet *desc = &priv->tx_ring[priv->tx_write]; void *buffer1_data = (void *)(((unsigned long)skb->data + 7) & ~7); void *buffer2_data = (void *)PAGE_ALIGN((unsigned long)skb->data); int unaligned_len = (int)((unsigned long)buffer1_data - (unsigned long)skb->data); int buffer1_len = (int)((unsigned long)buffer2_data - (unsigned long)buffer1_data); int buffer2_len = skb->len - buffer1_len - unaligned_len; dma_addr_t catbuf1, catbuf2; desc->header.raw = METH_TX_CMD_INT_EN | TX_CATBUF1 | TX_CATBUF2| (skb->len - 1); /* unaligned part */ if (unaligned_len){ skb_copy_from_linear_data(skb, desc->data.dt + (120 - unaligned_len), unaligned_len); desc->header.raw |= (128 - unaligned_len) << 16; } /* first page */ catbuf1 = dma_map_single(NULL, buffer1_data, buffer1_len, DMA_TO_DEVICE); desc->data.cat_buf[0].form.start_addr = catbuf1 >> 3; desc->data.cat_buf[0].form.len = buffer1_len - 1; /* second page */ catbuf2 = dma_map_single(NULL, buffer2_data, buffer2_len, DMA_TO_DEVICE); desc->data.cat_buf[1].form.start_addr = catbuf2 >> 3; desc->data.cat_buf[1].form.len = buffer2_len - 1; } static void meth_add_to_tx_ring(struct meth_private *priv, struct sk_buff *skb) { /* Remember the skb, so we can free it at interrupt time */ priv->tx_skbs[priv->tx_write] = skb; if (skb->len <= 120) { /* Whole packet fits into descriptor */ meth_tx_short_prepare(priv, skb); } else if (PAGE_ALIGN((unsigned long)skb->data) != PAGE_ALIGN((unsigned long)skb->data + skb->len - 1)) { /* Packet crosses page boundary */ meth_tx_2page_prepare(priv, skb); } else { /* Packet is in one page */ meth_tx_1page_prepare(priv, skb); } priv->tx_write = (priv->tx_write + 1) & (TX_RING_ENTRIES - 1); mace->eth.tx_info = priv->tx_write; priv->tx_count++; } /* * Transmit a packet (called by the kernel) */ static int meth_tx(struct sk_buff *skb, struct net_device *dev) { struct meth_private *priv = netdev_priv(dev); unsigned long flags; spin_lock_irqsave(&priv->meth_lock, flags); /* Stop DMA notification */ priv->dma_ctrl &= ~(METH_DMA_TX_INT_EN); mace->eth.dma_ctrl = priv->dma_ctrl; meth_add_to_tx_ring(priv, skb); dev->trans_start = jiffies; /* save the timestamp */ /* If TX ring is full, tell the upper layer to stop sending packets */ if (meth_tx_full(dev)) { printk(KERN_DEBUG "TX full: stopping\n"); netif_stop_queue(dev); } /* Restart DMA notification */ priv->dma_ctrl |= METH_DMA_TX_INT_EN; mace->eth.dma_ctrl = priv->dma_ctrl; spin_unlock_irqrestore(&priv->meth_lock, flags); return 0; } /* * Deal with a transmit timeout. */ static void meth_tx_timeout(struct net_device *dev) { struct meth_private *priv = netdev_priv(dev); unsigned long flags; printk(KERN_WARNING "%s: transmit timed out\n", dev->name); /* Protect against concurrent rx interrupts */ spin_lock_irqsave(&priv->meth_lock,flags); /* Try to reset the interface. */ meth_reset(dev); dev->stats.tx_errors++; /* Clear all rings */ meth_free_tx_ring(priv); meth_free_rx_ring(priv); meth_init_tx_ring(priv); meth_init_rx_ring(priv); /* Restart dma */ priv->dma_ctrl |= METH_DMA_TX_EN | METH_DMA_RX_EN | METH_DMA_RX_INT_EN; mace->eth.dma_ctrl = priv->dma_ctrl; /* Enable interrupt */ spin_unlock_irqrestore(&priv->meth_lock, flags); dev->trans_start = jiffies; netif_wake_queue(dev); return; } /* * Ioctl commands */ static int meth_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { /* XXX Not yet implemented */ switch(cmd) { case SIOCGMIIPHY: case SIOCGMIIREG: case SIOCSMIIREG: default: return -EOPNOTSUPP; } } /* * Return statistics to the caller */ /* * The init function. */ static int __init meth_probe(struct platform_device *pdev) { struct net_device *dev; struct meth_private *priv; int err; dev = alloc_etherdev(sizeof(struct meth_private)); if (!dev) return -ENOMEM; dev->open = meth_open; dev->stop = meth_release; dev->hard_start_xmit = meth_tx; dev->do_ioctl = meth_ioctl; #ifdef HAVE_TX_TIMEOUT dev->tx_timeout = meth_tx_timeout; dev->watchdog_timeo = timeout; #endif dev->irq = MACE_ETHERNET_IRQ; dev->base_addr = (unsigned long)&mace->eth; memcpy(dev->dev_addr, o2meth_eaddr, 6); priv = netdev_priv(dev); spin_lock_init(&priv->meth_lock); SET_NETDEV_DEV(dev, &pdev->dev); err = register_netdev(dev); if (err) { free_netdev(dev); return err; } printk(KERN_INFO "%s: SGI MACE Ethernet rev. %d\n", dev->name, (unsigned int)(mace->eth.mac_ctrl >> 29)); return 0; } static int __exit meth_remove(struct platform_device *pdev) { struct net_device *dev = platform_get_drvdata(pdev); unregister_netdev(dev); free_netdev(dev); platform_set_drvdata(pdev, NULL); return 0; } static struct platform_driver meth_driver = { .probe = meth_probe, .remove = __devexit_p(meth_remove), .driver = { .name = "meth", .owner = THIS_MODULE, } }; static int __init meth_init_module(void) { int err; err = platform_driver_register(&meth_driver); if (err) printk(KERN_ERR "Driver registration failed\n"); return err; } static void __exit meth_exit_module(void) { platform_driver_unregister(&meth_driver); } module_init(meth_init_module); module_exit(meth_exit_module); MODULE_AUTHOR("Ilya Volynets <ilya@theIlya.com>"); MODULE_DESCRIPTION("SGI O2 Builtin Fast Ethernet driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:meth");