/* * davinci_mmc.c - TI DaVinci MMC/SD/SDIO driver * * Copyright (C) 2006 Texas Instruments. * Original author: Purushotam Kumar * Copyright (C) 2009 David Brownell * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Register Definitions */ #define DAVINCI_MMCCTL 0x00 /* Control Register */ #define DAVINCI_MMCCLK 0x04 /* Memory Clock Control Register */ #define DAVINCI_MMCST0 0x08 /* Status Register 0 */ #define DAVINCI_MMCST1 0x0C /* Status Register 1 */ #define DAVINCI_MMCIM 0x10 /* Interrupt Mask Register */ #define DAVINCI_MMCTOR 0x14 /* Response Time-Out Register */ #define DAVINCI_MMCTOD 0x18 /* Data Read Time-Out Register */ #define DAVINCI_MMCBLEN 0x1C /* Block Length Register */ #define DAVINCI_MMCNBLK 0x20 /* Number of Blocks Register */ #define DAVINCI_MMCNBLC 0x24 /* Number of Blocks Counter Register */ #define DAVINCI_MMCDRR 0x28 /* Data Receive Register */ #define DAVINCI_MMCDXR 0x2C /* Data Transmit Register */ #define DAVINCI_MMCCMD 0x30 /* Command Register */ #define DAVINCI_MMCARGHL 0x34 /* Argument Register */ #define DAVINCI_MMCRSP01 0x38 /* Response Register 0 and 1 */ #define DAVINCI_MMCRSP23 0x3C /* Response Register 0 and 1 */ #define DAVINCI_MMCRSP45 0x40 /* Response Register 0 and 1 */ #define DAVINCI_MMCRSP67 0x44 /* Response Register 0 and 1 */ #define DAVINCI_MMCDRSP 0x48 /* Data Response Register */ #define DAVINCI_MMCETOK 0x4C #define DAVINCI_MMCCIDX 0x50 /* Command Index Register */ #define DAVINCI_MMCCKC 0x54 #define DAVINCI_MMCTORC 0x58 #define DAVINCI_MMCTODC 0x5C #define DAVINCI_MMCBLNC 0x60 #define DAVINCI_SDIOCTL 0x64 #define DAVINCI_SDIOST0 0x68 #define DAVINCI_SDIOEN 0x6C #define DAVINCI_SDIOST 0x70 #define DAVINCI_MMCFIFOCTL 0x74 /* FIFO Control Register */ /* DAVINCI_MMCCTL definitions */ #define MMCCTL_DATRST (1 << 0) #define MMCCTL_CMDRST (1 << 1) #define MMCCTL_WIDTH_8_BIT (1 << 8) #define MMCCTL_WIDTH_4_BIT (1 << 2) #define MMCCTL_DATEG_DISABLED (0 << 6) #define MMCCTL_DATEG_RISING (1 << 6) #define MMCCTL_DATEG_FALLING (2 << 6) #define MMCCTL_DATEG_BOTH (3 << 6) #define MMCCTL_PERMDR_LE (0 << 9) #define MMCCTL_PERMDR_BE (1 << 9) #define MMCCTL_PERMDX_LE (0 << 10) #define MMCCTL_PERMDX_BE (1 << 10) /* DAVINCI_MMCCLK definitions */ #define MMCCLK_CLKEN (1 << 8) #define MMCCLK_CLKRT_MASK (0xFF << 0) /* IRQ bit definitions, for DAVINCI_MMCST0 and DAVINCI_MMCIM */ #define MMCST0_DATDNE BIT(0) /* data done */ #define MMCST0_BSYDNE BIT(1) /* busy done */ #define MMCST0_RSPDNE BIT(2) /* command done */ #define MMCST0_TOUTRD BIT(3) /* data read timeout */ #define MMCST0_TOUTRS BIT(4) /* command response timeout */ #define MMCST0_CRCWR BIT(5) /* data write CRC error */ #define MMCST0_CRCRD BIT(6) /* data read CRC error */ #define MMCST0_CRCRS BIT(7) /* command response CRC error */ #define MMCST0_DXRDY BIT(9) /* data transmit ready (fifo empty) */ #define MMCST0_DRRDY BIT(10) /* data receive ready (data in fifo)*/ #define MMCST0_DATED BIT(11) /* DAT3 edge detect */ #define MMCST0_TRNDNE BIT(12) /* transfer done */ /* DAVINCI_MMCST1 definitions */ #define MMCST1_BUSY (1 << 0) /* DAVINCI_MMCCMD definitions */ #define MMCCMD_CMD_MASK (0x3F << 0) #define MMCCMD_PPLEN (1 << 7) #define MMCCMD_BSYEXP (1 << 8) #define MMCCMD_RSPFMT_MASK (3 << 9) #define MMCCMD_RSPFMT_NONE (0 << 9) #define MMCCMD_RSPFMT_R1456 (1 << 9) #define MMCCMD_RSPFMT_R2 (2 << 9) #define MMCCMD_RSPFMT_R3 (3 << 9) #define MMCCMD_DTRW (1 << 11) #define MMCCMD_STRMTP (1 << 12) #define MMCCMD_WDATX (1 << 13) #define MMCCMD_INITCK (1 << 14) #define MMCCMD_DCLR (1 << 15) #define MMCCMD_DMATRIG (1 << 16) /* DAVINCI_MMCFIFOCTL definitions */ #define MMCFIFOCTL_FIFORST (1 << 0) #define MMCFIFOCTL_FIFODIR_WR (1 << 1) #define MMCFIFOCTL_FIFODIR_RD (0 << 1) #define MMCFIFOCTL_FIFOLEV (1 << 2) /* 0 = 128 bits, 1 = 256 bits */ #define MMCFIFOCTL_ACCWD_4 (0 << 3) /* access width of 4 bytes */ #define MMCFIFOCTL_ACCWD_3 (1 << 3) /* access width of 3 bytes */ #define MMCFIFOCTL_ACCWD_2 (2 << 3) /* access width of 2 bytes */ #define MMCFIFOCTL_ACCWD_1 (3 << 3) /* access width of 1 byte */ /* MMCSD Init clock in Hz in opendrain mode */ #define MMCSD_INIT_CLOCK 200000 /* * One scatterlist dma "segment" is at most MAX_CCNT rw_threshold units, * and we handle up to MAX_NR_SG segments. MMC_BLOCK_BOUNCE kicks in only * for drivers with max_segs == 1, making the segments bigger (64KB) * than the page or two that's otherwise typical. nr_sg (passed from * platform data) == 16 gives at least the same throughput boost, using * EDMA transfer linkage instead of spending CPU time copying pages. */ #define MAX_CCNT ((1 << 16) - 1) #define MAX_NR_SG 16 static unsigned rw_threshold = 32; module_param(rw_threshold, uint, S_IRUGO); MODULE_PARM_DESC(rw_threshold, "Read/Write threshold. Default = 32"); static unsigned __initdata use_dma = 1; module_param(use_dma, uint, 0); MODULE_PARM_DESC(use_dma, "Whether to use DMA or not. Default = 1"); struct mmc_davinci_host { struct mmc_command *cmd; struct mmc_data *data; struct mmc_host *mmc; struct clk *clk; unsigned int mmc_input_clk; void __iomem *base; struct resource *mem_res; int irq; unsigned char bus_mode; #define DAVINCI_MMC_DATADIR_NONE 0 #define DAVINCI_MMC_DATADIR_READ 1 #define DAVINCI_MMC_DATADIR_WRITE 2 unsigned char data_dir; unsigned char suspended; /* buffer is used during PIO of one scatterlist segment, and * is updated along with buffer_bytes_left. bytes_left applies * to all N blocks of the PIO transfer. */ u8 *buffer; u32 buffer_bytes_left; u32 bytes_left; u32 rxdma, txdma; bool use_dma; bool do_dma; /* Scatterlist DMA uses one or more parameter RAM entries: * the main one (associated with rxdma or txdma) plus zero or * more links. The entries for a given transfer differ only * by memory buffer (address, length) and link field. */ struct edmacc_param tx_template; struct edmacc_param rx_template; unsigned n_link; u32 links[MAX_NR_SG - 1]; /* For PIO we walk scatterlists one segment at a time. */ unsigned int sg_len; struct scatterlist *sg; /* Version of the MMC/SD controller */ u8 version; /* for ns in one cycle calculation */ unsigned ns_in_one_cycle; /* Number of sg segments */ u8 nr_sg; #ifdef CONFIG_CPU_FREQ struct notifier_block freq_transition; #endif }; /* PIO only */ static void mmc_davinci_sg_to_buf(struct mmc_davinci_host *host) { host->buffer_bytes_left = sg_dma_len(host->sg); host->buffer = sg_virt(host->sg); if (host->buffer_bytes_left > host->bytes_left) host->buffer_bytes_left = host->bytes_left; } static void davinci_fifo_data_trans(struct mmc_davinci_host *host, unsigned int n) { u8 *p; unsigned int i; if (host->buffer_bytes_left == 0) { host->sg = sg_next(host->data->sg); mmc_davinci_sg_to_buf(host); } p = host->buffer; if (n > host->buffer_bytes_left) n = host->buffer_bytes_left; host->buffer_bytes_left -= n; host->bytes_left -= n; /* NOTE: we never transfer more than rw_threshold bytes * to/from the fifo here; there's no I/O overlap. * This also assumes that access width( i.e. ACCWD) is 4 bytes */ if (host->data_dir == DAVINCI_MMC_DATADIR_WRITE) { for (i = 0; i < (n >> 2); i++) { writel(*((u32 *)p), host->base + DAVINCI_MMCDXR); p = p + 4; } if (n & 3) { iowrite8_rep(host->base + DAVINCI_MMCDXR, p, (n & 3)); p = p + (n & 3); } } else { for (i = 0; i < (n >> 2); i++) { *((u32 *)p) = readl(host->base + DAVINCI_MMCDRR); p = p + 4; } if (n & 3) { ioread8_rep(host->base + DAVINCI_MMCDRR, p, (n & 3)); p = p + (n & 3); } } host->buffer = p; } static void mmc_davinci_start_command(struct mmc_davinci_host *host, struct mmc_command *cmd) { u32 cmd_reg = 0; u32 im_val; dev_dbg(mmc_dev(host->mmc), "CMD%d, arg 0x%08x%s\n", cmd->opcode, cmd->arg, ({ char *s; switch (mmc_resp_type(cmd)) { case MMC_RSP_R1: s = ", R1/R5/R6/R7 response"; break; case MMC_RSP_R1B: s = ", R1b response"; break; case MMC_RSP_R2: s = ", R2 response"; break; case MMC_RSP_R3: s = ", R3/R4 response"; break; default: s = ", (R? response)"; break; }; s; })); host->cmd = cmd; switch (mmc_resp_type(cmd)) { case MMC_RSP_R1B: /* There's some spec confusion about when R1B is * allowed, but if the card doesn't issue a BUSY * then it's harmless for us to allow it. */ cmd_reg |= MMCCMD_BSYEXP; /* FALLTHROUGH */ case MMC_RSP_R1: /* 48 bits, CRC */ cmd_reg |= MMCCMD_RSPFMT_R1456; break; case MMC_RSP_R2: /* 136 bits, CRC */ cmd_reg |= MMCCMD_RSPFMT_R2; break; case MMC_RSP_R3: /* 48 bits, no CRC */ cmd_reg |= MMCCMD_RSPFMT_R3; break; default: cmd_reg |= MMCCMD_RSPFMT_NONE; dev_dbg(mmc_dev(host->mmc), "unknown resp_type %04x\n", mmc_resp_type(cmd)); break; } /* Set command index */ cmd_reg |= cmd->opcode; /* Enable EDMA transfer triggers */ if (host->do_dma) cmd_reg |= MMCCMD_DMATRIG; if (host->version == MMC_CTLR_VERSION_2 && host->data != NULL && host->data_dir == DAVINCI_MMC_DATADIR_READ) cmd_reg |= MMCCMD_DMATRIG; /* Setting whether command involves data transfer or not */ if (cmd->data) cmd_reg |= MMCCMD_WDATX; /* Setting whether stream or block transfer */ if (cmd->flags & MMC_DATA_STREAM) cmd_reg |= MMCCMD_STRMTP; /* Setting whether data read or write */ if (host->data_dir == DAVINCI_MMC_DATADIR_WRITE) cmd_reg |= MMCCMD_DTRW; if (host->bus_mode == MMC_BUSMODE_PUSHPULL) cmd_reg |= MMCCMD_PPLEN; /* set Command timeout */ writel(0x1FFF, host->base + DAVINCI_MMCTOR); /* Enable interrupt (calculate here, defer until FIFO is stuffed). */ im_val = MMCST0_RSPDNE | MMCST0_CRCRS | MMCST0_TOUTRS; if (host->data_dir == DAVINCI_MMC_DATADIR_WRITE) { im_val |= MMCST0_DATDNE | MMCST0_CRCWR; if (!host->do_dma) im_val |= MMCST0_DXRDY; } else if (host->data_dir == DAVINCI_MMC_DATADIR_READ) { im_val |= MMCST0_DATDNE | MMCST0_CRCRD | MMCST0_TOUTRD; if (!host->do_dma) im_val |= MMCST0_DRRDY; } /* * Before non-DMA WRITE commands the controller needs priming: * FIFO should be populated with 32 bytes i.e. whatever is the FIFO size */ if (!host->do_dma && (host->data_dir == DAVINCI_MMC_DATADIR_WRITE)) davinci_fifo_data_trans(host, rw_threshold); writel(cmd->arg, host->base + DAVINCI_MMCARGHL); writel(cmd_reg, host->base + DAVINCI_MMCCMD); writel(im_val, host->base + DAVINCI_MMCIM); } /*----------------------------------------------------------------------*/ /* DMA infrastructure */ static void davinci_abort_dma(struct mmc_davinci_host *host) { int sync_dev; if (host->data_dir == DAVINCI_MMC_DATADIR_READ) sync_dev = host->rxdma; else sync_dev = host->txdma; edma_stop(sync_dev); edma_clean_channel(sync_dev); } static void mmc_davinci_xfer_done(struct mmc_davinci_host *host, struct mmc_data *data); static void mmc_davinci_dma_cb(unsigned channel, u16 ch_status, void *data) { if (DMA_COMPLETE != ch_status) { struct mmc_davinci_host *host = data; /* Currently means: DMA Event Missed, or "null" transfer * request was seen. In the future, TC errors (like bad * addresses) might be presented too. */ dev_warn(mmc_dev(host->mmc), "DMA %s error\n", (host->data->flags & MMC_DATA_WRITE) ? "write" : "read"); host->data->error = -EIO; mmc_davinci_xfer_done(host, host->data); } } /* Set up tx or rx template, to be modified and updated later */ static void __init mmc_davinci_dma_setup(struct mmc_davinci_host *host, bool tx, struct edmacc_param *template) { unsigned sync_dev; const u16 acnt = 4; const u16 bcnt = rw_threshold >> 2; const u16 ccnt = 0; u32 src_port = 0; u32 dst_port = 0; s16 src_bidx, dst_bidx; s16 src_cidx, dst_cidx; /* * A-B Sync transfer: each DMA request is for one "frame" of * rw_threshold bytes, broken into "acnt"-size chunks repeated * "bcnt" times. Each segment needs "ccnt" such frames; since * we tell the block layer our mmc->max_seg_size limit, we can * trust (later) that it's within bounds. * * The FIFOs are read/written in 4-byte chunks (acnt == 4) and * EDMA will optimize memory operations to use larger bursts. */ if (tx) { sync_dev = host->txdma; /* src_prt, ccnt, and link to be set up later */ src_bidx = acnt; src_cidx = acnt * bcnt; dst_port = host->mem_res->start + DAVINCI_MMCDXR; dst_bidx = 0; dst_cidx = 0; } else { sync_dev = host->rxdma; src_port = host->mem_res->start + DAVINCI_MMCDRR; src_bidx = 0; src_cidx = 0; /* dst_prt, ccnt, and link to be set up later */ dst_bidx = acnt; dst_cidx = acnt * bcnt; } /* * We can't use FIFO mode for the FIFOs because MMC FIFO addresses * are not 256-bit (32-byte) aligned. So we use INCR, and the W8BIT * parameter is ignored. */ edma_set_src(sync_dev, src_port, INCR, W8BIT); edma_set_dest(sync_dev, dst_port, INCR, W8BIT); edma_set_src_index(sync_dev, src_bidx, src_cidx); edma_set_dest_index(sync_dev, dst_bidx, dst_cidx); edma_set_transfer_params(sync_dev, acnt, bcnt, ccnt, 8, ABSYNC); edma_read_slot(sync_dev, template); /* don't bother with irqs or chaining */ template->opt |= EDMA_CHAN_SLOT(sync_dev) << 12; } static void mmc_davinci_send_dma_request(struct mmc_davinci_host *host, struct mmc_data *data) { struct edmacc_param *template; int channel, slot; unsigned link; struct scatterlist *sg; unsigned sg_len; unsigned bytes_left = host->bytes_left; const unsigned shift = ffs(rw_threshold) - 1;; if (host->data_dir == DAVINCI_MMC_DATADIR_WRITE) { template = &host->tx_template; channel = host->txdma; } else { template = &host->rx_template; channel = host->rxdma; } /* We know sg_len and ccnt will never be out of range because * we told the mmc layer which in turn tells the block layer * to ensure that it only hands us one scatterlist segment * per EDMA PARAM entry. Update the PARAM * entries needed for each segment of this scatterlist. */ for (slot = channel, link = 0, sg = data->sg, sg_len = host->sg_len; sg_len-- != 0 && bytes_left; sg = sg_next(sg), slot = host->links[link++]) { u32 buf = sg_dma_address(sg); unsigned count = sg_dma_len(sg); template->link_bcntrld = sg_len ? (EDMA_CHAN_SLOT(host->links[link]) << 5) : 0xffff; if (count > bytes_left) count = bytes_left; bytes_left -= count; if (host->data_dir == DAVINCI_MMC_DATADIR_WRITE) template->src = buf; else template->dst = buf; template->ccnt = count >> shift; edma_write_slot(slot, template); } if (host->version == MMC_CTLR_VERSION_2) edma_clear_event(channel); edma_start(channel); } static int mmc_davinci_start_dma_transfer(struct mmc_davinci_host *host, struct mmc_data *data) { int i; int mask = rw_threshold - 1; host->sg_len = dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len, ((data->flags & MMC_DATA_WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)); /* no individual DMA segment should need a partial FIFO */ for (i = 0; i < host->sg_len; i++) { if (sg_dma_len(data->sg + i) & mask) { dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, (data->flags & MMC_DATA_WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE); return -1; } } host->do_dma = 1; mmc_davinci_send_dma_request(host, data); return 0; } static void __init_or_module davinci_release_dma_channels(struct mmc_davinci_host *host) { unsigned i; if (!host->use_dma) return; for (i = 0; i < host->n_link; i++) edma_free_slot(host->links[i]); edma_free_channel(host->txdma); edma_free_channel(host->rxdma); } static int __init davinci_acquire_dma_channels(struct mmc_davinci_host *host) { u32 link_size; int r, i; /* Acquire master DMA write channel */ r = edma_alloc_channel(host->txdma, mmc_davinci_dma_cb, host, EVENTQ_DEFAULT); if (r < 0) { dev_warn(mmc_dev(host->mmc), "alloc %s channel err %d\n", "tx", r); return r; } mmc_davinci_dma_setup(host, true, &host->tx_template); /* Acquire master DMA read channel */ r = edma_alloc_channel(host->rxdma, mmc_davinci_dma_cb, host, EVENTQ_DEFAULT); if (r < 0) { dev_warn(mmc_dev(host->mmc), "alloc %s channel err %d\n", "rx", r); goto free_master_write; } mmc_davinci_dma_setup(host, false, &host->rx_template); /* Allocate parameter RAM slots, which will later be bound to a * channel as needed to handle a scatterlist. */ link_size = min_t(unsigned, host->nr_sg, ARRAY_SIZE(host->links)); for (i = 0; i < link_size; i++) { r = edma_alloc_slot(EDMA_CTLR(host->txdma), EDMA_SLOT_ANY); if (r < 0) { dev_dbg(mmc_dev(host->mmc), "dma PaRAM alloc --> %d\n", r); break; } host->links[i] = r; } host->n_link = i; return 0; free_master_write: edma_free_channel(host->txdma); return r; } /*----------------------------------------------------------------------*/ static void mmc_davinci_prepare_data(struct mmc_davinci_host *host, struct mmc_request *req) { int fifo_lev = (rw_threshold == 32) ? MMCFIFOCTL_FIFOLEV : 0; int timeout; struct mmc_data *data = req->data; if (host->version == MMC_CTLR_VERSION_2) fifo_lev = (rw_threshold == 64) ? MMCFIFOCTL_FIFOLEV : 0; host->data = data; if (data == NULL) { host->data_dir = DAVINCI_MMC_DATADIR_NONE; writel(0, host->base + DAVINCI_MMCBLEN); writel(0, host->base + DAVINCI_MMCNBLK); return; } dev_dbg(mmc_dev(host->mmc), "%s %s, %d blocks of %d bytes\n", (data->flags & MMC_DATA_STREAM) ? "stream" : "block", (data->flags & MMC_DATA_WRITE) ? "write" : "read", data->blocks, data->blksz); dev_dbg(mmc_dev(host->mmc), " DTO %d cycles + %d ns\n", data->timeout_clks, data->timeout_ns); timeout = data->timeout_clks + (data->timeout_ns / host->ns_in_one_cycle); if (timeout > 0xffff) timeout = 0xffff; writel(timeout, host->base + DAVINCI_MMCTOD); writel(data->blocks, host->base + DAVINCI_MMCNBLK); writel(data->blksz, host->base + DAVINCI_MMCBLEN); /* Configure the FIFO */ switch (data->flags & MMC_DATA_WRITE) { case MMC_DATA_WRITE: host->data_dir = DAVINCI_MMC_DATADIR_WRITE; writel(fifo_lev | MMCFIFOCTL_FIFODIR_WR | MMCFIFOCTL_FIFORST, host->base + DAVINCI_MMCFIFOCTL); writel(fifo_lev | MMCFIFOCTL_FIFODIR_WR, host->base + DAVINCI_MMCFIFOCTL); break; default: host->data_dir = DAVINCI_MMC_DATADIR_READ; writel(fifo_lev | MMCFIFOCTL_FIFODIR_RD | MMCFIFOCTL_FIFORST, host->base + DAVINCI_MMCFIFOCTL); writel(fifo_lev | MMCFIFOCTL_FIFODIR_RD, host->base + DAVINCI_MMCFIFOCTL); break; } host->buffer = NULL; host->bytes_left = data->blocks * data->blksz; /* For now we try to use DMA whenever we won't need partial FIFO * reads or writes, either for the whole transfer (as tested here) * or for any individual scatterlist segment (tested when we call * start_dma_transfer). * * While we *could* change that, unusual block sizes are rarely * used. The occasional fallback to PIO should't hurt. */ if (host->use_dma && (host->bytes_left & (rw_threshold - 1)) == 0 && mmc_davinci_start_dma_transfer(host, data) == 0) { /* zero this to ensure we take no PIO paths */ host->bytes_left = 0; } else { /* Revert to CPU Copy */ host->sg_len = data->sg_len; host->sg = host->data->sg; mmc_davinci_sg_to_buf(host); } } static void mmc_davinci_request(struct mmc_host *mmc, struct mmc_request *req) { struct mmc_davinci_host *host = mmc_priv(mmc); unsigned long timeout = jiffies + msecs_to_jiffies(900); u32 mmcst1 = 0; /* Card may still be sending BUSY after a previous operation, * typically some kind of write. If so, we can't proceed yet. */ while (time_before(jiffies, timeout)) { mmcst1 = readl(host->base + DAVINCI_MMCST1); if (!(mmcst1 & MMCST1_BUSY)) break; cpu_relax(); } if (mmcst1 & MMCST1_BUSY) { dev_err(mmc_dev(host->mmc), "still BUSY? bad ... \n"); req->cmd->error = -ETIMEDOUT; mmc_request_done(mmc, req); return; } host->do_dma = 0; mmc_davinci_prepare_data(host, req); mmc_davinci_start_command(host, req->cmd); } static unsigned int calculate_freq_for_card(struct mmc_davinci_host *host, unsigned int mmc_req_freq) { unsigned int mmc_freq = 0, mmc_pclk = 0, mmc_push_pull_divisor = 0; mmc_pclk = host->mmc_input_clk; if (mmc_req_freq && mmc_pclk > (2 * mmc_req_freq)) mmc_push_pull_divisor = ((unsigned int)mmc_pclk / (2 * mmc_req_freq)) - 1; else mmc_push_pull_divisor = 0; mmc_freq = (unsigned int)mmc_pclk / (2 * (mmc_push_pull_divisor + 1)); if (mmc_freq > mmc_req_freq) mmc_push_pull_divisor = mmc_push_pull_divisor + 1; /* Convert ns to clock cycles */ if (mmc_req_freq <= 400000) host->ns_in_one_cycle = (1000000) / (((mmc_pclk / (2 * (mmc_push_pull_divisor + 1)))/1000)); else host->ns_in_one_cycle = (1000000) / (((mmc_pclk / (2 * (mmc_push_pull_divisor + 1)))/1000000)); return mmc_push_pull_divisor; } static void calculate_clk_divider(struct mmc_host *mmc, struct mmc_ios *ios) { unsigned int open_drain_freq = 0, mmc_pclk = 0; unsigned int mmc_push_pull_freq = 0; struct mmc_davinci_host *host = mmc_priv(mmc); if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) { u32 temp; /* Ignoring the init clock value passed for fixing the inter * operability with different cards. */ open_drain_freq = ((unsigned int)mmc_pclk / (2 * MMCSD_INIT_CLOCK)) - 1; if (open_drain_freq > 0xFF) open_drain_freq = 0xFF; temp = readl(host->base + DAVINCI_MMCCLK) & ~MMCCLK_CLKRT_MASK; temp |= open_drain_freq; writel(temp, host->base + DAVINCI_MMCCLK); /* Convert ns to clock cycles */ host->ns_in_one_cycle = (1000000) / (MMCSD_INIT_CLOCK/1000); } else { u32 temp; mmc_push_pull_freq = calculate_freq_for_card(host, ios->clock); if (mmc_push_pull_freq > 0xFF) mmc_push_pull_freq = 0xFF; temp = readl(host->base + DAVINCI_MMCCLK) & ~MMCCLK_CLKEN; writel(temp, host->base + DAVINCI_MMCCLK); udelay(10); temp = readl(host->base + DAVINCI_MMCCLK) & ~MMCCLK_CLKRT_MASK; temp |= mmc_push_pull_freq; writel(temp, host->base + DAVINCI_MMCCLK); writel(temp | MMCCLK_CLKEN, host->base + DAVINCI_MMCCLK); udelay(10); } } static void mmc_davinci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) { struct mmc_davinci_host *host = mmc_priv(mmc); dev_dbg(mmc_dev(host->mmc), "clock %dHz busmode %d powermode %d Vdd %04x\n", ios->clock, ios->bus_mode, ios->power_mode, ios->vdd); switch (ios->bus_width) { case MMC_BUS_WIDTH_8: dev_dbg(mmc_dev(host->mmc), "Enabling 8 bit mode\n"); writel((readl(host->base + DAVINCI_MMCCTL) & ~MMCCTL_WIDTH_4_BIT) | MMCCTL_WIDTH_8_BIT, host->base + DAVINCI_MMCCTL); break; case MMC_BUS_WIDTH_4: dev_dbg(mmc_dev(host->mmc), "Enabling 4 bit mode\n"); if (host->version == MMC_CTLR_VERSION_2) writel((readl(host->base + DAVINCI_MMCCTL) & ~MMCCTL_WIDTH_8_BIT) | MMCCTL_WIDTH_4_BIT, host->base + DAVINCI_MMCCTL); else writel(readl(host->base + DAVINCI_MMCCTL) | MMCCTL_WIDTH_4_BIT, host->base + DAVINCI_MMCCTL); break; case MMC_BUS_WIDTH_1: dev_dbg(mmc_dev(host->mmc), "Enabling 1 bit mode\n"); if (host->version == MMC_CTLR_VERSION_2) writel(readl(host->base + DAVINCI_MMCCTL) & ~(MMCCTL_WIDTH_8_BIT | MMCCTL_WIDTH_4_BIT), host->base + DAVINCI_MMCCTL); else writel(readl(host->base + DAVINCI_MMCCTL) & ~MMCCTL_WIDTH_4_BIT, host->base + DAVINCI_MMCCTL); break; } calculate_clk_divider(mmc, ios); host->bus_mode = ios->bus_mode; if (ios->power_mode == MMC_POWER_UP) { unsigned long timeout = jiffies + msecs_to_jiffies(50); bool lose = true; /* Send clock cycles, poll completion */ writel(0, host->base + DAVINCI_MMCARGHL); writel(MMCCMD_INITCK, host->base + DAVINCI_MMCCMD); while (time_before(jiffies, timeout)) { u32 tmp = readl(host->base + DAVINCI_MMCST0); if (tmp & MMCST0_RSPDNE) { lose = false; break; } cpu_relax(); } if (lose) dev_warn(mmc_dev(host->mmc), "powerup timeout\n"); } /* FIXME on power OFF, reset things ... */ } static void mmc_davinci_xfer_done(struct mmc_davinci_host *host, struct mmc_data *data) { host->data = NULL; if (host->do_dma) { davinci_abort_dma(host); dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, (data->flags & MMC_DATA_WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE); host->do_dma = false; } host->data_dir = DAVINCI_MMC_DATADIR_NONE; if (!data->stop || (host->cmd && host->cmd->error)) { mmc_request_done(host->mmc, data->mrq); writel(0, host->base + DAVINCI_MMCIM); } else mmc_davinci_start_command(host, data->stop); } static void mmc_davinci_cmd_done(struct mmc_davinci_host *host, struct mmc_command *cmd) { host->cmd = NULL; if (cmd->flags & MMC_RSP_PRESENT) { if (cmd->flags & MMC_RSP_136) { /* response type 2 */ cmd->resp[3] = readl(host->base + DAVINCI_MMCRSP01); cmd->resp[2] = readl(host->base + DAVINCI_MMCRSP23); cmd->resp[1] = readl(host->base + DAVINCI_MMCRSP45); cmd->resp[0] = readl(host->base + DAVINCI_MMCRSP67); } else { /* response types 1, 1b, 3, 4, 5, 6 */ cmd->resp[0] = readl(host->base + DAVINCI_MMCRSP67); } } if (host->data == NULL || cmd->error) { if (cmd->error == -ETIMEDOUT) cmd->mrq->cmd->retries = 0; mmc_request_done(host->mmc, cmd->mrq); writel(0, host->base + DAVINCI_MMCIM); } } static inline void mmc_davinci_reset_ctrl(struct mmc_davinci_host *host, int val) { u32 temp; temp = readl(host->base + DAVINCI_MMCCTL); if (val) /* reset */ temp |= MMCCTL_CMDRST | MMCCTL_DATRST; else /* enable */ temp &= ~(MMCCTL_CMDRST | MMCCTL_DATRST); writel(temp, host->base + DAVINCI_MMCCTL); udelay(10); } static void davinci_abort_data(struct mmc_davinci_host *host, struct mmc_data *data) { mmc_davinci_reset_ctrl(host, 1); mmc_davinci_reset_ctrl(host, 0); } static irqreturn_t mmc_davinci_irq(int irq, void *dev_id) { struct mmc_davinci_host *host = (struct mmc_davinci_host *)dev_id; unsigned int status, qstatus; int end_command = 0; int end_transfer = 0; struct mmc_data *data = host->data; if (host->cmd == NULL && host->data == NULL) { status = readl(host->base + DAVINCI_MMCST0); dev_dbg(mmc_dev(host->mmc), "Spurious interrupt 0x%04x\n", status); /* Disable the interrupt from mmcsd */ writel(0, host->base + DAVINCI_MMCIM); return IRQ_NONE; } status = readl(host->base + DAVINCI_MMCST0); qstatus = status; /* handle FIFO first when using PIO for data. * bytes_left will decrease to zero as I/O progress and status will * read zero over iteration because this controller status * register(MMCST0) reports any status only once and it is cleared * by read. So, it is not unbouned loop even in the case of * non-dma. */ while (host->bytes_left && (status & (MMCST0_DXRDY | MMCST0_DRRDY))) { davinci_fifo_data_trans(host, rw_threshold); status = readl(host->base + DAVINCI_MMCST0); if (!status) break; qstatus |= status; } if (qstatus & MMCST0_DATDNE) { /* All blocks sent/received, and CRC checks passed */ if (data != NULL) { if ((host->do_dma == 0) && (host->bytes_left > 0)) { /* if datasize < rw_threshold * no RX ints are generated */ davinci_fifo_data_trans(host, host->bytes_left); } end_transfer = 1; data->bytes_xfered = data->blocks * data->blksz; } else { dev_err(mmc_dev(host->mmc), "DATDNE with no host->data\n"); } } if (qstatus & MMCST0_TOUTRD) { /* Read data timeout */ data->error = -ETIMEDOUT; end_transfer = 1; dev_dbg(mmc_dev(host->mmc), "read data timeout, status %x\n", qstatus); davinci_abort_data(host, data); } if (qstatus & (MMCST0_CRCWR | MMCST0_CRCRD)) { /* Data CRC error */ data->error = -EILSEQ; end_transfer = 1; /* NOTE: this controller uses CRCWR to report both CRC * errors and timeouts (on writes). MMCDRSP values are * only weakly documented, but 0x9f was clearly a timeout * case and the two three-bit patterns in various SD specs * (101, 010) aren't part of it ... */ if (qstatus & MMCST0_CRCWR) { u32 temp = readb(host->base + DAVINCI_MMCDRSP); if (temp == 0x9f) data->error = -ETIMEDOUT; } dev_dbg(mmc_dev(host->mmc), "data %s %s error\n", (qstatus & MMCST0_CRCWR) ? "write" : "read", (data->error == -ETIMEDOUT) ? "timeout" : "CRC"); davinci_abort_data(host, data); } if (qstatus & MMCST0_TOUTRS) { /* Command timeout */ if (host->cmd) { dev_dbg(mmc_dev(host->mmc), "CMD%d timeout, status %x\n", host->cmd->opcode, qstatus); host->cmd->error = -ETIMEDOUT; if (data) { end_transfer = 1; davinci_abort_data(host, data); } else end_command = 1; } } if (qstatus & MMCST0_CRCRS) { /* Command CRC error */ dev_dbg(mmc_dev(host->mmc), "Command CRC error\n"); if (host->cmd) { host->cmd->error = -EILSEQ; end_command = 1; } } if (qstatus & MMCST0_RSPDNE) { /* End of command phase */ end_command = (int) host->cmd; } if (end_command) mmc_davinci_cmd_done(host, host->cmd); if (end_transfer) mmc_davinci_xfer_done(host, data); return IRQ_HANDLED; } static int mmc_davinci_get_cd(struct mmc_host *mmc) { struct platform_device *pdev = to_platform_device(mmc->parent); struct davinci_mmc_config *config = pdev->dev.platform_data; if (!config || !config->get_cd) return -ENOSYS; return config->get_cd(pdev->id); } static int mmc_davinci_get_ro(struct mmc_host *mmc) { struct platform_device *pdev = to_platform_device(mmc->parent); struct davinci_mmc_config *config = pdev->dev.platform_data; if (!config || !config->get_ro) return -ENOSYS; return config->get_ro(pdev->id); } static struct mmc_host_ops mmc_davinci_ops = { .request = mmc_davinci_request, .set_ios = mmc_davinci_set_ios, .get_cd = mmc_davinci_get_cd, .get_ro = mmc_davinci_get_ro, }; /*----------------------------------------------------------------------*/ #ifdef CONFIG_CPU_FREQ static int mmc_davinci_cpufreq_transition(struct notifier_block *nb, unsigned long val, void *data) { struct mmc_davinci_host *host; unsigned int mmc_pclk; struct mmc_host *mmc; unsigned long flags; host = container_of(nb, struct mmc_davinci_host, freq_transition); mmc = host->mmc; mmc_pclk = clk_get_rate(host->clk); if (val == CPUFREQ_POSTCHANGE) { spin_lock_irqsave(&mmc->lock, flags); host->mmc_input_clk = mmc_pclk; calculate_clk_divider(mmc, &mmc->ios); spin_unlock_irqrestore(&mmc->lock, flags); } return 0; } static inline int mmc_davinci_cpufreq_register(struct mmc_davinci_host *host) { host->freq_transition.notifier_call = mmc_davinci_cpufreq_transition; return cpufreq_register_notifier(&host->freq_transition, CPUFREQ_TRANSITION_NOTIFIER); } static inline void mmc_davinci_cpufreq_deregister(struct mmc_davinci_host *host) { cpufreq_unregister_notifier(&host->freq_transition, CPUFREQ_TRANSITION_NOTIFIER); } #else static inline int mmc_davinci_cpufreq_register(struct mmc_davinci_host *host) { return 0; } static inline void mmc_davinci_cpufreq_deregister(struct mmc_davinci_host *host) { } #endif static void __init init_mmcsd_host(struct mmc_davinci_host *host) { mmc_davinci_reset_ctrl(host, 1); writel(0, host->base + DAVINCI_MMCCLK); writel(MMCCLK_CLKEN, host->base + DAVINCI_MMCCLK); writel(0x1FFF, host->base + DAVINCI_MMCTOR); writel(0xFFFF, host->base + DAVINCI_MMCTOD); mmc_davinci_reset_ctrl(host, 0); } static int __init davinci_mmcsd_probe(struct platform_device *pdev) { struct davinci_mmc_config *pdata = pdev->dev.platform_data; struct mmc_davinci_host *host = NULL; struct mmc_host *mmc = NULL; struct resource *r, *mem = NULL; int ret = 0, irq = 0; size_t mem_size; /* REVISIT: when we're fully converted, fail if pdata is NULL */ ret = -ENODEV; r = platform_get_resource(pdev, IORESOURCE_MEM, 0); irq = platform_get_irq(pdev, 0); if (!r || irq == NO_IRQ) goto out; ret = -EBUSY; mem_size = resource_size(r); mem = request_mem_region(r->start, mem_size, pdev->name); if (!mem) goto out; ret = -ENOMEM; mmc = mmc_alloc_host(sizeof(struct mmc_davinci_host), &pdev->dev); if (!mmc) goto out; host = mmc_priv(mmc); host->mmc = mmc; /* Important */ r = platform_get_resource(pdev, IORESOURCE_DMA, 0); if (!r) goto out; host->rxdma = r->start; r = platform_get_resource(pdev, IORESOURCE_DMA, 1); if (!r) goto out; host->txdma = r->start; host->mem_res = mem; host->base = ioremap(mem->start, mem_size); if (!host->base) goto out; ret = -ENXIO; host->clk = clk_get(&pdev->dev, "MMCSDCLK"); if (IS_ERR(host->clk)) { ret = PTR_ERR(host->clk); goto out; } clk_enable(host->clk); host->mmc_input_clk = clk_get_rate(host->clk); init_mmcsd_host(host); if (pdata->nr_sg) host->nr_sg = pdata->nr_sg - 1; if (host->nr_sg > MAX_NR_SG || !host->nr_sg) host->nr_sg = MAX_NR_SG; host->use_dma = use_dma; host->irq = irq; if (host->use_dma && davinci_acquire_dma_channels(host) != 0) host->use_dma = 0; /* REVISIT: someday, support IRQ-driven card detection. */ mmc->caps |= MMC_CAP_NEEDS_POLL; mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY; if (pdata && (pdata->wires == 4 || pdata->wires == 0)) mmc->caps |= MMC_CAP_4_BIT_DATA; if (pdata && (pdata->wires == 8)) mmc->caps |= (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA); host->version = pdata->version; mmc->ops = &mmc_davinci_ops; mmc->f_min = 312500; mmc->f_max = 25000000; if (pdata && pdata->max_freq) mmc->f_max = pdata->max_freq; if (pdata && pdata->caps) mmc->caps |= pdata->caps; mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34; /* With no iommu coalescing pages, each phys_seg is a hw_seg. * Each hw_seg uses one EDMA parameter RAM slot, always one * channel and then usually some linked slots. */ mmc->max_segs = 1 + host->n_link; /* EDMA limit per hw segment (one or two MBytes) */ mmc->max_seg_size = MAX_CCNT * rw_threshold; /* MMC/SD controller limits for multiblock requests */ mmc->max_blk_size = 4095; /* BLEN is 12 bits */ mmc->max_blk_count = 65535; /* NBLK is 16 bits */ mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count; dev_dbg(mmc_dev(host->mmc), "max_segs=%d\n", mmc->max_segs); dev_dbg(mmc_dev(host->mmc), "max_blk_size=%d\n", mmc->max_blk_size); dev_dbg(mmc_dev(host->mmc), "max_req_size=%d\n", mmc->max_req_size); dev_dbg(mmc_dev(host->mmc), "max_seg_size=%d\n", mmc->max_seg_size); platform_set_drvdata(pdev, host); ret = mmc_davinci_cpufreq_register(host); if (ret) { dev_err(&pdev->dev, "failed to register cpufreq\n"); goto cpu_freq_fail; } ret = mmc_add_host(mmc); if (ret < 0) goto out; ret = request_irq(irq, mmc_davinci_irq, 0, mmc_hostname(mmc), host); if (ret) goto out; rename_region(mem, mmc_hostname(mmc)); dev_info(mmc_dev(host->mmc), "Using %s, %d-bit mode\n", host->use_dma ? "DMA" : "PIO", (mmc->caps & MMC_CAP_4_BIT_DATA) ? 4 : 1); return 0; out: mmc_davinci_cpufreq_deregister(host); cpu_freq_fail: if (host) { davinci_release_dma_channels(host); if (host->clk) { clk_disable(host->clk); clk_put(host->clk); } if (host->base) iounmap(host->base); } if (mmc) mmc_free_host(mmc); if (mem) release_resource(mem); dev_dbg(&pdev->dev, "probe err %d\n", ret); return ret; } static int __exit davinci_mmcsd_remove(struct platform_device *pdev) { struct mmc_davinci_host *host = platform_get_drvdata(pdev); platform_set_drvdata(pdev, NULL); if (host) { mmc_davinci_cpufreq_deregister(host); mmc_remove_host(host->mmc); free_irq(host->irq, host); davinci_release_dma_channels(host); clk_disable(host->clk); clk_put(host->clk); iounmap(host->base); release_resource(host->mem_res); mmc_free_host(host->mmc); } return 0; } #ifdef CONFIG_PM static int davinci_mmcsd_suspend(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct mmc_davinci_host *host = platform_get_drvdata(pdev); int ret; mmc_host_enable(host->mmc); ret = mmc_suspend_host(host->mmc); if (!ret) { writel(0, host->base + DAVINCI_MMCIM); mmc_davinci_reset_ctrl(host, 1); mmc_host_disable(host->mmc); clk_disable(host->clk); host->suspended = 1; } else { host->suspended = 0; mmc_host_disable(host->mmc); } return ret; } static int davinci_mmcsd_resume(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct mmc_davinci_host *host = platform_get_drvdata(pdev); int ret; if (!host->suspended) return 0; clk_enable(host->clk); mmc_host_enable(host->mmc); mmc_davinci_reset_ctrl(host, 0); ret = mmc_resume_host(host->mmc); if (!ret) host->suspended = 0; return ret; } static const struct dev_pm_ops davinci_mmcsd_pm = { .suspend = davinci_mmcsd_suspend, .resume = davinci_mmcsd_resume, }; #define davinci_mmcsd_pm_ops (&davinci_mmcsd_pm) #else #define davinci_mmcsd_pm_ops NULL #endif static struct platform_driver davinci_mmcsd_driver = { .driver = { .name = "davinci_mmc", .owner = THIS_MODULE, .pm = davinci_mmcsd_pm_ops, }, .remove = __exit_p(davinci_mmcsd_remove), }; static int __init davinci_mmcsd_init(void) { return platform_driver_probe(&davinci_mmcsd_driver, davinci_mmcsd_probe); } module_init(davinci_mmcsd_init); static void __exit davinci_mmcsd_exit(void) { platform_driver_unregister(&davinci_mmcsd_driver); } module_exit(davinci_mmcsd_exit); MODULE_AUTHOR("Texas Instruments India"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("MMC/SD driver for Davinci MMC controller");