/***************************************************************************** * Copyright 2003 - 2009 Broadcom Corporation. All rights reserved. * * Unless you and Broadcom execute a separate written software license * agreement governing use of this software, this software is licensed to you * under the terms of the GNU General Public License version 2, available at * http://www.broadcom.com/licenses/GPLv2.php (the "GPL"). * * Notwithstanding the above, under no circumstances may you combine this * software in any way with any other Broadcom software provided under a * license other than the GPL, without Broadcom's express prior written * consent. *****************************************************************************/ #ifndef NAND_BCM_UMI_H #define NAND_BCM_UMI_H /* ---- Include Files ---------------------------------------------------- */ #include #include #include /* ---- Constants and Types ---------------------------------------------- */ #if (CFG_GLOBAL_CHIP_FAMILY == CFG_GLOBAL_CHIP_FAMILY_BCMRING) #define NAND_ECC_BCH (CFG_GLOBAL_CHIP_REV > 0xA0) #else #define NAND_ECC_BCH 0 #endif #define CFG_GLOBAL_NAND_ECC_BCH_NUM_BYTES 13 #if NAND_ECC_BCH #ifdef BOOT0_BUILD #define NAND_ECC_NUM_BYTES 13 #else #define NAND_ECC_NUM_BYTES CFG_GLOBAL_NAND_ECC_BCH_NUM_BYTES #endif #else #define NAND_ECC_NUM_BYTES 3 #endif #define NAND_DATA_ACCESS_SIZE 512 /* ---- Variable Externs ------------------------------------------ */ /* ---- Function Prototypes --------------------------------------- */ int nand_bcm_umi_bch_correct_page(uint8_t *datap, uint8_t *readEccData, int numEccBytes); /* Check in device is ready */ static inline int nand_bcm_umi_dev_ready(void) { return REG_UMI_NAND_RCSR & REG_UMI_NAND_RCSR_RDY; } /* Wait until device is ready */ static inline void nand_bcm_umi_wait_till_ready(void) { while (nand_bcm_umi_dev_ready() == 0) ; } /* Enable Hamming ECC */ static inline void nand_bcm_umi_hamming_enable_hwecc(void) { /* disable and reset ECC, 512 byte page */ REG_UMI_NAND_ECC_CSR &= ~(REG_UMI_NAND_ECC_CSR_ECC_ENABLE | REG_UMI_NAND_ECC_CSR_256BYTE); /* enable ECC */ REG_UMI_NAND_ECC_CSR |= REG_UMI_NAND_ECC_CSR_ECC_ENABLE; } #if NAND_ECC_BCH /* BCH ECC specifics */ #define ECC_BITS_PER_CORRECTABLE_BIT 13 /* Enable BCH Read ECC */ static inline void nand_bcm_umi_bch_enable_read_hwecc(void) { /* disable and reset ECC */ REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID; /* Turn on ECC */ REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN; } /* Enable BCH Write ECC */ static inline void nand_bcm_umi_bch_enable_write_hwecc(void) { /* disable and reset ECC */ REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID; /* Turn on ECC */ REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_ECC_WR_EN; } /* Config number of BCH ECC bytes */ static inline void nand_bcm_umi_bch_config_ecc(uint8_t numEccBytes) { uint32_t nValue; uint32_t tValue; uint32_t kValue; uint32_t numBits = numEccBytes * 8; /* disable and reset ECC */ REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID | REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID; /* Every correctible bit requires 13 ECC bits */ tValue = (uint32_t) (numBits / ECC_BITS_PER_CORRECTABLE_BIT); /* Total data in number of bits for generating and computing BCH ECC */ nValue = (NAND_DATA_ACCESS_SIZE + numEccBytes) * 8; /* K parameter is used internally. K = N - (T * 13) */ kValue = nValue - (tValue * ECC_BITS_PER_CORRECTABLE_BIT); /* Write the settings */ REG_UMI_BCH_N = nValue; REG_UMI_BCH_T = tValue; REG_UMI_BCH_K = kValue; } /* Pause during ECC read calculation to skip bytes in OOB */ static inline void nand_bcm_umi_bch_pause_read_ecc_calc(void) { REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN | REG_UMI_BCH_CTRL_STATUS_PAUSE_ECC_DEC; } /* Resume during ECC read calculation after skipping bytes in OOB */ static inline void nand_bcm_umi_bch_resume_read_ecc_calc(void) { REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN; } /* Poll read ECC calc to check when hardware completes */ static inline uint32_t nand_bcm_umi_bch_poll_read_ecc_calc(void) { uint32_t regVal; do { /* wait for ECC to be valid */ regVal = REG_UMI_BCH_CTRL_STATUS; } while ((regVal & REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID) == 0); return regVal; } /* Poll write ECC calc to check when hardware completes */ static inline void nand_bcm_umi_bch_poll_write_ecc_calc(void) { /* wait for ECC to be valid */ while ((REG_UMI_BCH_CTRL_STATUS & REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID) == 0) ; } /* Read the OOB and ECC, for kernel write OOB to a buffer */ #if defined(__KERNEL__) && !defined(STANDALONE) static inline void nand_bcm_umi_bch_read_oobEcc(uint32_t pageSize, uint8_t *eccCalc, int numEccBytes, uint8_t *oobp) #else static inline void nand_bcm_umi_bch_read_oobEcc(uint32_t pageSize, uint8_t *eccCalc, int numEccBytes) #endif { int eccPos = 0; int numToRead = 16; /* There are 16 bytes per sector in the OOB */ /* ECC is already paused when this function is called */ if (pageSize != NAND_DATA_ACCESS_SIZE) { /* skip BI */ #if defined(__KERNEL__) && !defined(STANDALONE) *oobp++ = REG_NAND_DATA8; #else REG_NAND_DATA8; #endif numToRead--; } while (numToRead > numEccBytes) { /* skip free oob region */ #if defined(__KERNEL__) && !defined(STANDALONE) *oobp++ = REG_NAND_DATA8; #else REG_NAND_DATA8; #endif numToRead--; } if (pageSize == NAND_DATA_ACCESS_SIZE) { /* read ECC bytes before BI */ nand_bcm_umi_bch_resume_read_ecc_calc(); while (numToRead > 11) { #if defined(__KERNEL__) && !defined(STANDALONE) *oobp = REG_NAND_DATA8; eccCalc[eccPos++] = *oobp; oobp++; #else eccCalc[eccPos++] = REG_NAND_DATA8; #endif numToRead--; } nand_bcm_umi_bch_pause_read_ecc_calc(); if (numToRead == 11) { /* read BI */ #if defined(__KERNEL__) && !defined(STANDALONE) *oobp++ = REG_NAND_DATA8; #else REG_NAND_DATA8; #endif numToRead--; } } /* read ECC bytes */ nand_bcm_umi_bch_resume_read_ecc_calc(); while (numToRead) { #if defined(__KERNEL__) && !defined(STANDALONE) *oobp = REG_NAND_DATA8; eccCalc[eccPos++] = *oobp; oobp++; #else eccCalc[eccPos++] = REG_NAND_DATA8; #endif numToRead--; } } /* Helper function to write ECC */ static inline void NAND_BCM_UMI_ECC_WRITE(int numEccBytes, int eccBytePos, uint8_t *oobp, uint8_t eccVal) { if (eccBytePos <= numEccBytes) *oobp = eccVal; } /* Write OOB with ECC */ static inline void nand_bcm_umi_bch_write_oobEcc(uint32_t pageSize, uint8_t *oobp, int numEccBytes) { uint32_t eccVal = 0xffffffff; /* wait for write ECC to be valid */ nand_bcm_umi_bch_poll_write_ecc_calc(); /* ** Get the hardware ecc from the 32-bit result registers. ** Read after 512 byte accesses. Format B3B2B1B0 ** where B3 = ecc3, etc. */ if (pageSize == NAND_DATA_ACCESS_SIZE) { /* Now fill in the ECC bytes */ if (numEccBytes >= 13) eccVal = REG_UMI_BCH_WR_ECC_3; /* Usually we skip CM in oob[0,1] */ NAND_BCM_UMI_ECC_WRITE(numEccBytes, 15, &oobp[0], (eccVal >> 16) & 0xff); NAND_BCM_UMI_ECC_WRITE(numEccBytes, 14, &oobp[1], (eccVal >> 8) & 0xff); /* Write ECC in oob[2,3,4] */ NAND_BCM_UMI_ECC_WRITE(numEccBytes, 13, &oobp[2], eccVal & 0xff); /* ECC 12 */ if (numEccBytes >= 9) eccVal = REG_UMI_BCH_WR_ECC_2; NAND_BCM_UMI_ECC_WRITE(numEccBytes, 12, &oobp[3], (eccVal >> 24) & 0xff); /* ECC11 */ NAND_BCM_UMI_ECC_WRITE(numEccBytes, 11, &oobp[4], (eccVal >> 16) & 0xff); /* ECC10 */ /* Always Skip BI in oob[5] */ } else { /* Always Skip BI in oob[0] */ /* Now fill in the ECC bytes */ if (numEccBytes >= 13) eccVal = REG_UMI_BCH_WR_ECC_3; /* Usually skip CM in oob[1,2] */ NAND_BCM_UMI_ECC_WRITE(numEccBytes, 15, &oobp[1], (eccVal >> 16) & 0xff); NAND_BCM_UMI_ECC_WRITE(numEccBytes, 14, &oobp[2], (eccVal >> 8) & 0xff); /* Write ECC in oob[3-15] */ NAND_BCM_UMI_ECC_WRITE(numEccBytes, 13, &oobp[3], eccVal & 0xff); /* ECC12 */ if (numEccBytes >= 9) eccVal = REG_UMI_BCH_WR_ECC_2; NAND_BCM_UMI_ECC_WRITE(numEccBytes, 12, &oobp[4], (eccVal >> 24) & 0xff); /* ECC11 */ NAND_BCM_UMI_ECC_WRITE(numEccBytes, 11, &oobp[5], (eccVal >> 16) & 0xff); /* ECC10 */ } /* Fill in the remainder of ECC locations */ NAND_BCM_UMI_ECC_WRITE(numEccBytes, 10, &oobp[6], (eccVal >> 8) & 0xff); /* ECC9 */ NAND_BCM_UMI_ECC_WRITE(numEccBytes, 9, &oobp[7], eccVal & 0xff); /* ECC8 */ if (numEccBytes >= 5) eccVal = REG_UMI_BCH_WR_ECC_1; NAND_BCM_UMI_ECC_WRITE(numEccBytes, 8, &oobp[8], (eccVal >> 24) & 0xff); /* ECC7 */ NAND_BCM_UMI_ECC_WRITE(numEccBytes, 7, &oobp[9], (eccVal >> 16) & 0xff); /* ECC6 */ NAND_BCM_UMI_ECC_WRITE(numEccBytes, 6, &oobp[10], (eccVal >> 8) & 0xff); /* ECC5 */ NAND_BCM_UMI_ECC_WRITE(numEccBytes, 5, &oobp[11], eccVal & 0xff); /* ECC4 */ if (numEccBytes >= 1) eccVal = REG_UMI_BCH_WR_ECC_0; NAND_BCM_UMI_ECC_WRITE(numEccBytes, 4, &oobp[12], (eccVal >> 24) & 0xff); /* ECC3 */ NAND_BCM_UMI_ECC_WRITE(numEccBytes, 3, &oobp[13], (eccVal >> 16) & 0xff); /* ECC2 */ NAND_BCM_UMI_ECC_WRITE(numEccBytes, 2, &oobp[14], (eccVal >> 8) & 0xff); /* ECC1 */ NAND_BCM_UMI_ECC_WRITE(numEccBytes, 1, &oobp[15], eccVal & 0xff); /* ECC0 */ } #endif #endif /* NAND_BCM_UMI_H */