/* * Texas Instruments Ethernet Switch Driver * * Copyright (C) 2012 Texas Instruments * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation version 2. * * This program is distributed "as is" WITHOUT ANY WARRANTY of any * kind, whether express or implied; without even the implied warranty * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cpsw.h" #include "cpsw_ale.h" #include "cpts.h" #include "davinci_cpdma.h" #define CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \ NETIF_MSG_DRV | NETIF_MSG_LINK | \ NETIF_MSG_IFUP | NETIF_MSG_INTR | \ NETIF_MSG_PROBE | NETIF_MSG_TIMER | \ NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \ NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \ NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \ NETIF_MSG_RX_STATUS) #define cpsw_info(priv, type, format, ...) \ do { \ if (netif_msg_##type(priv) && net_ratelimit()) \ dev_info(priv->dev, format, ## __VA_ARGS__); \ } while (0) #define cpsw_err(priv, type, format, ...) \ do { \ if (netif_msg_##type(priv) && net_ratelimit()) \ dev_err(priv->dev, format, ## __VA_ARGS__); \ } while (0) #define cpsw_dbg(priv, type, format, ...) \ do { \ if (netif_msg_##type(priv) && net_ratelimit()) \ dev_dbg(priv->dev, format, ## __VA_ARGS__); \ } while (0) #define cpsw_notice(priv, type, format, ...) \ do { \ if (netif_msg_##type(priv) && net_ratelimit()) \ dev_notice(priv->dev, format, ## __VA_ARGS__); \ } while (0) #define ALE_ALL_PORTS 0x7 #define CPSW_MAJOR_VERSION(reg) (reg >> 8 & 0x7) #define CPSW_MINOR_VERSION(reg) (reg & 0xff) #define CPSW_RTL_VERSION(reg) ((reg >> 11) & 0x1f) #define CPSW_VERSION_1 0x19010a #define CPSW_VERSION_2 0x19010c #define CPSW_VERSION_3 0x19010f #define CPSW_VERSION_4 0x190112 #define HOST_PORT_NUM 0 #define SLIVER_SIZE 0x40 #define CPSW1_HOST_PORT_OFFSET 0x028 #define CPSW1_SLAVE_OFFSET 0x050 #define CPSW1_SLAVE_SIZE 0x040 #define CPSW1_CPDMA_OFFSET 0x100 #define CPSW1_STATERAM_OFFSET 0x200 #define CPSW1_HW_STATS 0x400 #define CPSW1_CPTS_OFFSET 0x500 #define CPSW1_ALE_OFFSET 0x600 #define CPSW1_SLIVER_OFFSET 0x700 #define CPSW2_HOST_PORT_OFFSET 0x108 #define CPSW2_SLAVE_OFFSET 0x200 #define CPSW2_SLAVE_SIZE 0x100 #define CPSW2_CPDMA_OFFSET 0x800 #define CPSW2_HW_STATS 0x900 #define CPSW2_STATERAM_OFFSET 0xa00 #define CPSW2_CPTS_OFFSET 0xc00 #define CPSW2_ALE_OFFSET 0xd00 #define CPSW2_SLIVER_OFFSET 0xd80 #define CPSW2_BD_OFFSET 0x2000 #define CPDMA_RXTHRESH 0x0c0 #define CPDMA_RXFREE 0x0e0 #define CPDMA_TXHDP 0x00 #define CPDMA_RXHDP 0x20 #define CPDMA_TXCP 0x40 #define CPDMA_RXCP 0x60 #define CPSW_POLL_WEIGHT 64 #define CPSW_MIN_PACKET_SIZE 60 #define CPSW_MAX_PACKET_SIZE (1500 + 14 + 4 + 4) #define RX_PRIORITY_MAPPING 0x76543210 #define TX_PRIORITY_MAPPING 0x33221100 #define CPDMA_TX_PRIORITY_MAP 0x76543210 #define CPSW_VLAN_AWARE BIT(1) #define CPSW_ALE_VLAN_AWARE 1 #define CPSW_FIFO_NORMAL_MODE (0 << 15) #define CPSW_FIFO_DUAL_MAC_MODE (1 << 15) #define CPSW_FIFO_RATE_LIMIT_MODE (2 << 15) #define CPSW_INTPACEEN (0x3f << 16) #define CPSW_INTPRESCALE_MASK (0x7FF << 0) #define CPSW_CMINTMAX_CNT 63 #define CPSW_CMINTMIN_CNT 2 #define CPSW_CMINTMAX_INTVL (1000 / CPSW_CMINTMIN_CNT) #define CPSW_CMINTMIN_INTVL ((1000 / CPSW_CMINTMAX_CNT) + 1) #define cpsw_enable_irq(priv) \ do { \ u32 i; \ for (i = 0; i < priv->num_irqs; i++) \ enable_irq(priv->irqs_table[i]); \ } while (0); #define cpsw_disable_irq(priv) \ do { \ u32 i; \ for (i = 0; i < priv->num_irqs; i++) \ disable_irq_nosync(priv->irqs_table[i]); \ } while (0); #define cpsw_slave_index(priv) \ ((priv->data.dual_emac) ? priv->emac_port : \ priv->data.active_slave) static int debug_level; module_param(debug_level, int, 0); MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)"); static int ale_ageout = 10; module_param(ale_ageout, int, 0); MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)"); static int rx_packet_max = CPSW_MAX_PACKET_SIZE; module_param(rx_packet_max, int, 0); MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)"); struct cpsw_wr_regs { u32 id_ver; u32 soft_reset; u32 control; u32 int_control; u32 rx_thresh_en; u32 rx_en; u32 tx_en; u32 misc_en; u32 mem_allign1[8]; u32 rx_thresh_stat; u32 rx_stat; u32 tx_stat; u32 misc_stat; u32 mem_allign2[8]; u32 rx_imax; u32 tx_imax; }; struct cpsw_ss_regs { u32 id_ver; u32 control; u32 soft_reset; u32 stat_port_en; u32 ptype; u32 soft_idle; u32 thru_rate; u32 gap_thresh; u32 tx_start_wds; u32 flow_control; u32 vlan_ltype; u32 ts_ltype; u32 dlr_ltype; }; /* CPSW_PORT_V1 */ #define CPSW1_MAX_BLKS 0x00 /* Maximum FIFO Blocks */ #define CPSW1_BLK_CNT 0x04 /* FIFO Block Usage Count (Read Only) */ #define CPSW1_TX_IN_CTL 0x08 /* Transmit FIFO Control */ #define CPSW1_PORT_VLAN 0x0c /* VLAN Register */ #define CPSW1_TX_PRI_MAP 0x10 /* Tx Header Priority to Switch Pri Mapping */ #define CPSW1_TS_CTL 0x14 /* Time Sync Control */ #define CPSW1_TS_SEQ_LTYPE 0x18 /* Time Sync Sequence ID Offset and Msg Type */ #define CPSW1_TS_VLAN 0x1c /* Time Sync VLAN1 and VLAN2 */ /* CPSW_PORT_V2 */ #define CPSW2_CONTROL 0x00 /* Control Register */ #define CPSW2_MAX_BLKS 0x08 /* Maximum FIFO Blocks */ #define CPSW2_BLK_CNT 0x0c /* FIFO Block Usage Count (Read Only) */ #define CPSW2_TX_IN_CTL 0x10 /* Transmit FIFO Control */ #define CPSW2_PORT_VLAN 0x14 /* VLAN Register */ #define CPSW2_TX_PRI_MAP 0x18 /* Tx Header Priority to Switch Pri Mapping */ #define CPSW2_TS_SEQ_MTYPE 0x1c /* Time Sync Sequence ID Offset and Msg Type */ /* CPSW_PORT_V1 and V2 */ #define SA_LO 0x20 /* CPGMAC_SL Source Address Low */ #define SA_HI 0x24 /* CPGMAC_SL Source Address High */ #define SEND_PERCENT 0x28 /* Transmit Queue Send Percentages */ /* CPSW_PORT_V2 only */ #define RX_DSCP_PRI_MAP0 0x30 /* Rx DSCP Priority to Rx Packet Mapping */ #define RX_DSCP_PRI_MAP1 0x34 /* Rx DSCP Priority to Rx Packet Mapping */ #define RX_DSCP_PRI_MAP2 0x38 /* Rx DSCP Priority to Rx Packet Mapping */ #define RX_DSCP_PRI_MAP3 0x3c /* Rx DSCP Priority to Rx Packet Mapping */ #define RX_DSCP_PRI_MAP4 0x40 /* Rx DSCP Priority to Rx Packet Mapping */ #define RX_DSCP_PRI_MAP5 0x44 /* Rx DSCP Priority to Rx Packet Mapping */ #define RX_DSCP_PRI_MAP6 0x48 /* Rx DSCP Priority to Rx Packet Mapping */ #define RX_DSCP_PRI_MAP7 0x4c /* Rx DSCP Priority to Rx Packet Mapping */ /* Bit definitions for the CPSW2_CONTROL register */ #define PASS_PRI_TAGGED (1<<24) /* Pass Priority Tagged */ #define VLAN_LTYPE2_EN (1<<21) /* VLAN LTYPE 2 enable */ #define VLAN_LTYPE1_EN (1<<20) /* VLAN LTYPE 1 enable */ #define DSCP_PRI_EN (1<<16) /* DSCP Priority Enable */ #define TS_320 (1<<14) /* Time Sync Dest Port 320 enable */ #define TS_319 (1<<13) /* Time Sync Dest Port 319 enable */ #define TS_132 (1<<12) /* Time Sync Dest IP Addr 132 enable */ #define TS_131 (1<<11) /* Time Sync Dest IP Addr 131 enable */ #define TS_130 (1<<10) /* Time Sync Dest IP Addr 130 enable */ #define TS_129 (1<<9) /* Time Sync Dest IP Addr 129 enable */ #define TS_TTL_NONZERO (1<<8) /* Time Sync Time To Live Non-zero enable */ #define TS_ANNEX_F_EN (1<<6) /* Time Sync Annex F enable */ #define TS_ANNEX_D_EN (1<<4) /* Time Sync Annex D enable */ #define TS_LTYPE2_EN (1<<3) /* Time Sync LTYPE 2 enable */ #define TS_LTYPE1_EN (1<<2) /* Time Sync LTYPE 1 enable */ #define TS_TX_EN (1<<1) /* Time Sync Transmit Enable */ #define TS_RX_EN (1<<0) /* Time Sync Receive Enable */ #define CTRL_V2_TS_BITS \ (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ TS_TTL_NONZERO | TS_ANNEX_D_EN | TS_LTYPE1_EN) #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN) #define CTRL_V2_TX_TS_BITS (CTRL_V2_TS_BITS | TS_TX_EN) #define CTRL_V2_RX_TS_BITS (CTRL_V2_TS_BITS | TS_RX_EN) #define CTRL_V3_TS_BITS \ (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\ TS_LTYPE1_EN) #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN) #define CTRL_V3_TX_TS_BITS (CTRL_V3_TS_BITS | TS_TX_EN) #define CTRL_V3_RX_TS_BITS (CTRL_V3_TS_BITS | TS_RX_EN) /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */ #define TS_SEQ_ID_OFFSET_SHIFT (16) /* Time Sync Sequence ID Offset */ #define TS_SEQ_ID_OFFSET_MASK (0x3f) #define TS_MSG_TYPE_EN_SHIFT (0) /* Time Sync Message Type Enable */ #define TS_MSG_TYPE_EN_MASK (0xffff) /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */ #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3)) /* Bit definitions for the CPSW1_TS_CTL register */ #define CPSW_V1_TS_RX_EN BIT(0) #define CPSW_V1_TS_TX_EN BIT(4) #define CPSW_V1_MSG_TYPE_OFS 16 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */ #define CPSW_V1_SEQ_ID_OFS_SHIFT 16 struct cpsw_host_regs { u32 max_blks; u32 blk_cnt; u32 tx_in_ctl; u32 port_vlan; u32 tx_pri_map; u32 cpdma_tx_pri_map; u32 cpdma_rx_chan_map; }; struct cpsw_sliver_regs { u32 id_ver; u32 mac_control; u32 mac_status; u32 soft_reset; u32 rx_maxlen; u32 __reserved_0; u32 rx_pause; u32 tx_pause; u32 __reserved_1; u32 rx_pri_map; }; struct cpsw_hw_stats { u32 rxgoodframes; u32 rxbroadcastframes; u32 rxmulticastframes; u32 rxpauseframes; u32 rxcrcerrors; u32 rxaligncodeerrors; u32 rxoversizedframes; u32 rxjabberframes; u32 rxundersizedframes; u32 rxfragments; u32 __pad_0[2]; u32 rxoctets; u32 txgoodframes; u32 txbroadcastframes; u32 txmulticastframes; u32 txpauseframes; u32 txdeferredframes; u32 txcollisionframes; u32 txsinglecollframes; u32 txmultcollframes; u32 txexcessivecollisions; u32 txlatecollisions; u32 txunderrun; u32 txcarriersenseerrors; u32 txoctets; u32 octetframes64; u32 octetframes65t127; u32 octetframes128t255; u32 octetframes256t511; u32 octetframes512t1023; u32 octetframes1024tup; u32 netoctets; u32 rxsofoverruns; u32 rxmofoverruns; u32 rxdmaoverruns; }; struct cpsw_slave { void __iomem *regs; struct cpsw_sliver_regs __iomem *sliver; int slave_num; u32 mac_control; struct cpsw_slave_data *data; struct phy_device *phy; struct net_device *ndev; u32 port_vlan; u32 open_stat; }; static inline u32 slave_read(struct cpsw_slave *slave, u32 offset) { return __raw_readl(slave->regs + offset); } static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset) { __raw_writel(val, slave->regs + offset); } struct cpsw_priv { spinlock_t lock; struct platform_device *pdev; struct net_device *ndev; struct napi_struct napi; struct device *dev; struct cpsw_platform_data data; struct cpsw_ss_regs __iomem *regs; struct cpsw_wr_regs __iomem *wr_regs; u8 __iomem *hw_stats; struct cpsw_host_regs __iomem *host_port_regs; u32 msg_enable; u32 version; u32 coal_intvl; u32 bus_freq_mhz; int rx_packet_max; int host_port; struct clk *clk; u8 mac_addr[ETH_ALEN]; struct cpsw_slave *slaves; struct cpdma_ctlr *dma; struct cpdma_chan *txch, *rxch; struct cpsw_ale *ale; /* snapshot of IRQ numbers */ u32 irqs_table[4]; u32 num_irqs; bool irq_enabled; struct cpts *cpts; u32 emac_port; }; struct cpsw_stats { char stat_string[ETH_GSTRING_LEN]; int type; int sizeof_stat; int stat_offset; }; enum { CPSW_STATS, CPDMA_RX_STATS, CPDMA_TX_STATS, }; #define CPSW_STAT(m) CPSW_STATS, \ sizeof(((struct cpsw_hw_stats *)0)->m), \ offsetof(struct cpsw_hw_stats, m) #define CPDMA_RX_STAT(m) CPDMA_RX_STATS, \ sizeof(((struct cpdma_chan_stats *)0)->m), \ offsetof(struct cpdma_chan_stats, m) #define CPDMA_TX_STAT(m) CPDMA_TX_STATS, \ sizeof(((struct cpdma_chan_stats *)0)->m), \ offsetof(struct cpdma_chan_stats, m) static const struct cpsw_stats cpsw_gstrings_stats[] = { { "Good Rx Frames", CPSW_STAT(rxgoodframes) }, { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) }, { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) }, { "Pause Rx Frames", CPSW_STAT(rxpauseframes) }, { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) }, { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) }, { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) }, { "Rx Jabbers", CPSW_STAT(rxjabberframes) }, { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) }, { "Rx Fragments", CPSW_STAT(rxfragments) }, { "Rx Octets", CPSW_STAT(rxoctets) }, { "Good Tx Frames", CPSW_STAT(txgoodframes) }, { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) }, { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) }, { "Pause Tx Frames", CPSW_STAT(txpauseframes) }, { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) }, { "Collisions", CPSW_STAT(txcollisionframes) }, { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) }, { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) }, { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) }, { "Late Collisions", CPSW_STAT(txlatecollisions) }, { "Tx Underrun", CPSW_STAT(txunderrun) }, { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) }, { "Tx Octets", CPSW_STAT(txoctets) }, { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) }, { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) }, { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) }, { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) }, { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) }, { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) }, { "Net Octets", CPSW_STAT(netoctets) }, { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) }, { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) }, { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) }, { "Rx DMA chan: head_enqueue", CPDMA_RX_STAT(head_enqueue) }, { "Rx DMA chan: tail_enqueue", CPDMA_RX_STAT(tail_enqueue) }, { "Rx DMA chan: pad_enqueue", CPDMA_RX_STAT(pad_enqueue) }, { "Rx DMA chan: misqueued", CPDMA_RX_STAT(misqueued) }, { "Rx DMA chan: desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) }, { "Rx DMA chan: pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) }, { "Rx DMA chan: runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) }, { "Rx DMA chan: runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) }, { "Rx DMA chan: empty_dequeue", CPDMA_RX_STAT(empty_dequeue) }, { "Rx DMA chan: busy_dequeue", CPDMA_RX_STAT(busy_dequeue) }, { "Rx DMA chan: good_dequeue", CPDMA_RX_STAT(good_dequeue) }, { "Rx DMA chan: requeue", CPDMA_RX_STAT(requeue) }, { "Rx DMA chan: teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) }, { "Tx DMA chan: head_enqueue", CPDMA_TX_STAT(head_enqueue) }, { "Tx DMA chan: tail_enqueue", CPDMA_TX_STAT(tail_enqueue) }, { "Tx DMA chan: pad_enqueue", CPDMA_TX_STAT(pad_enqueue) }, { "Tx DMA chan: misqueued", CPDMA_TX_STAT(misqueued) }, { "Tx DMA chan: desc_alloc_fail", CPDMA_TX_STAT(desc_alloc_fail) }, { "Tx DMA chan: pad_alloc_fail", CPDMA_TX_STAT(pad_alloc_fail) }, { "Tx DMA chan: runt_receive_buf", CPDMA_TX_STAT(runt_receive_buff) }, { "Tx DMA chan: runt_transmit_buf", CPDMA_TX_STAT(runt_transmit_buff) }, { "Tx DMA chan: empty_dequeue", CPDMA_TX_STAT(empty_dequeue) }, { "Tx DMA chan: busy_dequeue", CPDMA_TX_STAT(busy_dequeue) }, { "Tx DMA chan: good_dequeue", CPDMA_TX_STAT(good_dequeue) }, { "Tx DMA chan: requeue", CPDMA_TX_STAT(requeue) }, { "Tx DMA chan: teardown_dequeue", CPDMA_TX_STAT(teardown_dequeue) }, }; #define CPSW_STATS_LEN ARRAY_SIZE(cpsw_gstrings_stats) #define napi_to_priv(napi) container_of(napi, struct cpsw_priv, napi) #define for_each_slave(priv, func, arg...) \ do { \ struct cpsw_slave *slave; \ int n; \ if (priv->data.dual_emac) \ (func)((priv)->slaves + priv->emac_port, ##arg);\ else \ for (n = (priv)->data.slaves, \ slave = (priv)->slaves; \ n; n--) \ (func)(slave++, ##arg); \ } while (0) #define cpsw_get_slave_ndev(priv, __slave_no__) \ (priv->slaves[__slave_no__].ndev) #define cpsw_get_slave_priv(priv, __slave_no__) \ ((priv->slaves[__slave_no__].ndev) ? \ netdev_priv(priv->slaves[__slave_no__].ndev) : NULL) \ #define cpsw_dual_emac_src_port_detect(status, priv, ndev, skb) \ do { \ if (!priv->data.dual_emac) \ break; \ if (CPDMA_RX_SOURCE_PORT(status) == 1) { \ ndev = cpsw_get_slave_ndev(priv, 0); \ priv = netdev_priv(ndev); \ skb->dev = ndev; \ } else if (CPDMA_RX_SOURCE_PORT(status) == 2) { \ ndev = cpsw_get_slave_ndev(priv, 1); \ priv = netdev_priv(ndev); \ skb->dev = ndev; \ } \ } while (0) #define cpsw_add_mcast(priv, addr) \ do { \ if (priv->data.dual_emac) { \ struct cpsw_slave *slave = priv->slaves + \ priv->emac_port; \ int slave_port = cpsw_get_slave_port(priv, \ slave->slave_num); \ cpsw_ale_add_mcast(priv->ale, addr, \ 1 << slave_port | 1 << priv->host_port, \ ALE_VLAN, slave->port_vlan, 0); \ } else { \ cpsw_ale_add_mcast(priv->ale, addr, \ ALE_ALL_PORTS << priv->host_port, \ 0, 0, 0); \ } \ } while (0) static inline int cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num) { if (priv->host_port == 0) return slave_num + 1; else return slave_num; } static void cpsw_set_promiscious(struct net_device *ndev, bool enable) { struct cpsw_priv *priv = netdev_priv(ndev); struct cpsw_ale *ale = priv->ale; int i; if (priv->data.dual_emac) { bool flag = false; /* Enabling promiscuous mode for one interface will be * common for both the interface as the interface shares * the same hardware resource. */ for (i = 0; i < priv->data.slaves; i++) if (priv->slaves[i].ndev->flags & IFF_PROMISC) flag = true; if (!enable && flag) { enable = true; dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n"); } if (enable) { /* Enable Bypass */ cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1); dev_dbg(&ndev->dev, "promiscuity enabled\n"); } else { /* Disable Bypass */ cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0); dev_dbg(&ndev->dev, "promiscuity disabled\n"); } } else { if (enable) { unsigned long timeout = jiffies + HZ; /* Disable Learn for all ports */ for (i = 0; i < priv->data.slaves; i++) { cpsw_ale_control_set(ale, i, ALE_PORT_NOLEARN, 1); cpsw_ale_control_set(ale, i, ALE_PORT_NO_SA_UPDATE, 1); } /* Clear All Untouched entries */ cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); do { cpu_relax(); if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT)) break; } while (time_after(timeout, jiffies)); cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); /* Clear all mcast from ALE */ cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS << priv->host_port); /* Flood All Unicast Packets to Host port */ cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1); dev_dbg(&ndev->dev, "promiscuity enabled\n"); } else { /* Flood All Unicast Packets to Host port */ cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0); /* Enable Learn for all ports */ for (i = 0; i < priv->data.slaves; i++) { cpsw_ale_control_set(ale, i, ALE_PORT_NOLEARN, 0); cpsw_ale_control_set(ale, i, ALE_PORT_NO_SA_UPDATE, 0); } dev_dbg(&ndev->dev, "promiscuity disabled\n"); } } } static void cpsw_ndo_set_rx_mode(struct net_device *ndev) { struct cpsw_priv *priv = netdev_priv(ndev); if (ndev->flags & IFF_PROMISC) { /* Enable promiscuous mode */ cpsw_set_promiscious(ndev, true); return; } else { /* Disable promiscuous mode */ cpsw_set_promiscious(ndev, false); } /* Clear all mcast from ALE */ cpsw_ale_flush_multicast(priv->ale, ALE_ALL_PORTS << priv->host_port); if (!netdev_mc_empty(ndev)) { struct netdev_hw_addr *ha; /* program multicast address list into ALE register */ netdev_for_each_mc_addr(ha, ndev) { cpsw_add_mcast(priv, (u8 *)ha->addr); } } } static void cpsw_intr_enable(struct cpsw_priv *priv) { __raw_writel(0xFF, &priv->wr_regs->tx_en); __raw_writel(0xFF, &priv->wr_regs->rx_en); cpdma_ctlr_int_ctrl(priv->dma, true); return; } static void cpsw_intr_disable(struct cpsw_priv *priv) { __raw_writel(0, &priv->wr_regs->tx_en); __raw_writel(0, &priv->wr_regs->rx_en); cpdma_ctlr_int_ctrl(priv->dma, false); return; } static void cpsw_tx_handler(void *token, int len, int status) { struct sk_buff *skb = token; struct net_device *ndev = skb->dev; struct cpsw_priv *priv = netdev_priv(ndev); /* Check whether the queue is stopped due to stalled tx dma, if the * queue is stopped then start the queue as we have free desc for tx */ if (unlikely(netif_queue_stopped(ndev))) netif_wake_queue(ndev); cpts_tx_timestamp(priv->cpts, skb); ndev->stats.tx_packets++; ndev->stats.tx_bytes += len; dev_kfree_skb_any(skb); } static void cpsw_rx_handler(void *token, int len, int status) { struct sk_buff *skb = token; struct sk_buff *new_skb; struct net_device *ndev = skb->dev; struct cpsw_priv *priv = netdev_priv(ndev); int ret = 0; cpsw_dual_emac_src_port_detect(status, priv, ndev, skb); if (unlikely(status < 0) || unlikely(!netif_running(ndev))) { /* the interface is going down, skbs are purged */ dev_kfree_skb_any(skb); return; } new_skb = netdev_alloc_skb_ip_align(ndev, priv->rx_packet_max); if (new_skb) { skb_put(skb, len); cpts_rx_timestamp(priv->cpts, skb); skb->protocol = eth_type_trans(skb, ndev); netif_receive_skb(skb); ndev->stats.rx_bytes += len; ndev->stats.rx_packets++; } else { ndev->stats.rx_dropped++; new_skb = skb; } ret = cpdma_chan_submit(priv->rxch, new_skb, new_skb->data, skb_tailroom(new_skb), 0); if (WARN_ON(ret < 0)) dev_kfree_skb_any(new_skb); } static irqreturn_t cpsw_interrupt(int irq, void *dev_id) { struct cpsw_priv *priv = dev_id; cpsw_intr_disable(priv); if (priv->irq_enabled == true) { cpsw_disable_irq(priv); priv->irq_enabled = false; } if (netif_running(priv->ndev)) { napi_schedule(&priv->napi); return IRQ_HANDLED; } priv = cpsw_get_slave_priv(priv, 1); if (!priv) return IRQ_NONE; if (netif_running(priv->ndev)) { napi_schedule(&priv->napi); return IRQ_HANDLED; } return IRQ_NONE; } static int cpsw_poll(struct napi_struct *napi, int budget) { struct cpsw_priv *priv = napi_to_priv(napi); int num_tx, num_rx; num_tx = cpdma_chan_process(priv->txch, 128); if (num_tx) cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX); num_rx = cpdma_chan_process(priv->rxch, budget); if (num_rx < budget) { struct cpsw_priv *prim_cpsw; napi_complete(napi); cpsw_intr_enable(priv); cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX); prim_cpsw = cpsw_get_slave_priv(priv, 0); if (prim_cpsw->irq_enabled == false) { prim_cpsw->irq_enabled = true; cpsw_enable_irq(priv); } } if (num_rx || num_tx) cpsw_dbg(priv, intr, "poll %d rx, %d tx pkts\n", num_rx, num_tx); return num_rx; } static inline void soft_reset(const char *module, void __iomem *reg) { unsigned long timeout = jiffies + HZ; __raw_writel(1, reg); do { cpu_relax(); } while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies)); WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module); } #define mac_hi(mac) (((mac)[0] << 0) | ((mac)[1] << 8) | \ ((mac)[2] << 16) | ((mac)[3] << 24)) #define mac_lo(mac) (((mac)[4] << 0) | ((mac)[5] << 8)) static void cpsw_set_slave_mac(struct cpsw_slave *slave, struct cpsw_priv *priv) { slave_write(slave, mac_hi(priv->mac_addr), SA_HI); slave_write(slave, mac_lo(priv->mac_addr), SA_LO); } static void _cpsw_adjust_link(struct cpsw_slave *slave, struct cpsw_priv *priv, bool *link) { struct phy_device *phy = slave->phy; u32 mac_control = 0; u32 slave_port; if (!phy) return; slave_port = cpsw_get_slave_port(priv, slave->slave_num); if (phy->link) { mac_control = priv->data.mac_control; /* enable forwarding */ cpsw_ale_control_set(priv->ale, slave_port, ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); if (phy->speed == 1000) mac_control |= BIT(7); /* GIGABITEN */ if (phy->duplex) mac_control |= BIT(0); /* FULLDUPLEXEN */ /* set speed_in input in case RMII mode is used in 100Mbps */ if (phy->speed == 100) mac_control |= BIT(15); else if (phy->speed == 10) mac_control |= BIT(18); /* In Band mode */ *link = true; } else { mac_control = 0; /* disable forwarding */ cpsw_ale_control_set(priv->ale, slave_port, ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); } if (mac_control != slave->mac_control) { phy_print_status(phy); __raw_writel(mac_control, &slave->sliver->mac_control); } slave->mac_control = mac_control; } static void cpsw_adjust_link(struct net_device *ndev) { struct cpsw_priv *priv = netdev_priv(ndev); bool link = false; for_each_slave(priv, _cpsw_adjust_link, priv, &link); if (link) { netif_carrier_on(ndev); if (netif_running(ndev)) netif_wake_queue(ndev); } else { netif_carrier_off(ndev); netif_stop_queue(ndev); } } static int cpsw_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *coal) { struct cpsw_priv *priv = netdev_priv(ndev); coal->rx_coalesce_usecs = priv->coal_intvl; return 0; } static int cpsw_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *coal) { struct cpsw_priv *priv = netdev_priv(ndev); u32 int_ctrl; u32 num_interrupts = 0; u32 prescale = 0; u32 addnl_dvdr = 1; u32 coal_intvl = 0; if (!coal->rx_coalesce_usecs) return -EINVAL; coal_intvl = coal->rx_coalesce_usecs; int_ctrl = readl(&priv->wr_regs->int_control); prescale = priv->bus_freq_mhz * 4; if (coal_intvl < CPSW_CMINTMIN_INTVL) coal_intvl = CPSW_CMINTMIN_INTVL; if (coal_intvl > CPSW_CMINTMAX_INTVL) { /* Interrupt pacer works with 4us Pulse, we can * throttle further by dilating the 4us pulse. */ addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale; if (addnl_dvdr > 1) { prescale *= addnl_dvdr; if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr)) coal_intvl = (CPSW_CMINTMAX_INTVL * addnl_dvdr); } else { addnl_dvdr = 1; coal_intvl = CPSW_CMINTMAX_INTVL; } } num_interrupts = (1000 * addnl_dvdr) / coal_intvl; writel(num_interrupts, &priv->wr_regs->rx_imax); writel(num_interrupts, &priv->wr_regs->tx_imax); int_ctrl |= CPSW_INTPACEEN; int_ctrl &= (~CPSW_INTPRESCALE_MASK); int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK); writel(int_ctrl, &priv->wr_regs->int_control); cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl); if (priv->data.dual_emac) { int i; for (i = 0; i < priv->data.slaves; i++) { priv = netdev_priv(priv->slaves[i].ndev); priv->coal_intvl = coal_intvl; } } else { priv->coal_intvl = coal_intvl; } return 0; } static int cpsw_get_sset_count(struct net_device *ndev, int sset) { switch (sset) { case ETH_SS_STATS: return CPSW_STATS_LEN; default: return -EOPNOTSUPP; } } static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data) { u8 *p = data; int i; switch (stringset) { case ETH_SS_STATS: for (i = 0; i < CPSW_STATS_LEN; i++) { memcpy(p, cpsw_gstrings_stats[i].stat_string, ETH_GSTRING_LEN); p += ETH_GSTRING_LEN; } break; } } static void cpsw_get_ethtool_stats(struct net_device *ndev, struct ethtool_stats *stats, u64 *data) { struct cpsw_priv *priv = netdev_priv(ndev); struct cpdma_chan_stats rx_stats; struct cpdma_chan_stats tx_stats; u32 val; u8 *p; int i; /* Collect Davinci CPDMA stats for Rx and Tx Channel */ cpdma_chan_get_stats(priv->rxch, &rx_stats); cpdma_chan_get_stats(priv->txch, &tx_stats); for (i = 0; i < CPSW_STATS_LEN; i++) { switch (cpsw_gstrings_stats[i].type) { case CPSW_STATS: val = readl(priv->hw_stats + cpsw_gstrings_stats[i].stat_offset); data[i] = val; break; case CPDMA_RX_STATS: p = (u8 *)&rx_stats + cpsw_gstrings_stats[i].stat_offset; data[i] = *(u32 *)p; break; case CPDMA_TX_STATS: p = (u8 *)&tx_stats + cpsw_gstrings_stats[i].stat_offset; data[i] = *(u32 *)p; break; } } } static inline int __show_stat(char *buf, int maxlen, const char *name, u32 val) { static char *leader = "........................................"; if (!val) return 0; else return snprintf(buf, maxlen, "%s %s %10d\n", name, leader + strlen(name), val); } static int cpsw_common_res_usage_state(struct cpsw_priv *priv) { u32 i; u32 usage_count = 0; if (!priv->data.dual_emac) return 0; for (i = 0; i < priv->data.slaves; i++) if (priv->slaves[i].open_stat) usage_count++; return usage_count; } static inline int cpsw_tx_packet_submit(struct net_device *ndev, struct cpsw_priv *priv, struct sk_buff *skb) { if (!priv->data.dual_emac) return cpdma_chan_submit(priv->txch, skb, skb->data, skb->len, 0); if (ndev == cpsw_get_slave_ndev(priv, 0)) return cpdma_chan_submit(priv->txch, skb, skb->data, skb->len, 1); else return cpdma_chan_submit(priv->txch, skb, skb->data, skb->len, 2); } static inline void cpsw_add_dual_emac_def_ale_entries( struct cpsw_priv *priv, struct cpsw_slave *slave, u32 slave_port) { u32 port_mask = 1 << slave_port | 1 << priv->host_port; if (priv->version == CPSW_VERSION_1) slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN); else slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN); cpsw_ale_add_vlan(priv->ale, slave->port_vlan, port_mask, port_mask, port_mask, 0); cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, port_mask, ALE_VLAN, slave->port_vlan, 0); cpsw_ale_add_ucast(priv->ale, priv->mac_addr, priv->host_port, ALE_VLAN, slave->port_vlan); } static void soft_reset_slave(struct cpsw_slave *slave) { char name[32]; snprintf(name, sizeof(name), "slave-%d", slave->slave_num); soft_reset(name, &slave->sliver->soft_reset); } static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv) { u32 slave_port; soft_reset_slave(slave); /* setup priority mapping */ __raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map); switch (priv->version) { case CPSW_VERSION_1: slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP); break; case CPSW_VERSION_2: case CPSW_VERSION_3: case CPSW_VERSION_4: slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP); break; } /* setup max packet size, and mac address */ __raw_writel(priv->rx_packet_max, &slave->sliver->rx_maxlen); cpsw_set_slave_mac(slave, priv); slave->mac_control = 0; /* no link yet */ slave_port = cpsw_get_slave_port(priv, slave->slave_num); if (priv->data.dual_emac) cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port); else cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1 << slave_port, 0, 0, ALE_MCAST_FWD_2); slave->phy = phy_connect(priv->ndev, slave->data->phy_id, &cpsw_adjust_link, slave->data->phy_if); if (IS_ERR(slave->phy)) { dev_err(priv->dev, "phy %s not found on slave %d\n", slave->data->phy_id, slave->slave_num); slave->phy = NULL; } else { dev_info(priv->dev, "phy found : id is : 0x%x\n", slave->phy->phy_id); phy_start(slave->phy); /* Configure GMII_SEL register */ cpsw_phy_sel(&priv->pdev->dev, slave->phy->interface, slave->slave_num); } } static inline void cpsw_add_default_vlan(struct cpsw_priv *priv) { const int vlan = priv->data.default_vlan; const int port = priv->host_port; u32 reg; int i; reg = (priv->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN : CPSW2_PORT_VLAN; writel(vlan, &priv->host_port_regs->port_vlan); for (i = 0; i < priv->data.slaves; i++) slave_write(priv->slaves + i, vlan, reg); cpsw_ale_add_vlan(priv->ale, vlan, ALE_ALL_PORTS << port, ALE_ALL_PORTS << port, ALE_ALL_PORTS << port, (ALE_PORT_1 | ALE_PORT_2) << port); } static void cpsw_init_host_port(struct cpsw_priv *priv) { u32 control_reg; u32 fifo_mode; /* soft reset the controller and initialize ale */ soft_reset("cpsw", &priv->regs->soft_reset); cpsw_ale_start(priv->ale); /* switch to vlan unaware mode */ cpsw_ale_control_set(priv->ale, priv->host_port, ALE_VLAN_AWARE, CPSW_ALE_VLAN_AWARE); control_reg = readl(&priv->regs->control); control_reg |= CPSW_VLAN_AWARE; writel(control_reg, &priv->regs->control); fifo_mode = (priv->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE : CPSW_FIFO_NORMAL_MODE; writel(fifo_mode, &priv->host_port_regs->tx_in_ctl); /* setup host port priority mapping */ __raw_writel(CPDMA_TX_PRIORITY_MAP, &priv->host_port_regs->cpdma_tx_pri_map); __raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map); cpsw_ale_control_set(priv->ale, priv->host_port, ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); if (!priv->data.dual_emac) { cpsw_ale_add_ucast(priv->ale, priv->mac_addr, priv->host_port, 0, 0); cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1 << priv->host_port, 0, 0, ALE_MCAST_FWD_2); } } static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_priv *priv) { u32 slave_port; slave_port = cpsw_get_slave_port(priv, slave->slave_num); if (!slave->phy) return; phy_stop(slave->phy); phy_disconnect(slave->phy); slave->phy = NULL; cpsw_ale_control_set(priv->ale, slave_port, ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); } static int cpsw_ndo_open(struct net_device *ndev) { struct cpsw_priv *priv = netdev_priv(ndev); struct cpsw_priv *prim_cpsw; int i, ret; u32 reg; if (!cpsw_common_res_usage_state(priv)) cpsw_intr_disable(priv); netif_carrier_off(ndev); pm_runtime_get_sync(&priv->pdev->dev); reg = priv->version; dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n", CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg), CPSW_RTL_VERSION(reg)); /* initialize host and slave ports */ if (!cpsw_common_res_usage_state(priv)) cpsw_init_host_port(priv); for_each_slave(priv, cpsw_slave_open, priv); /* Add default VLAN */ cpsw_add_default_vlan(priv); if (!cpsw_common_res_usage_state(priv)) { /* setup tx dma to fixed prio and zero offset */ cpdma_control_set(priv->dma, CPDMA_TX_PRIO_FIXED, 1); cpdma_control_set(priv->dma, CPDMA_RX_BUFFER_OFFSET, 0); /* disable priority elevation */ __raw_writel(0, &priv->regs->ptype); /* enable statistics collection only on all ports */ __raw_writel(0x7, &priv->regs->stat_port_en); if (WARN_ON(!priv->data.rx_descs)) priv->data.rx_descs = 128; for (i = 0; i < priv->data.rx_descs; i++) { struct sk_buff *skb; ret = -ENOMEM; skb = __netdev_alloc_skb_ip_align(priv->ndev, priv->rx_packet_max, GFP_KERNEL); if (!skb) goto err_cleanup; ret = cpdma_chan_submit(priv->rxch, skb, skb->data, skb_tailroom(skb), 0); if (ret < 0) { kfree_skb(skb); goto err_cleanup; } } /* continue even if we didn't manage to submit all * receive descs */ cpsw_info(priv, ifup, "submitted %d rx descriptors\n", i); if (cpts_register(&priv->pdev->dev, priv->cpts, priv->data.cpts_clock_mult, priv->data.cpts_clock_shift)) dev_err(priv->dev, "error registering cpts device\n"); } /* Enable Interrupt pacing if configured */ if (priv->coal_intvl != 0) { struct ethtool_coalesce coal; coal.rx_coalesce_usecs = (priv->coal_intvl << 4); cpsw_set_coalesce(ndev, &coal); } napi_enable(&priv->napi); cpdma_ctlr_start(priv->dma); cpsw_intr_enable(priv); cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX); cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX); prim_cpsw = cpsw_get_slave_priv(priv, 0); if (prim_cpsw->irq_enabled == false) { if ((priv == prim_cpsw) || !netif_running(prim_cpsw->ndev)) { prim_cpsw->irq_enabled = true; cpsw_enable_irq(prim_cpsw); } } if (priv->data.dual_emac) priv->slaves[priv->emac_port].open_stat = true; return 0; err_cleanup: cpdma_ctlr_stop(priv->dma); for_each_slave(priv, cpsw_slave_stop, priv); pm_runtime_put_sync(&priv->pdev->dev); netif_carrier_off(priv->ndev); return ret; } static int cpsw_ndo_stop(struct net_device *ndev) { struct cpsw_priv *priv = netdev_priv(ndev); cpsw_info(priv, ifdown, "shutting down cpsw device\n"); netif_stop_queue(priv->ndev); napi_disable(&priv->napi); netif_carrier_off(priv->ndev); if (cpsw_common_res_usage_state(priv) <= 1) { cpts_unregister(priv->cpts); cpsw_intr_disable(priv); cpdma_ctlr_int_ctrl(priv->dma, false); cpdma_ctlr_stop(priv->dma); cpsw_ale_stop(priv->ale); } for_each_slave(priv, cpsw_slave_stop, priv); pm_runtime_put_sync(&priv->pdev->dev); if (priv->data.dual_emac) priv->slaves[priv->emac_port].open_stat = false; return 0; } static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev) { struct cpsw_priv *priv = netdev_priv(ndev); int ret; ndev->trans_start = jiffies; if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) { cpsw_err(priv, tx_err, "packet pad failed\n"); ndev->stats.tx_dropped++; return NETDEV_TX_OK; } if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && priv->cpts->tx_enable) skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; skb_tx_timestamp(skb); ret = cpsw_tx_packet_submit(ndev, priv, skb); if (unlikely(ret != 0)) { cpsw_err(priv, tx_err, "desc submit failed\n"); goto fail; } /* If there is no more tx desc left free then we need to * tell the kernel to stop sending us tx frames. */ if (unlikely(!cpdma_check_free_tx_desc(priv->txch))) netif_stop_queue(ndev); return NETDEV_TX_OK; fail: ndev->stats.tx_dropped++; netif_stop_queue(ndev); return NETDEV_TX_BUSY; } #ifdef CONFIG_TI_CPTS static void cpsw_hwtstamp_v1(struct cpsw_priv *priv) { struct cpsw_slave *slave = &priv->slaves[priv->data.active_slave]; u32 ts_en, seq_id; if (!priv->cpts->tx_enable && !priv->cpts->rx_enable) { slave_write(slave, 0, CPSW1_TS_CTL); return; } seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588; ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS; if (priv->cpts->tx_enable) ts_en |= CPSW_V1_TS_TX_EN; if (priv->cpts->rx_enable) ts_en |= CPSW_V1_TS_RX_EN; slave_write(slave, ts_en, CPSW1_TS_CTL); slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE); } static void cpsw_hwtstamp_v2(struct cpsw_priv *priv) { struct cpsw_slave *slave; u32 ctrl, mtype; if (priv->data.dual_emac) slave = &priv->slaves[priv->emac_port]; else slave = &priv->slaves[priv->data.active_slave]; ctrl = slave_read(slave, CPSW2_CONTROL); switch (priv->version) { case CPSW_VERSION_2: ctrl &= ~CTRL_V2_ALL_TS_MASK; if (priv->cpts->tx_enable) ctrl |= CTRL_V2_TX_TS_BITS; if (priv->cpts->rx_enable) ctrl |= CTRL_V2_RX_TS_BITS; break; case CPSW_VERSION_3: default: ctrl &= ~CTRL_V3_ALL_TS_MASK; if (priv->cpts->tx_enable) ctrl |= CTRL_V3_TX_TS_BITS; if (priv->cpts->rx_enable) ctrl |= CTRL_V3_RX_TS_BITS; break; } mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS; slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE); slave_write(slave, ctrl, CPSW2_CONTROL); __raw_writel(ETH_P_1588, &priv->regs->ts_ltype); } static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) { struct cpsw_priv *priv = netdev_priv(dev); struct cpts *cpts = priv->cpts; struct hwtstamp_config cfg; if (priv->version != CPSW_VERSION_1 && priv->version != CPSW_VERSION_2 && priv->version != CPSW_VERSION_3) return -EOPNOTSUPP; if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) return -EFAULT; /* reserved for future extensions */ if (cfg.flags) return -EINVAL; if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON) return -ERANGE; switch (cfg.rx_filter) { case HWTSTAMP_FILTER_NONE: cpts->rx_enable = 0; break; case HWTSTAMP_FILTER_ALL: case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: return -ERANGE; case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_EVENT: case HWTSTAMP_FILTER_PTP_V2_SYNC: case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: cpts->rx_enable = 1; cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; break; default: return -ERANGE; } cpts->tx_enable = cfg.tx_type == HWTSTAMP_TX_ON; switch (priv->version) { case CPSW_VERSION_1: cpsw_hwtstamp_v1(priv); break; case CPSW_VERSION_2: case CPSW_VERSION_3: cpsw_hwtstamp_v2(priv); break; default: WARN_ON(1); } return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; } static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) { struct cpsw_priv *priv = netdev_priv(dev); struct cpts *cpts = priv->cpts; struct hwtstamp_config cfg; if (priv->version != CPSW_VERSION_1 && priv->version != CPSW_VERSION_2 && priv->version != CPSW_VERSION_3) return -EOPNOTSUPP; cfg.flags = 0; cfg.tx_type = cpts->tx_enable ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; cfg.rx_filter = (cpts->rx_enable ? HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE); return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; } #endif /*CONFIG_TI_CPTS*/ static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd) { struct cpsw_priv *priv = netdev_priv(dev); int slave_no = cpsw_slave_index(priv); if (!netif_running(dev)) return -EINVAL; switch (cmd) { #ifdef CONFIG_TI_CPTS case SIOCSHWTSTAMP: return cpsw_hwtstamp_set(dev, req); case SIOCGHWTSTAMP: return cpsw_hwtstamp_get(dev, req); #endif } if (!priv->slaves[slave_no].phy) return -EOPNOTSUPP; return phy_mii_ioctl(priv->slaves[slave_no].phy, req, cmd); } static void cpsw_ndo_tx_timeout(struct net_device *ndev) { struct cpsw_priv *priv = netdev_priv(ndev); cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n"); ndev->stats.tx_errors++; cpsw_intr_disable(priv); cpdma_ctlr_int_ctrl(priv->dma, false); cpdma_chan_stop(priv->txch); cpdma_chan_start(priv->txch); cpdma_ctlr_int_ctrl(priv->dma, true); cpsw_intr_enable(priv); cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX); cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX); } static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p) { struct cpsw_priv *priv = netdev_priv(ndev); struct sockaddr *addr = (struct sockaddr *)p; int flags = 0; u16 vid = 0; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; if (priv->data.dual_emac) { vid = priv->slaves[priv->emac_port].port_vlan; flags = ALE_VLAN; } cpsw_ale_del_ucast(priv->ale, priv->mac_addr, priv->host_port, flags, vid); cpsw_ale_add_ucast(priv->ale, addr->sa_data, priv->host_port, flags, vid); memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); for_each_slave(priv, cpsw_set_slave_mac, priv); return 0; } #ifdef CONFIG_NET_POLL_CONTROLLER static void cpsw_ndo_poll_controller(struct net_device *ndev) { struct cpsw_priv *priv = netdev_priv(ndev); cpsw_intr_disable(priv); cpdma_ctlr_int_ctrl(priv->dma, false); cpsw_interrupt(ndev->irq, priv); cpdma_ctlr_int_ctrl(priv->dma, true); cpsw_intr_enable(priv); cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX); cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX); } #endif static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv, unsigned short vid) { int ret; ret = cpsw_ale_add_vlan(priv->ale, vid, ALE_ALL_PORTS << priv->host_port, 0, ALE_ALL_PORTS << priv->host_port, (ALE_PORT_1 | ALE_PORT_2) << priv->host_port); if (ret != 0) return ret; ret = cpsw_ale_add_ucast(priv->ale, priv->mac_addr, priv->host_port, ALE_VLAN, vid); if (ret != 0) goto clean_vid; ret = cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, ALE_ALL_PORTS << priv->host_port, ALE_VLAN, vid, 0); if (ret != 0) goto clean_vlan_ucast; return 0; clean_vlan_ucast: cpsw_ale_del_ucast(priv->ale, priv->mac_addr, priv->host_port, ALE_VLAN, vid); clean_vid: cpsw_ale_del_vlan(priv->ale, vid, 0); return ret; } static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) { struct cpsw_priv *priv = netdev_priv(ndev); if (vid == priv->data.default_vlan) return 0; dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid); return cpsw_add_vlan_ale_entry(priv, vid); } static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) { struct cpsw_priv *priv = netdev_priv(ndev); int ret; if (vid == priv->data.default_vlan) return 0; dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid); ret = cpsw_ale_del_vlan(priv->ale, vid, 0); if (ret != 0) return ret; ret = cpsw_ale_del_ucast(priv->ale, priv->mac_addr, priv->host_port, ALE_VLAN, vid); if (ret != 0) return ret; return cpsw_ale_del_mcast(priv->ale, priv->ndev->broadcast, 0, ALE_VLAN, vid); } static const struct net_device_ops cpsw_netdev_ops = { .ndo_open = cpsw_ndo_open, .ndo_stop = cpsw_ndo_stop, .ndo_start_xmit = cpsw_ndo_start_xmit, .ndo_set_mac_address = cpsw_ndo_set_mac_address, .ndo_do_ioctl = cpsw_ndo_ioctl, .ndo_validate_addr = eth_validate_addr, .ndo_change_mtu = eth_change_mtu, .ndo_tx_timeout = cpsw_ndo_tx_timeout, .ndo_set_rx_mode = cpsw_ndo_set_rx_mode, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = cpsw_ndo_poll_controller, #endif .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid, }; static void cpsw_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info) { struct cpsw_priv *priv = netdev_priv(ndev); strlcpy(info->driver, "TI CPSW Driver v1.0", sizeof(info->driver)); strlcpy(info->version, "1.0", sizeof(info->version)); strlcpy(info->bus_info, priv->pdev->name, sizeof(info->bus_info)); } static u32 cpsw_get_msglevel(struct net_device *ndev) { struct cpsw_priv *priv = netdev_priv(ndev); return priv->msg_enable; } static void cpsw_set_msglevel(struct net_device *ndev, u32 value) { struct cpsw_priv *priv = netdev_priv(ndev); priv->msg_enable = value; } static int cpsw_get_ts_info(struct net_device *ndev, struct ethtool_ts_info *info) { #ifdef CONFIG_TI_CPTS struct cpsw_priv *priv = netdev_priv(ndev); info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | SOF_TIMESTAMPING_TX_SOFTWARE | SOF_TIMESTAMPING_RX_HARDWARE | SOF_TIMESTAMPING_RX_SOFTWARE | SOF_TIMESTAMPING_SOFTWARE | SOF_TIMESTAMPING_RAW_HARDWARE; info->phc_index = priv->cpts->phc_index; info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON); info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); #else info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | SOF_TIMESTAMPING_RX_SOFTWARE | SOF_TIMESTAMPING_SOFTWARE; info->phc_index = -1; info->tx_types = 0; info->rx_filters = 0; #endif return 0; } static int cpsw_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd) { struct cpsw_priv *priv = netdev_priv(ndev); int slave_no = cpsw_slave_index(priv); if (priv->slaves[slave_no].phy) return phy_ethtool_gset(priv->slaves[slave_no].phy, ecmd); else return -EOPNOTSUPP; } static int cpsw_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd) { struct cpsw_priv *priv = netdev_priv(ndev); int slave_no = cpsw_slave_index(priv); if (priv->slaves[slave_no].phy) return phy_ethtool_sset(priv->slaves[slave_no].phy, ecmd); else return -EOPNOTSUPP; } static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) { struct cpsw_priv *priv = netdev_priv(ndev); int slave_no = cpsw_slave_index(priv); wol->supported = 0; wol->wolopts = 0; if (priv->slaves[slave_no].phy) phy_ethtool_get_wol(priv->slaves[slave_no].phy, wol); } static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) { struct cpsw_priv *priv = netdev_priv(ndev); int slave_no = cpsw_slave_index(priv); if (priv->slaves[slave_no].phy) return phy_ethtool_set_wol(priv->slaves[slave_no].phy, wol); else return -EOPNOTSUPP; } static const struct ethtool_ops cpsw_ethtool_ops = { .get_drvinfo = cpsw_get_drvinfo, .get_msglevel = cpsw_get_msglevel, .set_msglevel = cpsw_set_msglevel, .get_link = ethtool_op_get_link, .get_ts_info = cpsw_get_ts_info, .get_settings = cpsw_get_settings, .set_settings = cpsw_set_settings, .get_coalesce = cpsw_get_coalesce, .set_coalesce = cpsw_set_coalesce, .get_sset_count = cpsw_get_sset_count, .get_strings = cpsw_get_strings, .get_ethtool_stats = cpsw_get_ethtool_stats, .get_wol = cpsw_get_wol, .set_wol = cpsw_set_wol, }; static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv, u32 slave_reg_ofs, u32 sliver_reg_ofs) { void __iomem *regs = priv->regs; int slave_num = slave->slave_num; struct cpsw_slave_data *data = priv->data.slave_data + slave_num; slave->data = data; slave->regs = regs + slave_reg_ofs; slave->sliver = regs + sliver_reg_ofs; slave->port_vlan = data->dual_emac_res_vlan; } static int cpsw_probe_dt(struct cpsw_platform_data *data, struct platform_device *pdev) { struct device_node *node = pdev->dev.of_node; struct device_node *slave_node; int i = 0, ret; u32 prop; if (!node) return -EINVAL; if (of_property_read_u32(node, "slaves", &prop)) { pr_err("Missing slaves property in the DT.\n"); return -EINVAL; } data->slaves = prop; if (of_property_read_u32(node, "active_slave", &prop)) { pr_err("Missing active_slave property in the DT.\n"); return -EINVAL; } data->active_slave = prop; if (of_property_read_u32(node, "cpts_clock_mult", &prop)) { pr_err("Missing cpts_clock_mult property in the DT.\n"); return -EINVAL; } data->cpts_clock_mult = prop; if (of_property_read_u32(node, "cpts_clock_shift", &prop)) { pr_err("Missing cpts_clock_shift property in the DT.\n"); return -EINVAL; } data->cpts_clock_shift = prop; data->slave_data = devm_kzalloc(&pdev->dev, data->slaves * sizeof(struct cpsw_slave_data), GFP_KERNEL); if (!data->slave_data) return -ENOMEM; if (of_property_read_u32(node, "cpdma_channels", &prop)) { pr_err("Missing cpdma_channels property in the DT.\n"); return -EINVAL; } data->channels = prop; if (of_property_read_u32(node, "ale_entries", &prop)) { pr_err("Missing ale_entries property in the DT.\n"); return -EINVAL; } data->ale_entries = prop; if (of_property_read_u32(node, "bd_ram_size", &prop)) { pr_err("Missing bd_ram_size property in the DT.\n"); return -EINVAL; } data->bd_ram_size = prop; if (of_property_read_u32(node, "rx_descs", &prop)) { pr_err("Missing rx_descs property in the DT.\n"); return -EINVAL; } data->rx_descs = prop; if (of_property_read_u32(node, "mac_control", &prop)) { pr_err("Missing mac_control property in the DT.\n"); return -EINVAL; } data->mac_control = prop; if (of_property_read_bool(node, "dual_emac")) data->dual_emac = 1; /* * Populate all the child nodes here... */ ret = of_platform_populate(node, NULL, NULL, &pdev->dev); /* We do not want to force this, as in some cases may not have child */ if (ret) pr_warn("Doesn't have any child node\n"); for_each_child_of_node(node, slave_node) { struct cpsw_slave_data *slave_data = data->slave_data + i; const void *mac_addr = NULL; u32 phyid; int lenp; const __be32 *parp; struct device_node *mdio_node; struct platform_device *mdio; /* This is no slave child node, continue */ if (strcmp(slave_node->name, "slave")) continue; parp = of_get_property(slave_node, "phy_id", &lenp); if ((parp == NULL) || (lenp != (sizeof(void *) * 2))) { pr_err("Missing slave[%d] phy_id property\n", i); return -EINVAL; } mdio_node = of_find_node_by_phandle(be32_to_cpup(parp)); phyid = be32_to_cpup(parp+1); mdio = of_find_device_by_node(mdio_node); if (strncmp(mdio->name, "gpio", 4) == 0) { /* GPIO bitbang MDIO driver attached */ struct mii_bus *bus = dev_get_drvdata(&mdio->dev); snprintf(slave_data->phy_id, sizeof(slave_data->phy_id), PHY_ID_FMT, bus->id, phyid); } else { /* davinci MDIO driver attached */ snprintf(slave_data->phy_id, sizeof(slave_data->phy_id), PHY_ID_FMT, mdio->name, phyid); } mac_addr = of_get_mac_address(slave_node); if (mac_addr) memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN); slave_data->phy_if = of_get_phy_mode(slave_node); if (slave_data->phy_if < 0) { pr_err("Missing or malformed slave[%d] phy-mode property\n", i); return slave_data->phy_if; } if (data->dual_emac) { if (of_property_read_u32(slave_node, "dual_emac_res_vlan", &prop)) { pr_err("Missing dual_emac_res_vlan in DT.\n"); slave_data->dual_emac_res_vlan = i+1; pr_err("Using %d as Reserved VLAN for %d slave\n", slave_data->dual_emac_res_vlan, i); } else { slave_data->dual_emac_res_vlan = prop; } } i++; if (i == data->slaves) break; } return 0; } static int cpsw_probe_dual_emac(struct platform_device *pdev, struct cpsw_priv *priv) { struct cpsw_platform_data *data = &priv->data; struct net_device *ndev; struct cpsw_priv *priv_sl2; int ret = 0, i; ndev = alloc_etherdev(sizeof(struct cpsw_priv)); if (!ndev) { pr_err("cpsw: error allocating net_device\n"); return -ENOMEM; } priv_sl2 = netdev_priv(ndev); spin_lock_init(&priv_sl2->lock); priv_sl2->data = *data; priv_sl2->pdev = pdev; priv_sl2->ndev = ndev; priv_sl2->dev = &ndev->dev; priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); priv_sl2->rx_packet_max = max(rx_packet_max, 128); if (is_valid_ether_addr(data->slave_data[1].mac_addr)) { memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr, ETH_ALEN); pr_info("cpsw: Detected MACID = %pM\n", priv_sl2->mac_addr); } else { random_ether_addr(priv_sl2->mac_addr); pr_info("cpsw: Random MACID = %pM\n", priv_sl2->mac_addr); } memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN); priv_sl2->slaves = priv->slaves; priv_sl2->clk = priv->clk; priv_sl2->coal_intvl = 0; priv_sl2->bus_freq_mhz = priv->bus_freq_mhz; priv_sl2->regs = priv->regs; priv_sl2->host_port = priv->host_port; priv_sl2->host_port_regs = priv->host_port_regs; priv_sl2->wr_regs = priv->wr_regs; priv_sl2->hw_stats = priv->hw_stats; priv_sl2->dma = priv->dma; priv_sl2->txch = priv->txch; priv_sl2->rxch = priv->rxch; priv_sl2->ale = priv->ale; priv_sl2->emac_port = 1; priv->slaves[1].ndev = ndev; priv_sl2->cpts = priv->cpts; priv_sl2->version = priv->version; for (i = 0; i < priv->num_irqs; i++) { priv_sl2->irqs_table[i] = priv->irqs_table[i]; priv_sl2->num_irqs = priv->num_irqs; } ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; ndev->netdev_ops = &cpsw_netdev_ops; SET_ETHTOOL_OPS(ndev, &cpsw_ethtool_ops); netif_napi_add(ndev, &priv_sl2->napi, cpsw_poll, CPSW_POLL_WEIGHT); /* register the network device */ SET_NETDEV_DEV(ndev, &pdev->dev); ret = register_netdev(ndev); if (ret) { pr_err("cpsw: error registering net device\n"); free_netdev(ndev); ret = -ENODEV; } return ret; } static int cpsw_probe(struct platform_device *pdev) { struct cpsw_platform_data *data; struct net_device *ndev; struct cpsw_priv *priv; struct cpdma_params dma_params; struct cpsw_ale_params ale_params; void __iomem *ss_regs; struct resource *res, *ss_res; u32 slave_offset, sliver_offset, slave_size; int ret = 0, i, k = 0; ndev = alloc_etherdev(sizeof(struct cpsw_priv)); if (!ndev) { pr_err("error allocating net_device\n"); return -ENOMEM; } platform_set_drvdata(pdev, ndev); priv = netdev_priv(ndev); spin_lock_init(&priv->lock); priv->pdev = pdev; priv->ndev = ndev; priv->dev = &ndev->dev; priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); priv->rx_packet_max = max(rx_packet_max, 128); priv->cpts = devm_kzalloc(&pdev->dev, sizeof(struct cpts), GFP_KERNEL); priv->irq_enabled = true; if (!priv->cpts) { pr_err("error allocating cpts\n"); goto clean_ndev_ret; } /* * This may be required here for child devices. */ pm_runtime_enable(&pdev->dev); /* Select default pin state */ pinctrl_pm_select_default_state(&pdev->dev); if (cpsw_probe_dt(&priv->data, pdev)) { pr_err("cpsw: platform data missing\n"); ret = -ENODEV; goto clean_runtime_disable_ret; } data = &priv->data; if (is_valid_ether_addr(data->slave_data[0].mac_addr)) { memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN); pr_info("Detected MACID = %pM\n", priv->mac_addr); } else { eth_random_addr(priv->mac_addr); pr_info("Random MACID = %pM\n", priv->mac_addr); } memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); priv->slaves = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_slave) * data->slaves, GFP_KERNEL); if (!priv->slaves) { ret = -ENOMEM; goto clean_runtime_disable_ret; } for (i = 0; i < data->slaves; i++) priv->slaves[i].slave_num = i; priv->slaves[0].ndev = ndev; priv->emac_port = 0; priv->clk = devm_clk_get(&pdev->dev, "fck"); if (IS_ERR(priv->clk)) { dev_err(priv->dev, "fck is not found\n"); ret = -ENODEV; goto clean_runtime_disable_ret; } priv->coal_intvl = 0; priv->bus_freq_mhz = clk_get_rate(priv->clk) / 1000000; ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); ss_regs = devm_ioremap_resource(&pdev->dev, ss_res); if (IS_ERR(ss_regs)) { ret = PTR_ERR(ss_regs); goto clean_runtime_disable_ret; } priv->regs = ss_regs; priv->host_port = HOST_PORT_NUM; /* Need to enable clocks with runtime PM api to access module * registers */ pm_runtime_get_sync(&pdev->dev); priv->version = readl(&priv->regs->id_ver); pm_runtime_put_sync(&pdev->dev); res = platform_get_resource(pdev, IORESOURCE_MEM, 1); priv->wr_regs = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(priv->wr_regs)) { ret = PTR_ERR(priv->wr_regs); goto clean_runtime_disable_ret; } memset(&dma_params, 0, sizeof(dma_params)); memset(&ale_params, 0, sizeof(ale_params)); switch (priv->version) { case CPSW_VERSION_1: priv->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET; priv->cpts->reg = ss_regs + CPSW1_CPTS_OFFSET; priv->hw_stats = ss_regs + CPSW1_HW_STATS; dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET; dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET; ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET; slave_offset = CPSW1_SLAVE_OFFSET; slave_size = CPSW1_SLAVE_SIZE; sliver_offset = CPSW1_SLIVER_OFFSET; dma_params.desc_mem_phys = 0; break; case CPSW_VERSION_2: case CPSW_VERSION_3: case CPSW_VERSION_4: priv->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET; priv->cpts->reg = ss_regs + CPSW2_CPTS_OFFSET; priv->hw_stats = ss_regs + CPSW2_HW_STATS; dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET; dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET; ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET; slave_offset = CPSW2_SLAVE_OFFSET; slave_size = CPSW2_SLAVE_SIZE; sliver_offset = CPSW2_SLIVER_OFFSET; dma_params.desc_mem_phys = (u32 __force) ss_res->start + CPSW2_BD_OFFSET; break; default: dev_err(priv->dev, "unknown version 0x%08x\n", priv->version); ret = -ENODEV; goto clean_runtime_disable_ret; } for (i = 0; i < priv->data.slaves; i++) { struct cpsw_slave *slave = &priv->slaves[i]; cpsw_slave_init(slave, priv, slave_offset, sliver_offset); slave_offset += slave_size; sliver_offset += SLIVER_SIZE; } dma_params.dev = &pdev->dev; dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH; dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE; dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP; dma_params.txcp = dma_params.txhdp + CPDMA_TXCP; dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP; dma_params.num_chan = data->channels; dma_params.has_soft_reset = true; dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE; dma_params.desc_mem_size = data->bd_ram_size; dma_params.desc_align = 16; dma_params.has_ext_regs = true; dma_params.desc_hw_addr = dma_params.desc_mem_phys; priv->dma = cpdma_ctlr_create(&dma_params); if (!priv->dma) { dev_err(priv->dev, "error initializing dma\n"); ret = -ENOMEM; goto clean_runtime_disable_ret; } priv->txch = cpdma_chan_create(priv->dma, tx_chan_num(0), cpsw_tx_handler); priv->rxch = cpdma_chan_create(priv->dma, rx_chan_num(0), cpsw_rx_handler); if (WARN_ON(!priv->txch || !priv->rxch)) { dev_err(priv->dev, "error initializing dma channels\n"); ret = -ENOMEM; goto clean_dma_ret; } ale_params.dev = &ndev->dev; ale_params.ale_ageout = ale_ageout; ale_params.ale_entries = data->ale_entries; ale_params.ale_ports = data->slaves; priv->ale = cpsw_ale_create(&ale_params); if (!priv->ale) { dev_err(priv->dev, "error initializing ale engine\n"); ret = -ENODEV; goto clean_dma_ret; } ndev->irq = platform_get_irq(pdev, 0); if (ndev->irq < 0) { dev_err(priv->dev, "error getting irq resource\n"); ret = -ENOENT; goto clean_ale_ret; } while ((res = platform_get_resource(priv->pdev, IORESOURCE_IRQ, k))) { for (i = res->start; i <= res->end; i++) { if (devm_request_irq(&pdev->dev, i, cpsw_interrupt, 0, dev_name(&pdev->dev), priv)) { dev_err(priv->dev, "error attaching irq\n"); goto clean_ale_ret; } priv->irqs_table[k] = i; priv->num_irqs = k + 1; } k++; } ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; ndev->netdev_ops = &cpsw_netdev_ops; SET_ETHTOOL_OPS(ndev, &cpsw_ethtool_ops); netif_napi_add(ndev, &priv->napi, cpsw_poll, CPSW_POLL_WEIGHT); /* register the network device */ SET_NETDEV_DEV(ndev, &pdev->dev); ret = register_netdev(ndev); if (ret) { dev_err(priv->dev, "error registering net device\n"); ret = -ENODEV; goto clean_ale_ret; } cpsw_notice(priv, probe, "initialized device (regs %pa, irq %d)\n", &ss_res->start, ndev->irq); if (priv->data.dual_emac) { ret = cpsw_probe_dual_emac(pdev, priv); if (ret) { cpsw_err(priv, probe, "error probe slave 2 emac interface\n"); goto clean_ale_ret; } } return 0; clean_ale_ret: cpsw_ale_destroy(priv->ale); clean_dma_ret: cpdma_chan_destroy(priv->txch); cpdma_chan_destroy(priv->rxch); cpdma_ctlr_destroy(priv->dma); clean_runtime_disable_ret: pm_runtime_disable(&pdev->dev); clean_ndev_ret: free_netdev(priv->ndev); return ret; } static int cpsw_remove(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); struct cpsw_priv *priv = netdev_priv(ndev); if (priv->data.dual_emac) unregister_netdev(cpsw_get_slave_ndev(priv, 1)); unregister_netdev(ndev); cpsw_ale_destroy(priv->ale); cpdma_chan_destroy(priv->txch); cpdma_chan_destroy(priv->rxch); cpdma_ctlr_destroy(priv->dma); pm_runtime_disable(&pdev->dev); if (priv->data.dual_emac) free_netdev(cpsw_get_slave_ndev(priv, 1)); free_netdev(ndev); return 0; } static int cpsw_suspend(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct net_device *ndev = platform_get_drvdata(pdev); struct cpsw_priv *priv = netdev_priv(ndev); if (netif_running(ndev)) cpsw_ndo_stop(ndev); for_each_slave(priv, soft_reset_slave); pm_runtime_put_sync(&pdev->dev); /* Select sleep pin state */ pinctrl_pm_select_sleep_state(&pdev->dev); return 0; } static int cpsw_resume(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct net_device *ndev = platform_get_drvdata(pdev); pm_runtime_get_sync(&pdev->dev); /* Select default pin state */ pinctrl_pm_select_default_state(&pdev->dev); if (netif_running(ndev)) cpsw_ndo_open(ndev); return 0; } static const struct dev_pm_ops cpsw_pm_ops = { .suspend = cpsw_suspend, .resume = cpsw_resume, }; static const struct of_device_id cpsw_of_mtable[] = { { .compatible = "ti,cpsw", }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, cpsw_of_mtable); static struct platform_driver cpsw_driver = { .driver = { .name = "cpsw", .owner = THIS_MODULE, .pm = &cpsw_pm_ops, .of_match_table = cpsw_of_mtable, }, .probe = cpsw_probe, .remove = cpsw_remove, }; static int __init cpsw_init(void) { return platform_driver_register(&cpsw_driver); } late_initcall(cpsw_init); static void __exit cpsw_exit(void) { platform_driver_unregister(&cpsw_driver); } module_exit(cpsw_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Cyril Chemparathy "); MODULE_AUTHOR("Mugunthan V N "); MODULE_DESCRIPTION("TI CPSW Ethernet driver");