/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation version 2. * * Parts of this driver are based on the following: * - Kvaser linux leaf driver (version 4.78) * - CAN driver for esd CAN-USB/2 * - Kvaser linux usbcanII driver (version 5.3) * * Copyright (C) 2002-2006 KVASER AB, Sweden. All rights reserved. * Copyright (C) 2010 Matthias Fuchs , esd gmbh * Copyright (C) 2012 Olivier Sobrie * Copyright (C) 2015 Valeo A.S. */ #include #include #include #include #include #include #include #define MAX_TX_URBS 16 #define MAX_RX_URBS 4 #define START_TIMEOUT 1000 /* msecs */ #define STOP_TIMEOUT 1000 /* msecs */ #define USB_SEND_TIMEOUT 1000 /* msecs */ #define USB_RECV_TIMEOUT 1000 /* msecs */ #define RX_BUFFER_SIZE 3072 #define CAN_USB_CLOCK 8000000 #define MAX_NET_DEVICES 3 #define MAX_USBCAN_NET_DEVICES 2 /* Kvaser Leaf USB devices */ #define KVASER_VENDOR_ID 0x0bfd #define USB_LEAF_DEVEL_PRODUCT_ID 10 #define USB_LEAF_LITE_PRODUCT_ID 11 #define USB_LEAF_PRO_PRODUCT_ID 12 #define USB_LEAF_SPRO_PRODUCT_ID 14 #define USB_LEAF_PRO_LS_PRODUCT_ID 15 #define USB_LEAF_PRO_SWC_PRODUCT_ID 16 #define USB_LEAF_PRO_LIN_PRODUCT_ID 17 #define USB_LEAF_SPRO_LS_PRODUCT_ID 18 #define USB_LEAF_SPRO_SWC_PRODUCT_ID 19 #define USB_MEMO2_DEVEL_PRODUCT_ID 22 #define USB_MEMO2_HSHS_PRODUCT_ID 23 #define USB_UPRO_HSHS_PRODUCT_ID 24 #define USB_LEAF_LITE_GI_PRODUCT_ID 25 #define USB_LEAF_PRO_OBDII_PRODUCT_ID 26 #define USB_MEMO2_HSLS_PRODUCT_ID 27 #define USB_LEAF_LITE_CH_PRODUCT_ID 28 #define USB_BLACKBIRD_SPRO_PRODUCT_ID 29 #define USB_OEM_MERCURY_PRODUCT_ID 34 #define USB_OEM_LEAF_PRODUCT_ID 35 #define USB_CAN_R_PRODUCT_ID 39 #define USB_LEAF_LITE_V2_PRODUCT_ID 288 #define USB_MINI_PCIE_HS_PRODUCT_ID 289 static inline bool kvaser_is_leaf(const struct usb_device_id *id) { return id->idProduct >= USB_LEAF_DEVEL_PRODUCT_ID && id->idProduct <= USB_MINI_PCIE_HS_PRODUCT_ID; } /* Kvaser USBCan-II devices */ #define USB_USBCAN_REVB_PRODUCT_ID 2 #define USB_VCI2_PRODUCT_ID 3 #define USB_USBCAN2_PRODUCT_ID 4 #define USB_MEMORATOR_PRODUCT_ID 5 static inline bool kvaser_is_usbcan(const struct usb_device_id *id) { return id->idProduct >= USB_USBCAN_REVB_PRODUCT_ID && id->idProduct <= USB_MEMORATOR_PRODUCT_ID; } /* USB devices features */ #define KVASER_HAS_SILENT_MODE BIT(0) #define KVASER_HAS_TXRX_ERRORS BIT(1) /* Message header size */ #define MSG_HEADER_LEN 2 /* Can message flags */ #define MSG_FLAG_ERROR_FRAME BIT(0) #define MSG_FLAG_OVERRUN BIT(1) #define MSG_FLAG_NERR BIT(2) #define MSG_FLAG_WAKEUP BIT(3) #define MSG_FLAG_REMOTE_FRAME BIT(4) #define MSG_FLAG_RESERVED BIT(5) #define MSG_FLAG_TX_ACK BIT(6) #define MSG_FLAG_TX_REQUEST BIT(7) /* Can states (M16C CxSTRH register) */ #define M16C_STATE_BUS_RESET BIT(0) #define M16C_STATE_BUS_ERROR BIT(4) #define M16C_STATE_BUS_PASSIVE BIT(5) #define M16C_STATE_BUS_OFF BIT(6) /* Can msg ids */ #define CMD_RX_STD_MESSAGE 12 #define CMD_TX_STD_MESSAGE 13 #define CMD_RX_EXT_MESSAGE 14 #define CMD_TX_EXT_MESSAGE 15 #define CMD_SET_BUS_PARAMS 16 #define CMD_GET_BUS_PARAMS 17 #define CMD_GET_BUS_PARAMS_REPLY 18 #define CMD_GET_CHIP_STATE 19 #define CMD_CHIP_STATE_EVENT 20 #define CMD_SET_CTRL_MODE 21 #define CMD_GET_CTRL_MODE 22 #define CMD_GET_CTRL_MODE_REPLY 23 #define CMD_RESET_CHIP 24 #define CMD_RESET_CARD 25 #define CMD_START_CHIP 26 #define CMD_START_CHIP_REPLY 27 #define CMD_STOP_CHIP 28 #define CMD_STOP_CHIP_REPLY 29 #define CMD_LEAF_GET_CARD_INFO2 32 #define CMD_USBCAN_RESET_CLOCK 32 #define CMD_USBCAN_CLOCK_OVERFLOW_EVENT 33 #define CMD_GET_CARD_INFO 34 #define CMD_GET_CARD_INFO_REPLY 35 #define CMD_GET_SOFTWARE_INFO 38 #define CMD_GET_SOFTWARE_INFO_REPLY 39 #define CMD_ERROR_EVENT 45 #define CMD_FLUSH_QUEUE 48 #define CMD_RESET_ERROR_COUNTER 49 #define CMD_TX_ACKNOWLEDGE 50 #define CMD_CAN_ERROR_EVENT 51 #define CMD_LEAF_USB_THROTTLE 77 #define CMD_LEAF_LOG_MESSAGE 106 /* error factors */ #define M16C_EF_ACKE BIT(0) #define M16C_EF_CRCE BIT(1) #define M16C_EF_FORME BIT(2) #define M16C_EF_STFE BIT(3) #define M16C_EF_BITE0 BIT(4) #define M16C_EF_BITE1 BIT(5) #define M16C_EF_RCVE BIT(6) #define M16C_EF_TRE BIT(7) /* Only Leaf-based devices can report M16C error factors, * thus define our own error status flags for USBCANII */ #define USBCAN_ERROR_STATE_NONE 0 #define USBCAN_ERROR_STATE_TX_ERROR BIT(0) #define USBCAN_ERROR_STATE_RX_ERROR BIT(1) #define USBCAN_ERROR_STATE_BUSERROR BIT(2) /* bittiming parameters */ #define KVASER_USB_TSEG1_MIN 1 #define KVASER_USB_TSEG1_MAX 16 #define KVASER_USB_TSEG2_MIN 1 #define KVASER_USB_TSEG2_MAX 8 #define KVASER_USB_SJW_MAX 4 #define KVASER_USB_BRP_MIN 1 #define KVASER_USB_BRP_MAX 64 #define KVASER_USB_BRP_INC 1 /* ctrl modes */ #define KVASER_CTRL_MODE_NORMAL 1 #define KVASER_CTRL_MODE_SILENT 2 #define KVASER_CTRL_MODE_SELFRECEPTION 3 #define KVASER_CTRL_MODE_OFF 4 /* Extended CAN identifier flag */ #define KVASER_EXTENDED_FRAME BIT(31) /* Kvaser USB CAN dongles are divided into two major families: * - Leaf: Based on Renesas M32C, running firmware labeled as 'filo' * - UsbcanII: Based on Renesas M16C, running firmware labeled as 'helios' */ enum kvaser_usb_family { KVASER_LEAF, KVASER_USBCAN, }; struct kvaser_msg_simple { u8 tid; u8 channel; } __packed; struct kvaser_msg_cardinfo { u8 tid; u8 nchannels; union { struct { __le32 serial_number; __le32 padding; } __packed leaf0; struct { __le32 serial_number_low; __le32 serial_number_high; } __packed usbcan0; } __packed; __le32 clock_resolution; __le32 mfgdate; u8 ean[8]; u8 hw_revision; union { struct { u8 usb_hs_mode; } __packed leaf1; struct { u8 padding; } __packed usbcan1; } __packed; __le16 padding; } __packed; struct kvaser_msg_cardinfo2 { u8 tid; u8 reserved; u8 pcb_id[24]; __le32 oem_unlock_code; } __packed; struct leaf_msg_softinfo { u8 tid; u8 padding0; __le32 sw_options; __le32 fw_version; __le16 max_outstanding_tx; __le16 padding1[9]; } __packed; struct usbcan_msg_softinfo { u8 tid; u8 fw_name[5]; __le16 max_outstanding_tx; u8 padding[6]; __le32 fw_version; __le16 checksum; __le16 sw_options; } __packed; struct kvaser_msg_busparams { u8 tid; u8 channel; __le32 bitrate; u8 tseg1; u8 tseg2; u8 sjw; u8 no_samp; } __packed; struct kvaser_msg_tx_can { u8 channel; u8 tid; u8 msg[14]; union { struct { u8 padding; u8 flags; } __packed leaf; struct { u8 flags; u8 padding; } __packed usbcan; } __packed; } __packed; struct kvaser_msg_rx_can_header { u8 channel; u8 flag; } __packed; struct leaf_msg_rx_can { u8 channel; u8 flag; __le16 time[3]; u8 msg[14]; } __packed; struct usbcan_msg_rx_can { u8 channel; u8 flag; u8 msg[14]; __le16 time; } __packed; struct leaf_msg_chip_state_event { u8 tid; u8 channel; __le16 time[3]; u8 tx_errors_count; u8 rx_errors_count; u8 status; u8 padding[3]; } __packed; struct usbcan_msg_chip_state_event { u8 tid; u8 channel; u8 tx_errors_count; u8 rx_errors_count; __le16 time; u8 status; u8 padding[3]; } __packed; struct kvaser_msg_tx_acknowledge_header { u8 channel; u8 tid; } __packed; struct leaf_msg_tx_acknowledge { u8 channel; u8 tid; __le16 time[3]; u8 flags; u8 time_offset; } __packed; struct usbcan_msg_tx_acknowledge { u8 channel; u8 tid; __le16 time; __le16 padding; } __packed; struct leaf_msg_error_event { u8 tid; u8 flags; __le16 time[3]; u8 channel; u8 padding; u8 tx_errors_count; u8 rx_errors_count; u8 status; u8 error_factor; } __packed; struct usbcan_msg_error_event { u8 tid; u8 padding; u8 tx_errors_count_ch0; u8 rx_errors_count_ch0; u8 tx_errors_count_ch1; u8 rx_errors_count_ch1; u8 status_ch0; u8 status_ch1; __le16 time; } __packed; struct kvaser_msg_ctrl_mode { u8 tid; u8 channel; u8 ctrl_mode; u8 padding[3]; } __packed; struct kvaser_msg_flush_queue { u8 tid; u8 channel; u8 flags; u8 padding[3]; } __packed; struct leaf_msg_log_message { u8 channel; u8 flags; __le16 time[3]; u8 dlc; u8 time_offset; __le32 id; u8 data[8]; } __packed; struct kvaser_msg { u8 len; u8 id; union { struct kvaser_msg_simple simple; struct kvaser_msg_cardinfo cardinfo; struct kvaser_msg_cardinfo2 cardinfo2; struct kvaser_msg_busparams busparams; struct kvaser_msg_rx_can_header rx_can_header; struct kvaser_msg_tx_acknowledge_header tx_acknowledge_header; union { struct leaf_msg_softinfo softinfo; struct leaf_msg_rx_can rx_can; struct leaf_msg_chip_state_event chip_state_event; struct leaf_msg_tx_acknowledge tx_acknowledge; struct leaf_msg_error_event error_event; struct leaf_msg_log_message log_message; } __packed leaf; union { struct usbcan_msg_softinfo softinfo; struct usbcan_msg_rx_can rx_can; struct usbcan_msg_chip_state_event chip_state_event; struct usbcan_msg_tx_acknowledge tx_acknowledge; struct usbcan_msg_error_event error_event; } __packed usbcan; struct kvaser_msg_tx_can tx_can; struct kvaser_msg_ctrl_mode ctrl_mode; struct kvaser_msg_flush_queue flush_queue; } u; } __packed; /* Summary of a kvaser error event, for a unified Leaf/Usbcan error * handling. Some discrepancies between the two families exist: * * - USBCAN firmware does not report M16C "error factors" * - USBCAN controllers has difficulties reporting if the raised error * event is for ch0 or ch1. They leave such arbitration to the OS * driver by letting it compare error counters with previous values * and decide the error event's channel. Thus for USBCAN, the channel * field is only advisory. */ struct kvaser_usb_error_summary { u8 channel, status, txerr, rxerr; union { struct { u8 error_factor; } leaf; struct { u8 other_ch_status; u8 error_state; } usbcan; }; }; struct kvaser_usb_tx_urb_context { struct kvaser_usb_net_priv *priv; u32 echo_index; int dlc; }; struct kvaser_usb { struct usb_device *udev; struct kvaser_usb_net_priv *nets[MAX_NET_DEVICES]; struct usb_endpoint_descriptor *bulk_in, *bulk_out; struct usb_anchor rx_submitted; u32 fw_version; unsigned int nchannels; enum kvaser_usb_family family; bool rxinitdone; void *rxbuf[MAX_RX_URBS]; dma_addr_t rxbuf_dma[MAX_RX_URBS]; }; struct kvaser_usb_net_priv { struct can_priv can; atomic_t active_tx_urbs; struct usb_anchor tx_submitted; struct kvaser_usb_tx_urb_context tx_contexts[MAX_TX_URBS]; struct completion start_comp, stop_comp; struct kvaser_usb *dev; struct net_device *netdev; int channel; struct can_berr_counter bec; }; static const struct usb_device_id kvaser_usb_table[] = { /* Leaf family IDs */ { USB_DEVICE(KVASER_VENDOR_ID, USB_LEAF_DEVEL_PRODUCT_ID) }, { USB_DEVICE(KVASER_VENDOR_ID, USB_LEAF_LITE_PRODUCT_ID) }, { USB_DEVICE(KVASER_VENDOR_ID, USB_LEAF_PRO_PRODUCT_ID), .driver_info = KVASER_HAS_TXRX_ERRORS | KVASER_HAS_SILENT_MODE }, { USB_DEVICE(KVASER_VENDOR_ID, USB_LEAF_SPRO_PRODUCT_ID), .driver_info = KVASER_HAS_TXRX_ERRORS | KVASER_HAS_SILENT_MODE }, { USB_DEVICE(KVASER_VENDOR_ID, USB_LEAF_PRO_LS_PRODUCT_ID), .driver_info = KVASER_HAS_TXRX_ERRORS | KVASER_HAS_SILENT_MODE }, { USB_DEVICE(KVASER_VENDOR_ID, USB_LEAF_PRO_SWC_PRODUCT_ID), .driver_info = KVASER_HAS_TXRX_ERRORS | KVASER_HAS_SILENT_MODE }, { USB_DEVICE(KVASER_VENDOR_ID, USB_LEAF_PRO_LIN_PRODUCT_ID), .driver_info = KVASER_HAS_TXRX_ERRORS | KVASER_HAS_SILENT_MODE }, { USB_DEVICE(KVASER_VENDOR_ID, USB_LEAF_SPRO_LS_PRODUCT_ID), .driver_info = KVASER_HAS_TXRX_ERRORS | KVASER_HAS_SILENT_MODE }, { USB_DEVICE(KVASER_VENDOR_ID, USB_LEAF_SPRO_SWC_PRODUCT_ID), .driver_info = KVASER_HAS_TXRX_ERRORS | KVASER_HAS_SILENT_MODE }, { USB_DEVICE(KVASER_VENDOR_ID, USB_MEMO2_DEVEL_PRODUCT_ID), .driver_info = KVASER_HAS_TXRX_ERRORS | KVASER_HAS_SILENT_MODE }, { USB_DEVICE(KVASER_VENDOR_ID, USB_MEMO2_HSHS_PRODUCT_ID), .driver_info = KVASER_HAS_TXRX_ERRORS | KVASER_HAS_SILENT_MODE }, { USB_DEVICE(KVASER_VENDOR_ID, USB_UPRO_HSHS_PRODUCT_ID), .driver_info = KVASER_HAS_TXRX_ERRORS }, { USB_DEVICE(KVASER_VENDOR_ID, USB_LEAF_LITE_GI_PRODUCT_ID) }, { USB_DEVICE(KVASER_VENDOR_ID, USB_LEAF_PRO_OBDII_PRODUCT_ID), .driver_info = KVASER_HAS_TXRX_ERRORS | KVASER_HAS_SILENT_MODE }, { USB_DEVICE(KVASER_VENDOR_ID, USB_MEMO2_HSLS_PRODUCT_ID), .driver_info = KVASER_HAS_TXRX_ERRORS }, { USB_DEVICE(KVASER_VENDOR_ID, USB_LEAF_LITE_CH_PRODUCT_ID), .driver_info = KVASER_HAS_TXRX_ERRORS }, { USB_DEVICE(KVASER_VENDOR_ID, USB_BLACKBIRD_SPRO_PRODUCT_ID), .driver_info = KVASER_HAS_TXRX_ERRORS }, { USB_DEVICE(KVASER_VENDOR_ID, USB_OEM_MERCURY_PRODUCT_ID), .driver_info = KVASER_HAS_TXRX_ERRORS }, { USB_DEVICE(KVASER_VENDOR_ID, USB_OEM_LEAF_PRODUCT_ID), .driver_info = KVASER_HAS_TXRX_ERRORS }, { USB_DEVICE(KVASER_VENDOR_ID, USB_CAN_R_PRODUCT_ID), .driver_info = KVASER_HAS_TXRX_ERRORS }, { USB_DEVICE(KVASER_VENDOR_ID, USB_LEAF_LITE_V2_PRODUCT_ID) }, { USB_DEVICE(KVASER_VENDOR_ID, USB_MINI_PCIE_HS_PRODUCT_ID) }, /* USBCANII family IDs */ { USB_DEVICE(KVASER_VENDOR_ID, USB_USBCAN2_PRODUCT_ID), .driver_info = KVASER_HAS_TXRX_ERRORS }, { USB_DEVICE(KVASER_VENDOR_ID, USB_USBCAN_REVB_PRODUCT_ID), .driver_info = KVASER_HAS_TXRX_ERRORS }, { USB_DEVICE(KVASER_VENDOR_ID, USB_MEMORATOR_PRODUCT_ID), .driver_info = KVASER_HAS_TXRX_ERRORS }, { USB_DEVICE(KVASER_VENDOR_ID, USB_VCI2_PRODUCT_ID), .driver_info = KVASER_HAS_TXRX_ERRORS }, { } }; MODULE_DEVICE_TABLE(usb, kvaser_usb_table); static inline int kvaser_usb_send_msg(const struct kvaser_usb *dev, struct kvaser_msg *msg) { int actual_len; return usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, dev->bulk_out->bEndpointAddress), msg, msg->len, &actual_len, USB_SEND_TIMEOUT); } static int kvaser_usb_wait_msg(const struct kvaser_usb *dev, u8 id, struct kvaser_msg *msg) { struct kvaser_msg *tmp; void *buf; int actual_len; int err; int pos; unsigned long to = jiffies + msecs_to_jiffies(USB_RECV_TIMEOUT); buf = kzalloc(RX_BUFFER_SIZE, GFP_KERNEL); if (!buf) return -ENOMEM; do { err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->bulk_in->bEndpointAddress), buf, RX_BUFFER_SIZE, &actual_len, USB_RECV_TIMEOUT); if (err < 0) goto end; pos = 0; while (pos <= actual_len - MSG_HEADER_LEN) { tmp = buf + pos; if (!tmp->len) break; if (pos + tmp->len > actual_len) { dev_err(dev->udev->dev.parent, "Format error\n"); break; } if (tmp->id == id) { memcpy(msg, tmp, tmp->len); goto end; } pos += tmp->len; } } while (time_before(jiffies, to)); err = -EINVAL; end: kfree(buf); return err; } static int kvaser_usb_send_simple_msg(const struct kvaser_usb *dev, u8 msg_id, int channel) { struct kvaser_msg *msg; int rc; msg = kmalloc(sizeof(*msg), GFP_KERNEL); if (!msg) return -ENOMEM; msg->id = msg_id; msg->len = MSG_HEADER_LEN + sizeof(struct kvaser_msg_simple); msg->u.simple.channel = channel; msg->u.simple.tid = 0xff; rc = kvaser_usb_send_msg(dev, msg); kfree(msg); return rc; } static int kvaser_usb_get_software_info(struct kvaser_usb *dev) { struct kvaser_msg msg; int err; err = kvaser_usb_send_simple_msg(dev, CMD_GET_SOFTWARE_INFO, 0); if (err) return err; err = kvaser_usb_wait_msg(dev, CMD_GET_SOFTWARE_INFO_REPLY, &msg); if (err) return err; switch (dev->family) { case KVASER_LEAF: dev->fw_version = le32_to_cpu(msg.u.leaf.softinfo.fw_version); break; case KVASER_USBCAN: dev->fw_version = le32_to_cpu(msg.u.usbcan.softinfo.fw_version); break; } return 0; } static int kvaser_usb_get_card_info(struct kvaser_usb *dev) { struct kvaser_msg msg; int err; err = kvaser_usb_send_simple_msg(dev, CMD_GET_CARD_INFO, 0); if (err) return err; err = kvaser_usb_wait_msg(dev, CMD_GET_CARD_INFO_REPLY, &msg); if (err) return err; dev->nchannels = msg.u.cardinfo.nchannels; if ((dev->nchannels > MAX_NET_DEVICES) || (dev->family == KVASER_USBCAN && dev->nchannels > MAX_USBCAN_NET_DEVICES)) return -EINVAL; return 0; } static void kvaser_usb_tx_acknowledge(const struct kvaser_usb *dev, const struct kvaser_msg *msg) { struct net_device_stats *stats; struct kvaser_usb_tx_urb_context *context; struct kvaser_usb_net_priv *priv; struct sk_buff *skb; struct can_frame *cf; u8 channel, tid; channel = msg->u.tx_acknowledge_header.channel; tid = msg->u.tx_acknowledge_header.tid; if (channel >= dev->nchannels) { dev_err(dev->udev->dev.parent, "Invalid channel number (%d)\n", channel); return; } priv = dev->nets[channel]; if (!netif_device_present(priv->netdev)) return; stats = &priv->netdev->stats; context = &priv->tx_contexts[tid % MAX_TX_URBS]; /* Sometimes the state change doesn't come after a bus-off event */ if (priv->can.restart_ms && (priv->can.state >= CAN_STATE_BUS_OFF)) { skb = alloc_can_err_skb(priv->netdev, &cf); if (skb) { cf->can_id |= CAN_ERR_RESTARTED; stats->rx_packets++; stats->rx_bytes += cf->can_dlc; netif_rx(skb); } else { netdev_err(priv->netdev, "No memory left for err_skb\n"); } priv->can.can_stats.restarts++; netif_carrier_on(priv->netdev); priv->can.state = CAN_STATE_ERROR_ACTIVE; } stats->tx_packets++; stats->tx_bytes += context->dlc; can_get_echo_skb(priv->netdev, context->echo_index); context->echo_index = MAX_TX_URBS; atomic_dec(&priv->active_tx_urbs); netif_wake_queue(priv->netdev); } static void kvaser_usb_simple_msg_callback(struct urb *urb) { struct net_device *netdev = urb->context; kfree(urb->transfer_buffer); if (urb->status) netdev_warn(netdev, "urb status received: %d\n", urb->status); } static int kvaser_usb_simple_msg_async(struct kvaser_usb_net_priv *priv, u8 msg_id) { struct kvaser_usb *dev = priv->dev; struct net_device *netdev = priv->netdev; struct kvaser_msg *msg; struct urb *urb; void *buf; int err; urb = usb_alloc_urb(0, GFP_ATOMIC); if (!urb) { netdev_err(netdev, "No memory left for URBs\n"); return -ENOMEM; } buf = kmalloc(sizeof(struct kvaser_msg), GFP_ATOMIC); if (!buf) { usb_free_urb(urb); return -ENOMEM; } msg = (struct kvaser_msg *)buf; msg->len = MSG_HEADER_LEN + sizeof(struct kvaser_msg_simple); msg->id = msg_id; msg->u.simple.channel = priv->channel; usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, dev->bulk_out->bEndpointAddress), buf, msg->len, kvaser_usb_simple_msg_callback, netdev); usb_anchor_urb(urb, &priv->tx_submitted); err = usb_submit_urb(urb, GFP_ATOMIC); if (err) { netdev_err(netdev, "Error transmitting URB\n"); usb_unanchor_urb(urb); usb_free_urb(urb); kfree(buf); return err; } usb_free_urb(urb); return 0; } static void kvaser_usb_unlink_tx_urbs(struct kvaser_usb_net_priv *priv) { int i; usb_kill_anchored_urbs(&priv->tx_submitted); atomic_set(&priv->active_tx_urbs, 0); for (i = 0; i < MAX_TX_URBS; i++) priv->tx_contexts[i].echo_index = MAX_TX_URBS; } static void kvaser_usb_rx_error_update_can_state(struct kvaser_usb_net_priv *priv, const struct kvaser_usb_error_summary *es, struct can_frame *cf) { struct kvaser_usb *dev = priv->dev; struct net_device_stats *stats = &priv->netdev->stats; enum can_state cur_state, new_state, tx_state, rx_state; netdev_dbg(priv->netdev, "Error status: 0x%02x\n", es->status); new_state = cur_state = priv->can.state; if (es->status & (M16C_STATE_BUS_OFF | M16C_STATE_BUS_RESET)) new_state = CAN_STATE_BUS_OFF; else if (es->status & M16C_STATE_BUS_PASSIVE) new_state = CAN_STATE_ERROR_PASSIVE; else if (es->status & M16C_STATE_BUS_ERROR) { if ((es->txerr >= 256) || (es->rxerr >= 256)) new_state = CAN_STATE_BUS_OFF; else if ((es->txerr >= 128) || (es->rxerr >= 128)) new_state = CAN_STATE_ERROR_PASSIVE; else if ((es->txerr >= 96) || (es->rxerr >= 96)) new_state = CAN_STATE_ERROR_WARNING; else if (cur_state > CAN_STATE_ERROR_ACTIVE) new_state = CAN_STATE_ERROR_ACTIVE; } if (!es->status) new_state = CAN_STATE_ERROR_ACTIVE; if (new_state != cur_state) { tx_state = (es->txerr >= es->rxerr) ? new_state : 0; rx_state = (es->txerr <= es->rxerr) ? new_state : 0; can_change_state(priv->netdev, cf, tx_state, rx_state); } if (priv->can.restart_ms && (cur_state >= CAN_STATE_BUS_OFF) && (new_state < CAN_STATE_BUS_OFF)) { priv->can.can_stats.restarts++; } switch (dev->family) { case KVASER_LEAF: if (es->leaf.error_factor) { priv->can.can_stats.bus_error++; stats->rx_errors++; } break; case KVASER_USBCAN: if (es->usbcan.error_state & USBCAN_ERROR_STATE_TX_ERROR) stats->tx_errors++; if (es->usbcan.error_state & USBCAN_ERROR_STATE_RX_ERROR) stats->rx_errors++; if (es->usbcan.error_state & USBCAN_ERROR_STATE_BUSERROR) { priv->can.can_stats.bus_error++; } break; } priv->bec.txerr = es->txerr; priv->bec.rxerr = es->rxerr; } static void kvaser_usb_rx_error(const struct kvaser_usb *dev, const struct kvaser_usb_error_summary *es) { struct can_frame *cf, tmp_cf = { .can_id = CAN_ERR_FLAG, .can_dlc = CAN_ERR_DLC }; struct sk_buff *skb; struct net_device_stats *stats; struct kvaser_usb_net_priv *priv; enum can_state old_state, new_state; if (es->channel >= dev->nchannels) { dev_err(dev->udev->dev.parent, "Invalid channel number (%d)\n", es->channel); return; } priv = dev->nets[es->channel]; stats = &priv->netdev->stats; /* Update all of the can interface's state and error counters before * trying any memory allocation that can actually fail with -ENOMEM. * * We send a temporary stack-allocated error can frame to * can_change_state() for the very same reason. * * TODO: Split can_change_state() responsibility between updating the * can interface's state and counters, and the setting up of can error * frame ID and data to userspace. Remove stack allocation afterwards. */ old_state = priv->can.state; kvaser_usb_rx_error_update_can_state(priv, es, &tmp_cf); new_state = priv->can.state; skb = alloc_can_err_skb(priv->netdev, &cf); if (!skb) { stats->rx_dropped++; return; } memcpy(cf, &tmp_cf, sizeof(*cf)); if (new_state != old_state) { if (es->status & (M16C_STATE_BUS_OFF | M16C_STATE_BUS_RESET)) { if (!priv->can.restart_ms) kvaser_usb_simple_msg_async(priv, CMD_STOP_CHIP); netif_carrier_off(priv->netdev); } if (priv->can.restart_ms && (old_state >= CAN_STATE_BUS_OFF) && (new_state < CAN_STATE_BUS_OFF)) { cf->can_id |= CAN_ERR_RESTARTED; netif_carrier_on(priv->netdev); } } switch (dev->family) { case KVASER_LEAF: if (es->leaf.error_factor) { cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT; if (es->leaf.error_factor & M16C_EF_ACKE) cf->data[3] |= (CAN_ERR_PROT_LOC_ACK); if (es->leaf.error_factor & M16C_EF_CRCE) cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ | CAN_ERR_PROT_LOC_CRC_DEL); if (es->leaf.error_factor & M16C_EF_FORME) cf->data[2] |= CAN_ERR_PROT_FORM; if (es->leaf.error_factor & M16C_EF_STFE) cf->data[2] |= CAN_ERR_PROT_STUFF; if (es->leaf.error_factor & M16C_EF_BITE0) cf->data[2] |= CAN_ERR_PROT_BIT0; if (es->leaf.error_factor & M16C_EF_BITE1) cf->data[2] |= CAN_ERR_PROT_BIT1; if (es->leaf.error_factor & M16C_EF_TRE) cf->data[2] |= CAN_ERR_PROT_TX; } break; case KVASER_USBCAN: if (es->usbcan.error_state & USBCAN_ERROR_STATE_BUSERROR) { cf->can_id |= CAN_ERR_BUSERROR; } break; } cf->data[6] = es->txerr; cf->data[7] = es->rxerr; stats->rx_packets++; stats->rx_bytes += cf->can_dlc; netif_rx(skb); } /* For USBCAN, report error to userspace iff the channels's errors counter * has changed, or we're the only channel seeing a bus error state. */ static void kvaser_usbcan_conditionally_rx_error(const struct kvaser_usb *dev, struct kvaser_usb_error_summary *es) { struct kvaser_usb_net_priv *priv; int channel; bool report_error; channel = es->channel; if (channel >= dev->nchannels) { dev_err(dev->udev->dev.parent, "Invalid channel number (%d)\n", channel); return; } priv = dev->nets[channel]; report_error = false; if (es->txerr != priv->bec.txerr) { es->usbcan.error_state |= USBCAN_ERROR_STATE_TX_ERROR; report_error = true; } if (es->rxerr != priv->bec.rxerr) { es->usbcan.error_state |= USBCAN_ERROR_STATE_RX_ERROR; report_error = true; } if ((es->status & M16C_STATE_BUS_ERROR) && !(es->usbcan.other_ch_status & M16C_STATE_BUS_ERROR)) { es->usbcan.error_state |= USBCAN_ERROR_STATE_BUSERROR; report_error = true; } if (report_error) kvaser_usb_rx_error(dev, es); } static void kvaser_usbcan_rx_error(const struct kvaser_usb *dev, const struct kvaser_msg *msg) { struct kvaser_usb_error_summary es = { }; switch (msg->id) { /* Sometimes errors are sent as unsolicited chip state events */ case CMD_CHIP_STATE_EVENT: es.channel = msg->u.usbcan.chip_state_event.channel; es.status = msg->u.usbcan.chip_state_event.status; es.txerr = msg->u.usbcan.chip_state_event.tx_errors_count; es.rxerr = msg->u.usbcan.chip_state_event.rx_errors_count; kvaser_usbcan_conditionally_rx_error(dev, &es); break; case CMD_CAN_ERROR_EVENT: es.channel = 0; es.status = msg->u.usbcan.error_event.status_ch0; es.txerr = msg->u.usbcan.error_event.tx_errors_count_ch0; es.rxerr = msg->u.usbcan.error_event.rx_errors_count_ch0; es.usbcan.other_ch_status = msg->u.usbcan.error_event.status_ch1; kvaser_usbcan_conditionally_rx_error(dev, &es); /* The USBCAN firmware supports up to 2 channels. * Now that ch0 was checked, check if ch1 has any errors. */ if (dev->nchannels == MAX_USBCAN_NET_DEVICES) { es.channel = 1; es.status = msg->u.usbcan.error_event.status_ch1; es.txerr = msg->u.usbcan.error_event.tx_errors_count_ch1; es.rxerr = msg->u.usbcan.error_event.rx_errors_count_ch1; es.usbcan.other_ch_status = msg->u.usbcan.error_event.status_ch0; kvaser_usbcan_conditionally_rx_error(dev, &es); } break; default: dev_err(dev->udev->dev.parent, "Invalid msg id (%d)\n", msg->id); } } static void kvaser_leaf_rx_error(const struct kvaser_usb *dev, const struct kvaser_msg *msg) { struct kvaser_usb_error_summary es = { }; switch (msg->id) { case CMD_CAN_ERROR_EVENT: es.channel = msg->u.leaf.error_event.channel; es.status = msg->u.leaf.error_event.status; es.txerr = msg->u.leaf.error_event.tx_errors_count; es.rxerr = msg->u.leaf.error_event.rx_errors_count; es.leaf.error_factor = msg->u.leaf.error_event.error_factor; break; case CMD_LEAF_LOG_MESSAGE: es.channel = msg->u.leaf.log_message.channel; es.status = msg->u.leaf.log_message.data[0]; es.txerr = msg->u.leaf.log_message.data[2]; es.rxerr = msg->u.leaf.log_message.data[3]; es.leaf.error_factor = msg->u.leaf.log_message.data[1]; break; case CMD_CHIP_STATE_EVENT: es.channel = msg->u.leaf.chip_state_event.channel; es.status = msg->u.leaf.chip_state_event.status; es.txerr = msg->u.leaf.chip_state_event.tx_errors_count; es.rxerr = msg->u.leaf.chip_state_event.rx_errors_count; es.leaf.error_factor = 0; break; default: dev_err(dev->udev->dev.parent, "Invalid msg id (%d)\n", msg->id); return; } kvaser_usb_rx_error(dev, &es); } static void kvaser_usb_rx_can_err(const struct kvaser_usb_net_priv *priv, const struct kvaser_msg *msg) { struct can_frame *cf; struct sk_buff *skb; struct net_device_stats *stats = &priv->netdev->stats; if (msg->u.rx_can_header.flag & (MSG_FLAG_ERROR_FRAME | MSG_FLAG_NERR)) { netdev_err(priv->netdev, "Unknow error (flags: 0x%02x)\n", msg->u.rx_can_header.flag); stats->rx_errors++; return; } if (msg->u.rx_can_header.flag & MSG_FLAG_OVERRUN) { stats->rx_over_errors++; stats->rx_errors++; skb = alloc_can_err_skb(priv->netdev, &cf); if (!skb) { stats->rx_dropped++; return; } cf->can_id |= CAN_ERR_CRTL; cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW; stats->rx_packets++; stats->rx_bytes += cf->can_dlc; netif_rx(skb); } } static void kvaser_usb_rx_can_msg(const struct kvaser_usb *dev, const struct kvaser_msg *msg) { struct kvaser_usb_net_priv *priv; struct can_frame *cf; struct sk_buff *skb; struct net_device_stats *stats; u8 channel = msg->u.rx_can_header.channel; const u8 *rx_msg = NULL; /* GCC */ if (channel >= dev->nchannels) { dev_err(dev->udev->dev.parent, "Invalid channel number (%d)\n", channel); return; } priv = dev->nets[channel]; stats = &priv->netdev->stats; if ((msg->u.rx_can_header.flag & MSG_FLAG_ERROR_FRAME) && (dev->family == KVASER_LEAF && msg->id == CMD_LEAF_LOG_MESSAGE)) { kvaser_leaf_rx_error(dev, msg); return; } else if (msg->u.rx_can_header.flag & (MSG_FLAG_ERROR_FRAME | MSG_FLAG_NERR | MSG_FLAG_OVERRUN)) { kvaser_usb_rx_can_err(priv, msg); return; } else if (msg->u.rx_can_header.flag & ~MSG_FLAG_REMOTE_FRAME) { netdev_warn(priv->netdev, "Unhandled frame (flags: 0x%02x)", msg->u.rx_can_header.flag); return; } switch (dev->family) { case KVASER_LEAF: rx_msg = msg->u.leaf.rx_can.msg; break; case KVASER_USBCAN: rx_msg = msg->u.usbcan.rx_can.msg; break; } skb = alloc_can_skb(priv->netdev, &cf); if (!skb) { stats->tx_dropped++; return; } if (dev->family == KVASER_LEAF && msg->id == CMD_LEAF_LOG_MESSAGE) { cf->can_id = le32_to_cpu(msg->u.leaf.log_message.id); if (cf->can_id & KVASER_EXTENDED_FRAME) cf->can_id &= CAN_EFF_MASK | CAN_EFF_FLAG; else cf->can_id &= CAN_SFF_MASK; cf->can_dlc = get_can_dlc(msg->u.leaf.log_message.dlc); if (msg->u.leaf.log_message.flags & MSG_FLAG_REMOTE_FRAME) cf->can_id |= CAN_RTR_FLAG; else memcpy(cf->data, &msg->u.leaf.log_message.data, cf->can_dlc); } else { cf->can_id = ((rx_msg[0] & 0x1f) << 6) | (rx_msg[1] & 0x3f); if (msg->id == CMD_RX_EXT_MESSAGE) { cf->can_id <<= 18; cf->can_id |= ((rx_msg[2] & 0x0f) << 14) | ((rx_msg[3] & 0xff) << 6) | (rx_msg[4] & 0x3f); cf->can_id |= CAN_EFF_FLAG; } cf->can_dlc = get_can_dlc(rx_msg[5]); if (msg->u.rx_can_header.flag & MSG_FLAG_REMOTE_FRAME) cf->can_id |= CAN_RTR_FLAG; else memcpy(cf->data, &rx_msg[6], cf->can_dlc); } stats->rx_packets++; stats->rx_bytes += cf->can_dlc; netif_rx(skb); } static void kvaser_usb_start_chip_reply(const struct kvaser_usb *dev, const struct kvaser_msg *msg) { struct kvaser_usb_net_priv *priv; u8 channel = msg->u.simple.channel; if (channel >= dev->nchannels) { dev_err(dev->udev->dev.parent, "Invalid channel number (%d)\n", channel); return; } priv = dev->nets[channel]; if (completion_done(&priv->start_comp) && netif_queue_stopped(priv->netdev)) { netif_wake_queue(priv->netdev); } else { netif_start_queue(priv->netdev); complete(&priv->start_comp); } } static void kvaser_usb_stop_chip_reply(const struct kvaser_usb *dev, const struct kvaser_msg *msg) { struct kvaser_usb_net_priv *priv; u8 channel = msg->u.simple.channel; if (channel >= dev->nchannels) { dev_err(dev->udev->dev.parent, "Invalid channel number (%d)\n", channel); return; } priv = dev->nets[channel]; complete(&priv->stop_comp); } static void kvaser_usb_handle_message(const struct kvaser_usb *dev, const struct kvaser_msg *msg) { switch (msg->id) { case CMD_START_CHIP_REPLY: kvaser_usb_start_chip_reply(dev, msg); break; case CMD_STOP_CHIP_REPLY: kvaser_usb_stop_chip_reply(dev, msg); break; case CMD_RX_STD_MESSAGE: case CMD_RX_EXT_MESSAGE: kvaser_usb_rx_can_msg(dev, msg); break; case CMD_LEAF_LOG_MESSAGE: if (dev->family != KVASER_LEAF) goto warn; kvaser_usb_rx_can_msg(dev, msg); break; case CMD_CHIP_STATE_EVENT: case CMD_CAN_ERROR_EVENT: if (dev->family == KVASER_LEAF) kvaser_leaf_rx_error(dev, msg); else kvaser_usbcan_rx_error(dev, msg); break; case CMD_TX_ACKNOWLEDGE: kvaser_usb_tx_acknowledge(dev, msg); break; /* Ignored messages */ case CMD_USBCAN_CLOCK_OVERFLOW_EVENT: if (dev->family != KVASER_USBCAN) goto warn; break; default: warn: dev_warn(dev->udev->dev.parent, "Unhandled message (%d)\n", msg->id); break; } } static void kvaser_usb_read_bulk_callback(struct urb *urb) { struct kvaser_usb *dev = urb->context; struct kvaser_msg *msg; int pos = 0; int err, i; switch (urb->status) { case 0: break; case -ENOENT: case -ESHUTDOWN: return; default: dev_info(dev->udev->dev.parent, "Rx URB aborted (%d)\n", urb->status); goto resubmit_urb; } while (pos <= urb->actual_length - MSG_HEADER_LEN) { msg = urb->transfer_buffer + pos; if (!msg->len) break; if (pos + msg->len > urb->actual_length) { dev_err(dev->udev->dev.parent, "Format error\n"); break; } kvaser_usb_handle_message(dev, msg); pos += msg->len; } resubmit_urb: usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, dev->bulk_in->bEndpointAddress), urb->transfer_buffer, RX_BUFFER_SIZE, kvaser_usb_read_bulk_callback, dev); err = usb_submit_urb(urb, GFP_ATOMIC); if (err == -ENODEV) { for (i = 0; i < dev->nchannels; i++) { if (!dev->nets[i]) continue; netif_device_detach(dev->nets[i]->netdev); } } else if (err) { dev_err(dev->udev->dev.parent, "Failed resubmitting read bulk urb: %d\n", err); } return; } static int kvaser_usb_setup_rx_urbs(struct kvaser_usb *dev) { int i, err = 0; if (dev->rxinitdone) return 0; for (i = 0; i < MAX_RX_URBS; i++) { struct urb *urb = NULL; u8 *buf = NULL; dma_addr_t buf_dma; urb = usb_alloc_urb(0, GFP_KERNEL); if (!urb) { dev_warn(dev->udev->dev.parent, "No memory left for URBs\n"); err = -ENOMEM; break; } buf = usb_alloc_coherent(dev->udev, RX_BUFFER_SIZE, GFP_KERNEL, &buf_dma); if (!buf) { dev_warn(dev->udev->dev.parent, "No memory left for USB buffer\n"); usb_free_urb(urb); err = -ENOMEM; break; } usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, dev->bulk_in->bEndpointAddress), buf, RX_BUFFER_SIZE, kvaser_usb_read_bulk_callback, dev); urb->transfer_dma = buf_dma; urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; usb_anchor_urb(urb, &dev->rx_submitted); err = usb_submit_urb(urb, GFP_KERNEL); if (err) { usb_unanchor_urb(urb); usb_free_coherent(dev->udev, RX_BUFFER_SIZE, buf, buf_dma); usb_free_urb(urb); break; } dev->rxbuf[i] = buf; dev->rxbuf_dma[i] = buf_dma; usb_free_urb(urb); } if (i == 0) { dev_warn(dev->udev->dev.parent, "Cannot setup read URBs, error %d\n", err); return err; } else if (i < MAX_RX_URBS) { dev_warn(dev->udev->dev.parent, "RX performances may be slow\n"); } dev->rxinitdone = true; return 0; } static int kvaser_usb_set_opt_mode(const struct kvaser_usb_net_priv *priv) { struct kvaser_msg *msg; int rc; msg = kmalloc(sizeof(*msg), GFP_KERNEL); if (!msg) return -ENOMEM; msg->id = CMD_SET_CTRL_MODE; msg->len = MSG_HEADER_LEN + sizeof(struct kvaser_msg_ctrl_mode); msg->u.ctrl_mode.tid = 0xff; msg->u.ctrl_mode.channel = priv->channel; if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) msg->u.ctrl_mode.ctrl_mode = KVASER_CTRL_MODE_SILENT; else msg->u.ctrl_mode.ctrl_mode = KVASER_CTRL_MODE_NORMAL; rc = kvaser_usb_send_msg(priv->dev, msg); kfree(msg); return rc; } static int kvaser_usb_start_chip(struct kvaser_usb_net_priv *priv) { int err; init_completion(&priv->start_comp); err = kvaser_usb_send_simple_msg(priv->dev, CMD_START_CHIP, priv->channel); if (err) return err; if (!wait_for_completion_timeout(&priv->start_comp, msecs_to_jiffies(START_TIMEOUT))) return -ETIMEDOUT; return 0; } static int kvaser_usb_open(struct net_device *netdev) { struct kvaser_usb_net_priv *priv = netdev_priv(netdev); struct kvaser_usb *dev = priv->dev; int err; err = open_candev(netdev); if (err) return err; err = kvaser_usb_setup_rx_urbs(dev); if (err) goto error; err = kvaser_usb_set_opt_mode(priv); if (err) goto error; err = kvaser_usb_start_chip(priv); if (err) { netdev_warn(netdev, "Cannot start device, error %d\n", err); goto error; } priv->can.state = CAN_STATE_ERROR_ACTIVE; return 0; error: close_candev(netdev); return err; } static void kvaser_usb_unlink_all_urbs(struct kvaser_usb *dev) { int i; usb_kill_anchored_urbs(&dev->rx_submitted); for (i = 0; i < MAX_RX_URBS; i++) usb_free_coherent(dev->udev, RX_BUFFER_SIZE, dev->rxbuf[i], dev->rxbuf_dma[i]); for (i = 0; i < dev->nchannels; i++) { struct kvaser_usb_net_priv *priv = dev->nets[i]; if (priv) kvaser_usb_unlink_tx_urbs(priv); } } static int kvaser_usb_stop_chip(struct kvaser_usb_net_priv *priv) { int err; init_completion(&priv->stop_comp); err = kvaser_usb_send_simple_msg(priv->dev, CMD_STOP_CHIP, priv->channel); if (err) return err; if (!wait_for_completion_timeout(&priv->stop_comp, msecs_to_jiffies(STOP_TIMEOUT))) return -ETIMEDOUT; return 0; } static int kvaser_usb_flush_queue(struct kvaser_usb_net_priv *priv) { struct kvaser_msg *msg; int rc; msg = kmalloc(sizeof(*msg), GFP_KERNEL); if (!msg) return -ENOMEM; msg->id = CMD_FLUSH_QUEUE; msg->len = MSG_HEADER_LEN + sizeof(struct kvaser_msg_flush_queue); msg->u.flush_queue.channel = priv->channel; msg->u.flush_queue.flags = 0x00; rc = kvaser_usb_send_msg(priv->dev, msg); kfree(msg); return rc; } static int kvaser_usb_close(struct net_device *netdev) { struct kvaser_usb_net_priv *priv = netdev_priv(netdev); struct kvaser_usb *dev = priv->dev; int err; netif_stop_queue(netdev); err = kvaser_usb_flush_queue(priv); if (err) netdev_warn(netdev, "Cannot flush queue, error %d\n", err); if (kvaser_usb_send_simple_msg(dev, CMD_RESET_CHIP, priv->channel)) netdev_warn(netdev, "Cannot reset card, error %d\n", err); err = kvaser_usb_stop_chip(priv); if (err) netdev_warn(netdev, "Cannot stop device, error %d\n", err); /* reset tx contexts */ kvaser_usb_unlink_tx_urbs(priv); priv->can.state = CAN_STATE_STOPPED; close_candev(priv->netdev); return 0; } static void kvaser_usb_write_bulk_callback(struct urb *urb) { struct kvaser_usb_tx_urb_context *context = urb->context; struct kvaser_usb_net_priv *priv; struct net_device *netdev; if (WARN_ON(!context)) return; priv = context->priv; netdev = priv->netdev; kfree(urb->transfer_buffer); if (!netif_device_present(netdev)) return; if (urb->status) netdev_info(netdev, "Tx URB aborted (%d)\n", urb->status); } static netdev_tx_t kvaser_usb_start_xmit(struct sk_buff *skb, struct net_device *netdev) { struct kvaser_usb_net_priv *priv = netdev_priv(netdev); struct kvaser_usb *dev = priv->dev; struct net_device_stats *stats = &netdev->stats; struct can_frame *cf = (struct can_frame *)skb->data; struct kvaser_usb_tx_urb_context *context = NULL; struct urb *urb; void *buf; struct kvaser_msg *msg; int i, err; int ret = NETDEV_TX_OK; u8 *msg_tx_can_flags = NULL; /* GCC */ if (can_dropped_invalid_skb(netdev, skb)) return NETDEV_TX_OK; urb = usb_alloc_urb(0, GFP_ATOMIC); if (!urb) { netdev_err(netdev, "No memory left for URBs\n"); stats->tx_dropped++; dev_kfree_skb(skb); return NETDEV_TX_OK; } buf = kmalloc(sizeof(struct kvaser_msg), GFP_ATOMIC); if (!buf) { stats->tx_dropped++; dev_kfree_skb(skb); goto nobufmem; } msg = buf; msg->len = MSG_HEADER_LEN + sizeof(struct kvaser_msg_tx_can); msg->u.tx_can.channel = priv->channel; switch (dev->family) { case KVASER_LEAF: msg_tx_can_flags = &msg->u.tx_can.leaf.flags; break; case KVASER_USBCAN: msg_tx_can_flags = &msg->u.tx_can.usbcan.flags; break; } *msg_tx_can_flags = 0; if (cf->can_id & CAN_EFF_FLAG) { msg->id = CMD_TX_EXT_MESSAGE; msg->u.tx_can.msg[0] = (cf->can_id >> 24) & 0x1f; msg->u.tx_can.msg[1] = (cf->can_id >> 18) & 0x3f; msg->u.tx_can.msg[2] = (cf->can_id >> 14) & 0x0f; msg->u.tx_can.msg[3] = (cf->can_id >> 6) & 0xff; msg->u.tx_can.msg[4] = cf->can_id & 0x3f; } else { msg->id = CMD_TX_STD_MESSAGE; msg->u.tx_can.msg[0] = (cf->can_id >> 6) & 0x1f; msg->u.tx_can.msg[1] = cf->can_id & 0x3f; } msg->u.tx_can.msg[5] = cf->can_dlc; memcpy(&msg->u.tx_can.msg[6], cf->data, cf->can_dlc); if (cf->can_id & CAN_RTR_FLAG) *msg_tx_can_flags |= MSG_FLAG_REMOTE_FRAME; for (i = 0; i < ARRAY_SIZE(priv->tx_contexts); i++) { if (priv->tx_contexts[i].echo_index == MAX_TX_URBS) { context = &priv->tx_contexts[i]; break; } } /* This should never happen; it implies a flow control bug */ if (!context) { netdev_warn(netdev, "cannot find free context\n"); ret = NETDEV_TX_BUSY; goto releasebuf; } context->priv = priv; context->echo_index = i; context->dlc = cf->can_dlc; msg->u.tx_can.tid = context->echo_index; usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, dev->bulk_out->bEndpointAddress), buf, msg->len, kvaser_usb_write_bulk_callback, context); usb_anchor_urb(urb, &priv->tx_submitted); can_put_echo_skb(skb, netdev, context->echo_index); atomic_inc(&priv->active_tx_urbs); if (atomic_read(&priv->active_tx_urbs) >= MAX_TX_URBS) netif_stop_queue(netdev); err = usb_submit_urb(urb, GFP_ATOMIC); if (unlikely(err)) { can_free_echo_skb(netdev, context->echo_index); atomic_dec(&priv->active_tx_urbs); usb_unanchor_urb(urb); stats->tx_dropped++; if (err == -ENODEV) netif_device_detach(netdev); else netdev_warn(netdev, "Failed tx_urb %d\n", err); goto releasebuf; } usb_free_urb(urb); return NETDEV_TX_OK; releasebuf: kfree(buf); nobufmem: usb_free_urb(urb); return ret; } static const struct net_device_ops kvaser_usb_netdev_ops = { .ndo_open = kvaser_usb_open, .ndo_stop = kvaser_usb_close, .ndo_start_xmit = kvaser_usb_start_xmit, .ndo_change_mtu = can_change_mtu, }; static const struct can_bittiming_const kvaser_usb_bittiming_const = { .name = "kvaser_usb", .tseg1_min = KVASER_USB_TSEG1_MIN, .tseg1_max = KVASER_USB_TSEG1_MAX, .tseg2_min = KVASER_USB_TSEG2_MIN, .tseg2_max = KVASER_USB_TSEG2_MAX, .sjw_max = KVASER_USB_SJW_MAX, .brp_min = KVASER_USB_BRP_MIN, .brp_max = KVASER_USB_BRP_MAX, .brp_inc = KVASER_USB_BRP_INC, }; static int kvaser_usb_set_bittiming(struct net_device *netdev) { struct kvaser_usb_net_priv *priv = netdev_priv(netdev); struct can_bittiming *bt = &priv->can.bittiming; struct kvaser_usb *dev = priv->dev; struct kvaser_msg *msg; int rc; msg = kmalloc(sizeof(*msg), GFP_KERNEL); if (!msg) return -ENOMEM; msg->id = CMD_SET_BUS_PARAMS; msg->len = MSG_HEADER_LEN + sizeof(struct kvaser_msg_busparams); msg->u.busparams.channel = priv->channel; msg->u.busparams.tid = 0xff; msg->u.busparams.bitrate = cpu_to_le32(bt->bitrate); msg->u.busparams.sjw = bt->sjw; msg->u.busparams.tseg1 = bt->prop_seg + bt->phase_seg1; msg->u.busparams.tseg2 = bt->phase_seg2; if (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES) msg->u.busparams.no_samp = 3; else msg->u.busparams.no_samp = 1; rc = kvaser_usb_send_msg(dev, msg); kfree(msg); return rc; } static int kvaser_usb_set_mode(struct net_device *netdev, enum can_mode mode) { struct kvaser_usb_net_priv *priv = netdev_priv(netdev); int err; switch (mode) { case CAN_MODE_START: err = kvaser_usb_simple_msg_async(priv, CMD_START_CHIP); if (err) return err; break; default: return -EOPNOTSUPP; } return 0; } static int kvaser_usb_get_berr_counter(const struct net_device *netdev, struct can_berr_counter *bec) { struct kvaser_usb_net_priv *priv = netdev_priv(netdev); *bec = priv->bec; return 0; } static void kvaser_usb_remove_interfaces(struct kvaser_usb *dev) { int i; for (i = 0; i < dev->nchannels; i++) { if (!dev->nets[i]) continue; unregister_netdev(dev->nets[i]->netdev); } kvaser_usb_unlink_all_urbs(dev); for (i = 0; i < dev->nchannels; i++) { if (!dev->nets[i]) continue; free_candev(dev->nets[i]->netdev); } } static int kvaser_usb_init_one(struct usb_interface *intf, const struct usb_device_id *id, int channel) { struct kvaser_usb *dev = usb_get_intfdata(intf); struct net_device *netdev; struct kvaser_usb_net_priv *priv; int i, err; err = kvaser_usb_send_simple_msg(dev, CMD_RESET_CHIP, channel); if (err) return err; netdev = alloc_candev(sizeof(*priv), MAX_TX_URBS); if (!netdev) { dev_err(&intf->dev, "Cannot alloc candev\n"); return -ENOMEM; } priv = netdev_priv(netdev); init_completion(&priv->start_comp); init_completion(&priv->stop_comp); init_usb_anchor(&priv->tx_submitted); atomic_set(&priv->active_tx_urbs, 0); for (i = 0; i < ARRAY_SIZE(priv->tx_contexts); i++) priv->tx_contexts[i].echo_index = MAX_TX_URBS; priv->dev = dev; priv->netdev = netdev; priv->channel = channel; priv->can.state = CAN_STATE_STOPPED; priv->can.clock.freq = CAN_USB_CLOCK; priv->can.bittiming_const = &kvaser_usb_bittiming_const; priv->can.do_set_bittiming = kvaser_usb_set_bittiming; priv->can.do_set_mode = kvaser_usb_set_mode; if (id->driver_info & KVASER_HAS_TXRX_ERRORS) priv->can.do_get_berr_counter = kvaser_usb_get_berr_counter; priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES; if (id->driver_info & KVASER_HAS_SILENT_MODE) priv->can.ctrlmode_supported |= CAN_CTRLMODE_LISTENONLY; netdev->flags |= IFF_ECHO; netdev->netdev_ops = &kvaser_usb_netdev_ops; SET_NETDEV_DEV(netdev, &intf->dev); netdev->dev_id = channel; dev->nets[channel] = priv; err = register_candev(netdev); if (err) { dev_err(&intf->dev, "Failed to register can device\n"); free_candev(netdev); dev->nets[channel] = NULL; return err; } netdev_dbg(netdev, "device registered\n"); return 0; } static int kvaser_usb_get_endpoints(const struct usb_interface *intf, struct usb_endpoint_descriptor **in, struct usb_endpoint_descriptor **out) { const struct usb_host_interface *iface_desc; struct usb_endpoint_descriptor *endpoint; int i; iface_desc = &intf->altsetting[0]; for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) { endpoint = &iface_desc->endpoint[i].desc; if (!*in && usb_endpoint_is_bulk_in(endpoint)) *in = endpoint; if (!*out && usb_endpoint_is_bulk_out(endpoint)) *out = endpoint; /* use first bulk endpoint for in and out */ if (*in && *out) return 0; } return -ENODEV; } static int kvaser_usb_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct kvaser_usb *dev; int err = -ENOMEM; int i, retry = 3; dev = devm_kzalloc(&intf->dev, sizeof(*dev), GFP_KERNEL); if (!dev) return -ENOMEM; if (kvaser_is_leaf(id)) { dev->family = KVASER_LEAF; } else if (kvaser_is_usbcan(id)) { dev->family = KVASER_USBCAN; } else { dev_err(&intf->dev, "Product ID (%d) does not belong to any known Kvaser USB family", id->idProduct); return -ENODEV; } err = kvaser_usb_get_endpoints(intf, &dev->bulk_in, &dev->bulk_out); if (err) { dev_err(&intf->dev, "Cannot get usb endpoint(s)"); return err; } dev->udev = interface_to_usbdev(intf); init_usb_anchor(&dev->rx_submitted); usb_set_intfdata(intf, dev); /* On some x86 laptops, plugging a Kvaser device again after * an unplug makes the firmware always ignore the very first * command. For such a case, provide some room for retries * instead of completely exiting the driver. */ do { err = kvaser_usb_get_software_info(dev); } while (--retry && err == -ETIMEDOUT); if (err) { dev_err(&intf->dev, "Cannot get software infos, error %d\n", err); return err; } err = kvaser_usb_get_card_info(dev); if (err) { dev_err(&intf->dev, "Cannot get card infos, error %d\n", err); return err; } dev_dbg(&intf->dev, "Firmware version: %d.%d.%d\n", ((dev->fw_version >> 24) & 0xff), ((dev->fw_version >> 16) & 0xff), (dev->fw_version & 0xffff)); for (i = 0; i < dev->nchannels; i++) { err = kvaser_usb_init_one(intf, id, i); if (err) { kvaser_usb_remove_interfaces(dev); return err; } } return 0; } static void kvaser_usb_disconnect(struct usb_interface *intf) { struct kvaser_usb *dev = usb_get_intfdata(intf); usb_set_intfdata(intf, NULL); if (!dev) return; kvaser_usb_remove_interfaces(dev); } static struct usb_driver kvaser_usb_driver = { .name = "kvaser_usb", .probe = kvaser_usb_probe, .disconnect = kvaser_usb_disconnect, .id_table = kvaser_usb_table, }; module_usb_driver(kvaser_usb_driver); MODULE_AUTHOR("Olivier Sobrie "); MODULE_DESCRIPTION("CAN driver for Kvaser CAN/USB devices"); MODULE_LICENSE("GPL v2");