/* * drivers/mtd/nand/fsmc_nand.c * * ST Microelectronics * Flexible Static Memory Controller (FSMC) * Driver for NAND portions * * Copyright © 2010 ST Microelectronics * Vipin Kumar * Ashish Priyadarshi * * Based on drivers/mtd/nand/nomadik_nand.c * * This file is licensed under the terms of the GNU General Public * License version 2. This program is licensed "as is" without any * warranty of any kind, whether express or implied. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static struct nand_ecclayout fsmc_ecc1_layout = { .eccbytes = 24, .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52, 66, 67, 68, 82, 83, 84, 98, 99, 100, 114, 115, 116}, .oobfree = { {.offset = 8, .length = 8}, {.offset = 24, .length = 8}, {.offset = 40, .length = 8}, {.offset = 56, .length = 8}, {.offset = 72, .length = 8}, {.offset = 88, .length = 8}, {.offset = 104, .length = 8}, {.offset = 120, .length = 8} } }; static struct nand_ecclayout fsmc_ecc4_lp_layout = { .eccbytes = 104, .eccpos = { 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126 }, .oobfree = { {.offset = 15, .length = 3}, {.offset = 31, .length = 3}, {.offset = 47, .length = 3}, {.offset = 63, .length = 3}, {.offset = 79, .length = 3}, {.offset = 95, .length = 3}, {.offset = 111, .length = 3}, {.offset = 127, .length = 1} } }; /* * ECC placement definitions in oobfree type format. * There are 13 bytes of ecc for every 512 byte block and it has to be read * consecutively and immediately after the 512 byte data block for hardware to * generate the error bit offsets in 512 byte data. * Managing the ecc bytes in the following way makes it easier for software to * read ecc bytes consecutive to data bytes. This way is similar to * oobfree structure maintained already in generic nand driver */ static struct fsmc_eccplace fsmc_ecc4_lp_place = { .eccplace = { {.offset = 2, .length = 13}, {.offset = 18, .length = 13}, {.offset = 34, .length = 13}, {.offset = 50, .length = 13}, {.offset = 66, .length = 13}, {.offset = 82, .length = 13}, {.offset = 98, .length = 13}, {.offset = 114, .length = 13} } }; static struct nand_ecclayout fsmc_ecc4_sp_layout = { .eccbytes = 13, .eccpos = { 0, 1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14 }, .oobfree = { {.offset = 15, .length = 1}, } }; static struct fsmc_eccplace fsmc_ecc4_sp_place = { .eccplace = { {.offset = 0, .length = 4}, {.offset = 6, .length = 9} } }; /* * Default partition tables to be used if the partition information not * provided through platform data. * * Default partition layout for small page(= 512 bytes) devices * Size for "Root file system" is updated in driver based on actual device size */ static struct mtd_partition partition_info_16KB_blk[] = { { .name = "X-loader", .offset = 0, .size = 4*0x4000, }, { .name = "U-Boot", .offset = 0x10000, .size = 20*0x4000, }, { .name = "Kernel", .offset = 0x60000, .size = 256*0x4000, }, { .name = "Root File System", .offset = 0x460000, .size = MTDPART_SIZ_FULL, }, }; /* * Default partition layout for large page(> 512 bytes) devices * Size for "Root file system" is updated in driver based on actual device size */ static struct mtd_partition partition_info_128KB_blk[] = { { .name = "X-loader", .offset = 0, .size = 4*0x20000, }, { .name = "U-Boot", .offset = 0x80000, .size = 12*0x20000, }, { .name = "Kernel", .offset = 0x200000, .size = 48*0x20000, }, { .name = "Root File System", .offset = 0x800000, .size = MTDPART_SIZ_FULL, }, }; /** * struct fsmc_nand_data - structure for FSMC NAND device state * * @pid: Part ID on the AMBA PrimeCell format * @mtd: MTD info for a NAND flash. * @nand: Chip related info for a NAND flash. * * @ecc_place: ECC placing locations in oobfree type format. * @bank: Bank number for probed device. * @clk: Clock structure for FSMC. * * @data_va: NAND port for Data. * @cmd_va: NAND port for Command. * @addr_va: NAND port for Address. * @regs_va: FSMC regs base address. */ struct fsmc_nand_data { u32 pid; struct mtd_info mtd; struct nand_chip nand; struct fsmc_eccplace *ecc_place; unsigned int bank; struct clk *clk; struct resource *resregs; struct resource *rescmd; struct resource *resaddr; struct resource *resdata; void __iomem *data_va; void __iomem *cmd_va; void __iomem *addr_va; void __iomem *regs_va; void (*select_chip)(uint32_t bank, uint32_t busw); }; /* Assert CS signal based on chipnr */ static void fsmc_select_chip(struct mtd_info *mtd, int chipnr) { struct nand_chip *chip = mtd->priv; struct fsmc_nand_data *host; host = container_of(mtd, struct fsmc_nand_data, mtd); switch (chipnr) { case -1: chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE); break; case 0: case 1: case 2: case 3: if (host->select_chip) host->select_chip(chipnr, chip->options & NAND_BUSWIDTH_16); break; default: BUG(); } } /* * fsmc_cmd_ctrl - For facilitaing Hardware access * This routine allows hardware specific access to control-lines(ALE,CLE) */ static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) { struct nand_chip *this = mtd->priv; struct fsmc_nand_data *host = container_of(mtd, struct fsmc_nand_data, mtd); struct fsmc_regs *regs = host->regs_va; unsigned int bank = host->bank; if (ctrl & NAND_CTRL_CHANGE) { if (ctrl & NAND_CLE) { this->IO_ADDR_R = (void __iomem *)host->cmd_va; this->IO_ADDR_W = (void __iomem *)host->cmd_va; } else if (ctrl & NAND_ALE) { this->IO_ADDR_R = (void __iomem *)host->addr_va; this->IO_ADDR_W = (void __iomem *)host->addr_va; } else { this->IO_ADDR_R = (void __iomem *)host->data_va; this->IO_ADDR_W = (void __iomem *)host->data_va; } if (ctrl & NAND_NCE) { writel(readl(®s->bank_regs[bank].pc) | FSMC_ENABLE, ®s->bank_regs[bank].pc); } else { writel(readl(®s->bank_regs[bank].pc) & ~FSMC_ENABLE, ®s->bank_regs[bank].pc); } } mb(); if (cmd != NAND_CMD_NONE) writeb(cmd, this->IO_ADDR_W); } /* * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine * * This routine initializes timing parameters related to NAND memory access in * FSMC registers */ static void __init fsmc_nand_setup(struct fsmc_regs *regs, uint32_t bank, uint32_t busw) { uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON; if (busw) writel(value | FSMC_DEVWID_16, ®s->bank_regs[bank].pc); else writel(value | FSMC_DEVWID_8, ®s->bank_regs[bank].pc); writel(readl(®s->bank_regs[bank].pc) | FSMC_TCLR_1 | FSMC_TAR_1, ®s->bank_regs[bank].pc); writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0, ®s->bank_regs[bank].comm); writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0, ®s->bank_regs[bank].attrib); } /* * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers */ static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode) { struct fsmc_nand_data *host = container_of(mtd, struct fsmc_nand_data, mtd); struct fsmc_regs *regs = host->regs_va; uint32_t bank = host->bank; writel(readl(®s->bank_regs[bank].pc) & ~FSMC_ECCPLEN_256, ®s->bank_regs[bank].pc); writel(readl(®s->bank_regs[bank].pc) & ~FSMC_ECCEN, ®s->bank_regs[bank].pc); writel(readl(®s->bank_regs[bank].pc) | FSMC_ECCEN, ®s->bank_regs[bank].pc); } /* * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to * max of 8-bits) */ static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data, uint8_t *ecc) { struct fsmc_nand_data *host = container_of(mtd, struct fsmc_nand_data, mtd); struct fsmc_regs *regs = host->regs_va; uint32_t bank = host->bank; uint32_t ecc_tmp; unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT; do { if (readl(®s->bank_regs[bank].sts) & FSMC_CODE_RDY) break; else cond_resched(); } while (!time_after_eq(jiffies, deadline)); ecc_tmp = readl(®s->bank_regs[bank].ecc1); ecc[0] = (uint8_t) (ecc_tmp >> 0); ecc[1] = (uint8_t) (ecc_tmp >> 8); ecc[2] = (uint8_t) (ecc_tmp >> 16); ecc[3] = (uint8_t) (ecc_tmp >> 24); ecc_tmp = readl(®s->bank_regs[bank].ecc2); ecc[4] = (uint8_t) (ecc_tmp >> 0); ecc[5] = (uint8_t) (ecc_tmp >> 8); ecc[6] = (uint8_t) (ecc_tmp >> 16); ecc[7] = (uint8_t) (ecc_tmp >> 24); ecc_tmp = readl(®s->bank_regs[bank].ecc3); ecc[8] = (uint8_t) (ecc_tmp >> 0); ecc[9] = (uint8_t) (ecc_tmp >> 8); ecc[10] = (uint8_t) (ecc_tmp >> 16); ecc[11] = (uint8_t) (ecc_tmp >> 24); ecc_tmp = readl(®s->bank_regs[bank].sts); ecc[12] = (uint8_t) (ecc_tmp >> 16); return 0; } /* * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to * max of 1-bit) */ static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data, uint8_t *ecc) { struct fsmc_nand_data *host = container_of(mtd, struct fsmc_nand_data, mtd); struct fsmc_regs *regs = host->regs_va; uint32_t bank = host->bank; uint32_t ecc_tmp; ecc_tmp = readl(®s->bank_regs[bank].ecc1); ecc[0] = (uint8_t) (ecc_tmp >> 0); ecc[1] = (uint8_t) (ecc_tmp >> 8); ecc[2] = (uint8_t) (ecc_tmp >> 16); return 0; } /* Count the number of 0's in buff upto a max of max_bits */ static int count_written_bits(uint8_t *buff, int size, int max_bits) { int k, written_bits = 0; for (k = 0; k < size; k++) { written_bits += hweight8(~buff[k]); if (written_bits > max_bits) break; } return written_bits; } /* * fsmc_read_page_hwecc * @mtd: mtd info structure * @chip: nand chip info structure * @buf: buffer to store read data * @page: page number to read * * This routine is needed for fsmc version 8 as reading from NAND chip has to be * performed in a strict sequence as follows: * data(512 byte) -> ecc(13 byte) * After this read, fsmc hardware generates and reports error data bits(up to a * max of 8 bits) */ static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int page) { struct fsmc_nand_data *host = container_of(mtd, struct fsmc_nand_data, mtd); struct fsmc_eccplace *ecc_place = host->ecc_place; int i, j, s, stat, eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; int eccsteps = chip->ecc.steps; uint8_t *p = buf; uint8_t *ecc_calc = chip->buffers->ecccalc; uint8_t *ecc_code = chip->buffers->ecccode; int off, len, group = 0; /* * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we * end up reading 14 bytes (7 words) from oob. The local array is * to maintain word alignment */ uint16_t ecc_oob[7]; uint8_t *oob = (uint8_t *)&ecc_oob[0]; for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) { chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page); chip->ecc.hwctl(mtd, NAND_ECC_READ); chip->read_buf(mtd, p, eccsize); for (j = 0; j < eccbytes;) { off = ecc_place->eccplace[group].offset; len = ecc_place->eccplace[group].length; group++; /* * length is intentionally kept a higher multiple of 2 * to read at least 13 bytes even in case of 16 bit NAND * devices */ len = roundup(len, 2); chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page); chip->read_buf(mtd, oob + j, len); j += len; } memcpy(&ecc_code[i], oob, chip->ecc.bytes); chip->ecc.calculate(mtd, p, &ecc_calc[i]); stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); if (stat < 0) mtd->ecc_stats.failed++; else mtd->ecc_stats.corrected += stat; } return 0; } /* * fsmc_correct_data * @mtd: mtd info structure * @dat: buffer of read data * @read_ecc: ecc read from device spare area * @calc_ecc: ecc calculated from read data * * calc_ecc is a 104 bit information containing maximum of 8 error * offset informations of 13 bits each in 512 bytes of read data. */ static int fsmc_correct_data(struct mtd_info *mtd, uint8_t *dat, uint8_t *read_ecc, uint8_t *calc_ecc) { struct fsmc_nand_data *host = container_of(mtd, struct fsmc_nand_data, mtd); struct nand_chip *chip = mtd->priv; struct fsmc_regs *regs = host->regs_va; unsigned int bank = host->bank; uint16_t err_idx[8]; uint64_t ecc_data[2]; uint32_t num_err, i; num_err = (readl(®s->bank_regs[bank].sts) >> 10) & 0xF; /* no bit flipping */ if (likely(num_err == 0)) return 0; /* too many errors */ if (unlikely(num_err > 8)) { /* * This is a temporary erase check. A newly erased page read * would result in an ecc error because the oob data is also * erased to FF and the calculated ecc for an FF data is not * FF..FF. * This is a workaround to skip performing correction in case * data is FF..FF * * Logic: * For every page, each bit written as 0 is counted until these * number of bits are greater than 8 (the maximum correction * capability of FSMC for each 512 + 13 bytes) */ int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8); int bits_data = count_written_bits(dat, chip->ecc.size, 8); if ((bits_ecc + bits_data) <= 8) { if (bits_data) memset(dat, 0xff, chip->ecc.size); return bits_data; } return -EBADMSG; } /* The calculated ecc is actually the correction index in data */ memcpy(ecc_data, calc_ecc, chip->ecc.bytes); /* * ------------------- calc_ecc[] bit wise -----------|--13 bits--| * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--| * * calc_ecc is a 104 bit information containing maximum of 8 error * offset informations of 13 bits each. calc_ecc is copied into a * uint64_t array and error offset indexes are populated in err_idx * array */ for (i = 0; i < 8; i++) { if (i == 4) { err_idx[4] = ((ecc_data[1] & 0x1) << 12) | ecc_data[0]; ecc_data[1] >>= 1; continue; } err_idx[i] = (ecc_data[i/4] & 0x1FFF); ecc_data[i/4] >>= 13; } num_err = (readl(®s->bank_regs[bank].sts) >> 10) & 0xF; if (num_err == 0xF) return -EBADMSG; i = 0; while (num_err--) { change_bit(0, (unsigned long *)&err_idx[i]); change_bit(1, (unsigned long *)&err_idx[i]); if (err_idx[i] <= chip->ecc.size * 8) { change_bit(err_idx[i], (unsigned long *)dat); i++; } } return i; } /* * fsmc_nand_probe - Probe function * @pdev: platform device structure */ static int __init fsmc_nand_probe(struct platform_device *pdev) { struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); struct fsmc_nand_data *host; struct mtd_info *mtd; struct nand_chip *nand; struct fsmc_regs *regs; struct resource *res; int ret = 0; u32 pid; int i; if (!pdata) { dev_err(&pdev->dev, "platform data is NULL\n"); return -EINVAL; } /* Allocate memory for the device structure (and zero it) */ host = kzalloc(sizeof(*host), GFP_KERNEL); if (!host) { dev_err(&pdev->dev, "failed to allocate device structure\n"); return -ENOMEM; } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data"); if (!res) { ret = -EIO; goto err_probe1; } host->resdata = request_mem_region(res->start, resource_size(res), pdev->name); if (!host->resdata) { ret = -EIO; goto err_probe1; } host->data_va = ioremap(res->start, resource_size(res)); if (!host->data_va) { ret = -EIO; goto err_probe1; } host->resaddr = request_mem_region(res->start + PLAT_NAND_ALE, resource_size(res), pdev->name); if (!host->resaddr) { ret = -EIO; goto err_probe1; } host->addr_va = ioremap(res->start + PLAT_NAND_ALE, resource_size(res)); if (!host->addr_va) { ret = -EIO; goto err_probe1; } host->rescmd = request_mem_region(res->start + PLAT_NAND_CLE, resource_size(res), pdev->name); if (!host->rescmd) { ret = -EIO; goto err_probe1; } host->cmd_va = ioremap(res->start + PLAT_NAND_CLE, resource_size(res)); if (!host->cmd_va) { ret = -EIO; goto err_probe1; } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs"); if (!res) { ret = -EIO; goto err_probe1; } host->resregs = request_mem_region(res->start, resource_size(res), pdev->name); if (!host->resregs) { ret = -EIO; goto err_probe1; } host->regs_va = ioremap(res->start, resource_size(res)); if (!host->regs_va) { ret = -EIO; goto err_probe1; } host->clk = clk_get(&pdev->dev, NULL); if (IS_ERR(host->clk)) { dev_err(&pdev->dev, "failed to fetch block clock\n"); ret = PTR_ERR(host->clk); host->clk = NULL; goto err_probe1; } ret = clk_enable(host->clk); if (ret) goto err_probe1; /* * This device ID is actually a common AMBA ID as used on the * AMBA PrimeCell bus. However it is not a PrimeCell. */ for (pid = 0, i = 0; i < 4; i++) pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8); host->pid = pid; dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, " "revision %02x, config %02x\n", AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid), AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid)); host->bank = pdata->bank; host->select_chip = pdata->select_bank; regs = host->regs_va; /* Link all private pointers */ mtd = &host->mtd; nand = &host->nand; mtd->priv = nand; nand->priv = host; host->mtd.owner = THIS_MODULE; nand->IO_ADDR_R = host->data_va; nand->IO_ADDR_W = host->data_va; nand->cmd_ctrl = fsmc_cmd_ctrl; nand->chip_delay = 30; nand->ecc.mode = NAND_ECC_HW; nand->ecc.hwctl = fsmc_enable_hwecc; nand->ecc.size = 512; nand->options = pdata->options; nand->select_chip = fsmc_select_chip; if (pdata->width == FSMC_NAND_BW16) nand->options |= NAND_BUSWIDTH_16; fsmc_nand_setup(regs, host->bank, nand->options & NAND_BUSWIDTH_16); if (AMBA_REV_BITS(host->pid) >= 8) { nand->ecc.read_page = fsmc_read_page_hwecc; nand->ecc.calculate = fsmc_read_hwecc_ecc4; nand->ecc.correct = fsmc_correct_data; nand->ecc.bytes = 13; } else { nand->ecc.calculate = fsmc_read_hwecc_ecc1; nand->ecc.correct = nand_correct_data; nand->ecc.bytes = 3; } /* * Scan to find existence of the device */ if (nand_scan_ident(&host->mtd, 1, NULL)) { ret = -ENXIO; dev_err(&pdev->dev, "No NAND Device found!\n"); goto err_probe; } if (AMBA_REV_BITS(host->pid) >= 8) { if (host->mtd.writesize == 512) { nand->ecc.layout = &fsmc_ecc4_sp_layout; host->ecc_place = &fsmc_ecc4_sp_place; } else { nand->ecc.layout = &fsmc_ecc4_lp_layout; host->ecc_place = &fsmc_ecc4_lp_place; } } else { nand->ecc.layout = &fsmc_ecc1_layout; } /* Second stage of scan to fill MTD data-structures */ if (nand_scan_tail(&host->mtd)) { ret = -ENXIO; goto err_probe; } /* * The partition information can is accessed by (in the same precedence) * * command line through Bootloader, * platform data, * default partition information present in driver. */ /* * Check for partition info passed */ host->mtd.name = "nand"; ret = mtd_device_parse_register(&host->mtd, NULL, 0, host->mtd.size <= 0x04000000 ? partition_info_16KB_blk : partition_info_128KB_blk, host->mtd.size <= 0x04000000 ? ARRAY_SIZE(partition_info_16KB_blk) : ARRAY_SIZE(partition_info_128KB_blk)); if (ret) goto err_probe; platform_set_drvdata(pdev, host); dev_info(&pdev->dev, "FSMC NAND driver registration successful\n"); return 0; err_probe: clk_disable(host->clk); err_probe1: if (host->clk) clk_put(host->clk); if (host->regs_va) iounmap(host->regs_va); if (host->resregs) release_mem_region(host->resregs->start, resource_size(host->resregs)); if (host->cmd_va) iounmap(host->cmd_va); if (host->rescmd) release_mem_region(host->rescmd->start, resource_size(host->rescmd)); if (host->addr_va) iounmap(host->addr_va); if (host->resaddr) release_mem_region(host->resaddr->start, resource_size(host->resaddr)); if (host->data_va) iounmap(host->data_va); if (host->resdata) release_mem_region(host->resdata->start, resource_size(host->resdata)); kfree(host); return ret; } /* * Clean up routine */ static int fsmc_nand_remove(struct platform_device *pdev) { struct fsmc_nand_data *host = platform_get_drvdata(pdev); platform_set_drvdata(pdev, NULL); if (host) { nand_release(&host->mtd); clk_disable(host->clk); clk_put(host->clk); iounmap(host->regs_va); release_mem_region(host->resregs->start, resource_size(host->resregs)); iounmap(host->cmd_va); release_mem_region(host->rescmd->start, resource_size(host->rescmd)); iounmap(host->addr_va); release_mem_region(host->resaddr->start, resource_size(host->resaddr)); iounmap(host->data_va); release_mem_region(host->resdata->start, resource_size(host->resdata)); kfree(host); } return 0; } #ifdef CONFIG_PM static int fsmc_nand_suspend(struct device *dev) { struct fsmc_nand_data *host = dev_get_drvdata(dev); if (host) clk_disable(host->clk); return 0; } static int fsmc_nand_resume(struct device *dev) { struct fsmc_nand_data *host = dev_get_drvdata(dev); if (host) clk_enable(host->clk); return 0; } static const struct dev_pm_ops fsmc_nand_pm_ops = { .suspend = fsmc_nand_suspend, .resume = fsmc_nand_resume, }; #endif static struct platform_driver fsmc_nand_driver = { .remove = fsmc_nand_remove, .driver = { .owner = THIS_MODULE, .name = "fsmc-nand", #ifdef CONFIG_PM .pm = &fsmc_nand_pm_ops, #endif }, }; static int __init fsmc_nand_init(void) { return platform_driver_probe(&fsmc_nand_driver, fsmc_nand_probe); } module_init(fsmc_nand_init); static void __exit fsmc_nand_exit(void) { platform_driver_unregister(&fsmc_nand_driver); } module_exit(fsmc_nand_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Vipin Kumar , Ashish Priyadarshi"); MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");