/* * SN Platform GRU Driver * * FAULT HANDLER FOR GRU DETECTED TLB MISSES * * This file contains code that handles TLB misses within the GRU. * These misses are reported either via interrupts or user polling of * the user CB. * * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include #include #include "gru.h" #include "grutables.h" #include "grulib.h" #include "gru_instructions.h" #include /* Return codes for vtop functions */ #define VTOP_SUCCESS 0 #define VTOP_INVALID -1 #define VTOP_RETRY -2 /* * Test if a physical address is a valid GRU GSEG address */ static inline int is_gru_paddr(unsigned long paddr) { return paddr >= gru_start_paddr && paddr < gru_end_paddr; } /* * Find the vma of a GRU segment. Caller must hold mmap_sem. */ struct vm_area_struct *gru_find_vma(unsigned long vaddr) { struct vm_area_struct *vma; vma = find_vma(current->mm, vaddr); if (vma && vma->vm_start <= vaddr && vma->vm_ops == &gru_vm_ops) return vma; return NULL; } /* * Find and lock the gts that contains the specified user vaddr. * * Returns: * - *gts with the mmap_sem locked for read and the GTS locked. * - NULL if vaddr invalid OR is not a valid GSEG vaddr. */ static struct gru_thread_state *gru_find_lock_gts(unsigned long vaddr) { struct mm_struct *mm = current->mm; struct vm_area_struct *vma; struct gru_thread_state *gts = NULL; down_read(&mm->mmap_sem); vma = gru_find_vma(vaddr); if (vma) gts = gru_find_thread_state(vma, TSID(vaddr, vma)); if (gts) mutex_lock(>s->ts_ctxlock); else up_read(&mm->mmap_sem); return gts; } static struct gru_thread_state *gru_alloc_locked_gts(unsigned long vaddr) { struct mm_struct *mm = current->mm; struct vm_area_struct *vma; struct gru_thread_state *gts = ERR_PTR(-EINVAL); down_write(&mm->mmap_sem); vma = gru_find_vma(vaddr); if (!vma) goto err; gts = gru_alloc_thread_state(vma, TSID(vaddr, vma)); if (IS_ERR(gts)) goto err; mutex_lock(>s->ts_ctxlock); downgrade_write(&mm->mmap_sem); return gts; err: up_write(&mm->mmap_sem); return gts; } /* * Unlock a GTS that was previously locked with gru_find_lock_gts(). */ static void gru_unlock_gts(struct gru_thread_state *gts) { mutex_unlock(>s->ts_ctxlock); up_read(¤t->mm->mmap_sem); } /* * Set a CB.istatus to active using a user virtual address. This must be done * just prior to a TFH RESTART. The new cb.istatus is an in-cache status ONLY. * If the line is evicted, the status may be lost. The in-cache update * is necessary to prevent the user from seeing a stale cb.istatus that will * change as soon as the TFH restart is complete. Races may cause an * occasional failure to clear the cb.istatus, but that is ok. */ static void gru_cb_set_istatus_active(struct gru_instruction_bits *cbk) { if (cbk) { cbk->istatus = CBS_ACTIVE; } } /* * Read & clear a TFM * * The GRU has an array of fault maps. A map is private to a cpu * Only one cpu will be accessing a cpu's fault map. * * This function scans the cpu-private fault map & clears all bits that * are set. The function returns a bitmap that indicates the bits that * were cleared. Note that sense the maps may be updated asynchronously by * the GRU, atomic operations must be used to clear bits. */ static void get_clear_fault_map(struct gru_state *gru, struct gru_tlb_fault_map *imap, struct gru_tlb_fault_map *dmap) { unsigned long i, k; struct gru_tlb_fault_map *tfm; tfm = get_tfm_for_cpu(gru, gru_cpu_fault_map_id()); prefetchw(tfm); /* Helps on hardware, required for emulator */ for (i = 0; i < BITS_TO_LONGS(GRU_NUM_CBE); i++) { k = tfm->fault_bits[i]; if (k) k = xchg(&tfm->fault_bits[i], 0UL); imap->fault_bits[i] = k; k = tfm->done_bits[i]; if (k) k = xchg(&tfm->done_bits[i], 0UL); dmap->fault_bits[i] = k; } /* * Not functionally required but helps performance. (Required * on emulator) */ gru_flush_cache(tfm); } /* * Atomic (interrupt context) & non-atomic (user context) functions to * convert a vaddr into a physical address. The size of the page * is returned in pageshift. * returns: * 0 - successful * < 0 - error code * 1 - (atomic only) try again in non-atomic context */ static int non_atomic_pte_lookup(struct vm_area_struct *vma, unsigned long vaddr, int write, unsigned long *paddr, int *pageshift) { struct page *page; #ifdef CONFIG_HUGETLB_PAGE *pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT; #else *pageshift = PAGE_SHIFT; #endif if (get_user_pages (current, current->mm, vaddr, 1, write, 0, &page, NULL) <= 0) return -EFAULT; *paddr = page_to_phys(page); put_page(page); return 0; } /* * atomic_pte_lookup * * Convert a user virtual address to a physical address * Only supports Intel large pages (2MB only) on x86_64. * ZZZ - hugepage support is incomplete * * NOTE: mmap_sem is already held on entry to this function. This * guarantees existence of the page tables. */ static int atomic_pte_lookup(struct vm_area_struct *vma, unsigned long vaddr, int write, unsigned long *paddr, int *pageshift) { pgd_t *pgdp; pmd_t *pmdp; pud_t *pudp; pte_t pte; pgdp = pgd_offset(vma->vm_mm, vaddr); if (unlikely(pgd_none(*pgdp))) goto err; pudp = pud_offset(pgdp, vaddr); if (unlikely(pud_none(*pudp))) goto err; pmdp = pmd_offset(pudp, vaddr); if (unlikely(pmd_none(*pmdp))) goto err; #ifdef CONFIG_X86_64 if (unlikely(pmd_large(*pmdp))) pte = *(pte_t *) pmdp; else #endif pte = *pte_offset_kernel(pmdp, vaddr); if (unlikely(!pte_present(pte) || (write && (!pte_write(pte) || !pte_dirty(pte))))) return 1; *paddr = pte_pfn(pte) << PAGE_SHIFT; #ifdef CONFIG_HUGETLB_PAGE *pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT; #else *pageshift = PAGE_SHIFT; #endif return 0; err: return 1; } static int gru_vtop(struct gru_thread_state *gts, unsigned long vaddr, int write, int atomic, unsigned long *gpa, int *pageshift) { struct mm_struct *mm = gts->ts_mm; struct vm_area_struct *vma; unsigned long paddr; int ret, ps; vma = find_vma(mm, vaddr); if (!vma) goto inval; /* * Atomic lookup is faster & usually works even if called in non-atomic * context. */ rmb(); /* Must/check ms_range_active before loading PTEs */ ret = atomic_pte_lookup(vma, vaddr, write, &paddr, &ps); if (ret) { if (atomic) goto upm; if (non_atomic_pte_lookup(vma, vaddr, write, &paddr, &ps)) goto inval; } if (is_gru_paddr(paddr)) goto inval; paddr = paddr & ~((1UL << ps) - 1); *gpa = uv_soc_phys_ram_to_gpa(paddr); *pageshift = ps; return VTOP_SUCCESS; inval: return VTOP_INVALID; upm: return VTOP_RETRY; } /* * Flush a CBE from cache. The CBE is clean in the cache. Dirty the * CBE cacheline so that the line will be written back to home agent. * Otherwise the line may be silently dropped. This has no impact * except on performance. */ static void gru_flush_cache_cbe(struct gru_control_block_extended *cbe) { if (unlikely(cbe)) { cbe->cbrexecstatus = 0; /* make CL dirty */ gru_flush_cache(cbe); } } /* * Preload the TLB with entries that may be required. Currently, preloading * is implemented only for BCOPY. Preload pages OR to * the end of the bcopy tranfer, whichever is smaller. */ static void gru_preload_tlb(struct gru_state *gru, struct gru_thread_state *gts, int atomic, unsigned long fault_vaddr, int asid, int write, unsigned char tlb_preload_count, struct gru_tlb_fault_handle *tfh, struct gru_control_block_extended *cbe) { unsigned long vaddr = 0, gpa; int ret, pageshift; if (cbe->opccpy != OP_BCOPY) return; if (fault_vaddr == cbe->cbe_baddr0) vaddr = fault_vaddr + GRU_CACHE_LINE_BYTES * cbe->cbe_src_cl - 1; else if (fault_vaddr == cbe->cbe_baddr1) vaddr = fault_vaddr + (1 << cbe->xtypecpy) * cbe->cbe_nelemcur - 1; fault_vaddr &= PAGE_MASK; vaddr &= PAGE_MASK; vaddr = min(vaddr, fault_vaddr + tlb_preload_count * PAGE_SIZE); while (vaddr > fault_vaddr) { ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift); if (ret || tfh_write_only(tfh, gpa, GAA_RAM, vaddr, asid, write, GRU_PAGESIZE(pageshift))) return; gru_dbg(grudev, "%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, rw %d, ps %d, gpa 0x%lx\n", atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh, vaddr, asid, write, pageshift, gpa); vaddr -= PAGE_SIZE; STAT(tlb_preload_page); } } /* * Drop a TLB entry into the GRU. The fault is described by info in an TFH. * Input: * cb Address of user CBR. Null if not running in user context * Return: * 0 = dropin, exception, or switch to UPM successful * 1 = range invalidate active * < 0 = error code * */ static int gru_try_dropin(struct gru_state *gru, struct gru_thread_state *gts, struct gru_tlb_fault_handle *tfh, struct gru_instruction_bits *cbk) { struct gru_control_block_extended *cbe = NULL; unsigned char tlb_preload_count = gts->ts_tlb_preload_count; int pageshift = 0, asid, write, ret, atomic = !cbk, indexway; unsigned long gpa = 0, vaddr = 0; /* * NOTE: The GRU contains magic hardware that eliminates races between * TLB invalidates and TLB dropins. If an invalidate occurs * in the window between reading the TFH and the subsequent TLB dropin, * the dropin is ignored. This eliminates the need for additional locks. */ /* * Prefetch the CBE if doing TLB preloading */ if (unlikely(tlb_preload_count)) { cbe = gru_tfh_to_cbe(tfh); prefetchw(cbe); } /* * Error if TFH state is IDLE or FMM mode & the user issuing a UPM call. * Might be a hardware race OR a stupid user. Ignore FMM because FMM * is a transient state. */ if (tfh->status != TFHSTATUS_EXCEPTION) { gru_flush_cache(tfh); sync_core(); if (tfh->status != TFHSTATUS_EXCEPTION) goto failnoexception; STAT(tfh_stale_on_fault); } if (tfh->state == TFHSTATE_IDLE) goto failidle; if (tfh->state == TFHSTATE_MISS_FMM && cbk) goto failfmm; write = (tfh->cause & TFHCAUSE_TLB_MOD) != 0; vaddr = tfh->missvaddr; asid = tfh->missasid; indexway = tfh->indexway; if (asid == 0) goto failnoasid; rmb(); /* TFH must be cache resident before reading ms_range_active */ /* * TFH is cache resident - at least briefly. Fail the dropin * if a range invalidate is active. */ if (atomic_read(>s->ts_gms->ms_range_active)) goto failactive; ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift); if (ret == VTOP_INVALID) goto failinval; if (ret == VTOP_RETRY) goto failupm; if (!(gts->ts_sizeavail & GRU_SIZEAVAIL(pageshift))) { gts->ts_sizeavail |= GRU_SIZEAVAIL(pageshift); if (atomic || !gru_update_cch(gts)) { gts->ts_force_cch_reload = 1; goto failupm; } } if (unlikely(cbe) && pageshift == PAGE_SHIFT) { gru_preload_tlb(gru, gts, atomic, vaddr, asid, write, tlb_preload_count, tfh, cbe); gru_flush_cache_cbe(cbe); } gru_cb_set_istatus_active(cbk); gts->ustats.tlbdropin++; tfh_write_restart(tfh, gpa, GAA_RAM, vaddr, asid, write, GRU_PAGESIZE(pageshift)); gru_dbg(grudev, "%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, indexway 0x%x," " rw %d, ps %d, gpa 0x%lx\n", atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh, vaddr, asid, indexway, write, pageshift, gpa); STAT(tlb_dropin); return 0; failnoasid: /* No asid (delayed unload). */ STAT(tlb_dropin_fail_no_asid); gru_dbg(grudev, "FAILED no_asid tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr); if (!cbk) tfh_user_polling_mode(tfh); else gru_flush_cache(tfh); gru_flush_cache_cbe(cbe); return -EAGAIN; failupm: /* Atomic failure switch CBR to UPM */ tfh_user_polling_mode(tfh); gru_flush_cache_cbe(cbe); STAT(tlb_dropin_fail_upm); gru_dbg(grudev, "FAILED upm tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr); return 1; failfmm: /* FMM state on UPM call */ gru_flush_cache(tfh); gru_flush_cache_cbe(cbe); STAT(tlb_dropin_fail_fmm); gru_dbg(grudev, "FAILED fmm tfh: 0x%p, state %d\n", tfh, tfh->state); return 0; failnoexception: /* TFH status did not show exception pending */ gru_flush_cache(tfh); gru_flush_cache_cbe(cbe); if (cbk) gru_flush_cache(cbk); STAT(tlb_dropin_fail_no_exception); gru_dbg(grudev, "FAILED non-exception tfh: 0x%p, status %d, state %d\n", tfh, tfh->status, tfh->state); return 0; failidle: /* TFH state was idle - no miss pending */ gru_flush_cache(tfh); gru_flush_cache_cbe(cbe); if (cbk) gru_flush_cache(cbk); STAT(tlb_dropin_fail_idle); gru_dbg(grudev, "FAILED idle tfh: 0x%p, state %d\n", tfh, tfh->state); return 0; failinval: /* All errors (atomic & non-atomic) switch CBR to EXCEPTION state */ tfh_exception(tfh); gru_flush_cache_cbe(cbe); STAT(tlb_dropin_fail_invalid); gru_dbg(grudev, "FAILED inval tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr); return -EFAULT; failactive: /* Range invalidate active. Switch to UPM iff atomic */ if (!cbk) tfh_user_polling_mode(tfh); else gru_flush_cache(tfh); gru_flush_cache_cbe(cbe); STAT(tlb_dropin_fail_range_active); gru_dbg(grudev, "FAILED range active: tfh 0x%p, vaddr 0x%lx\n", tfh, vaddr); return 1; } /* * Process an external interrupt from the GRU. This interrupt is * caused by a TLB miss. * Note that this is the interrupt handler that is registered with linux * interrupt handlers. */ static irqreturn_t gru_intr(int chiplet, int blade) { struct gru_state *gru; struct gru_tlb_fault_map imap, dmap; struct gru_thread_state *gts; struct gru_tlb_fault_handle *tfh = NULL; struct completion *cmp; int cbrnum, ctxnum; STAT(intr); gru = &gru_base[blade]->bs_grus[chiplet]; if (!gru) { dev_err(grudev, "GRU: invalid interrupt: cpu %d, chiplet %d\n", raw_smp_processor_id(), chiplet); return IRQ_NONE; } get_clear_fault_map(gru, &imap, &dmap); gru_dbg(grudev, "cpu %d, chiplet %d, gid %d, imap %016lx %016lx, dmap %016lx %016lx\n", smp_processor_id(), chiplet, gru->gs_gid, imap.fault_bits[0], imap.fault_bits[1], dmap.fault_bits[0], dmap.fault_bits[1]); for_each_cbr_in_tfm(cbrnum, dmap.fault_bits) { STAT(intr_cbr); cmp = gru->gs_blade->bs_async_wq; if (cmp) complete(cmp); gru_dbg(grudev, "gid %d, cbr_done %d, done %d\n", gru->gs_gid, cbrnum, cmp ? cmp->done : -1); } for_each_cbr_in_tfm(cbrnum, imap.fault_bits) { STAT(intr_tfh); tfh = get_tfh_by_index(gru, cbrnum); prefetchw(tfh); /* Helps on hdw, required for emulator */ /* * When hardware sets a bit in the faultmap, it implicitly * locks the GRU context so that it cannot be unloaded. * The gts cannot change until a TFH start/writestart command * is issued. */ ctxnum = tfh->ctxnum; gts = gru->gs_gts[ctxnum]; /* Spurious interrupts can cause this. Ignore. */ if (!gts) { STAT(intr_spurious); continue; } /* * This is running in interrupt context. Trylock the mmap_sem. * If it fails, retry the fault in user context. */ gts->ustats.fmm_tlbmiss++; if (!gts->ts_force_cch_reload && down_read_trylock(>s->ts_mm->mmap_sem)) { gru_try_dropin(gru, gts, tfh, NULL); up_read(>s->ts_mm->mmap_sem); } else { tfh_user_polling_mode(tfh); STAT(intr_mm_lock_failed); } } return IRQ_HANDLED; } irqreturn_t gru0_intr(int irq, void *dev_id) { return gru_intr(0, uv_numa_blade_id()); } irqreturn_t gru1_intr(int irq, void *dev_id) { return gru_intr(1, uv_numa_blade_id()); } irqreturn_t gru_intr_mblade(int irq, void *dev_id) { int blade; for_each_possible_blade(blade) { if (uv_blade_nr_possible_cpus(blade)) continue; gru_intr(0, blade); gru_intr(1, blade); } return IRQ_HANDLED; } static int gru_user_dropin(struct gru_thread_state *gts, struct gru_tlb_fault_handle *tfh, void *cb) { struct gru_mm_struct *gms = gts->ts_gms; int ret; gts->ustats.upm_tlbmiss++; while (1) { wait_event(gms->ms_wait_queue, atomic_read(&gms->ms_range_active) == 0); prefetchw(tfh); /* Helps on hdw, required for emulator */ ret = gru_try_dropin(gts->ts_gru, gts, tfh, cb); if (ret <= 0) return ret; STAT(call_os_wait_queue); } } /* * This interface is called as a result of a user detecting a "call OS" bit * in a user CB. Normally means that a TLB fault has occurred. * cb - user virtual address of the CB */ int gru_handle_user_call_os(unsigned long cb) { struct gru_tlb_fault_handle *tfh; struct gru_thread_state *gts; void *cbk; int ucbnum, cbrnum, ret = -EINVAL; STAT(call_os); /* sanity check the cb pointer */ ucbnum = get_cb_number((void *)cb); if ((cb & (GRU_HANDLE_STRIDE - 1)) || ucbnum >= GRU_NUM_CB) return -EINVAL; gts = gru_find_lock_gts(cb); if (!gts) return -EINVAL; gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts); if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE) goto exit; gru_check_context_placement(gts); /* * CCH may contain stale data if ts_force_cch_reload is set. */ if (gts->ts_gru && gts->ts_force_cch_reload) { gts->ts_force_cch_reload = 0; gru_update_cch(gts); } ret = -EAGAIN; cbrnum = thread_cbr_number(gts, ucbnum); if (gts->ts_gru) { tfh = get_tfh_by_index(gts->ts_gru, cbrnum); cbk = get_gseg_base_address_cb(gts->ts_gru->gs_gru_base_vaddr, gts->ts_ctxnum, ucbnum); ret = gru_user_dropin(gts, tfh, cbk); } exit: gru_unlock_gts(gts); return ret; } /* * Fetch the exception detail information for a CB that terminated with * an exception. */ int gru_get_exception_detail(unsigned long arg) { struct control_block_extended_exc_detail excdet; struct gru_control_block_extended *cbe; struct gru_thread_state *gts; int ucbnum, cbrnum, ret; STAT(user_exception); if (copy_from_user(&excdet, (void __user *)arg, sizeof(excdet))) return -EFAULT; gts = gru_find_lock_gts(excdet.cb); if (!gts) return -EINVAL; gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", excdet.cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts); ucbnum = get_cb_number((void *)excdet.cb); if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE) { ret = -EINVAL; } else if (gts->ts_gru) { cbrnum = thread_cbr_number(gts, ucbnum); cbe = get_cbe_by_index(gts->ts_gru, cbrnum); gru_flush_cache(cbe); /* CBE not coherent */ sync_core(); /* make sure we are have current data */ excdet.opc = cbe->opccpy; excdet.exopc = cbe->exopccpy; excdet.ecause = cbe->ecause; excdet.exceptdet0 = cbe->idef1upd; excdet.exceptdet1 = cbe->idef3upd; excdet.cbrstate = cbe->cbrstate; excdet.cbrexecstatus = cbe->cbrexecstatus; gru_flush_cache_cbe(cbe); ret = 0; } else { ret = -EAGAIN; } gru_unlock_gts(gts); gru_dbg(grudev, "cb 0x%lx, op %d, exopc %d, cbrstate %d, cbrexecstatus 0x%x, ecause 0x%x, " "exdet0 0x%lx, exdet1 0x%x\n", excdet.cb, excdet.opc, excdet.exopc, excdet.cbrstate, excdet.cbrexecstatus, excdet.ecause, excdet.exceptdet0, excdet.exceptdet1); if (!ret && copy_to_user((void __user *)arg, &excdet, sizeof(excdet))) ret = -EFAULT; return ret; } /* * User request to unload a context. Content is saved for possible reload. */ static int gru_unload_all_contexts(void) { struct gru_thread_state *gts; struct gru_state *gru; int gid, ctxnum; if (!capable(CAP_SYS_ADMIN)) return -EPERM; foreach_gid(gid) { gru = GID_TO_GRU(gid); spin_lock(&gru->gs_lock); for (ctxnum = 0; ctxnum < GRU_NUM_CCH; ctxnum++) { gts = gru->gs_gts[ctxnum]; if (gts && mutex_trylock(>s->ts_ctxlock)) { spin_unlock(&gru->gs_lock); gru_unload_context(gts, 1); mutex_unlock(>s->ts_ctxlock); spin_lock(&gru->gs_lock); } } spin_unlock(&gru->gs_lock); } return 0; } int gru_user_unload_context(unsigned long arg) { struct gru_thread_state *gts; struct gru_unload_context_req req; STAT(user_unload_context); if (copy_from_user(&req, (void __user *)arg, sizeof(req))) return -EFAULT; gru_dbg(grudev, "gseg 0x%lx\n", req.gseg); if (!req.gseg) return gru_unload_all_contexts(); gts = gru_find_lock_gts(req.gseg); if (!gts) return -EINVAL; if (gts->ts_gru) gru_unload_context(gts, 1); gru_unlock_gts(gts); return 0; } /* * User request to flush a range of virtual addresses from the GRU TLB * (Mainly for testing). */ int gru_user_flush_tlb(unsigned long arg) { struct gru_thread_state *gts; struct gru_flush_tlb_req req; struct gru_mm_struct *gms; STAT(user_flush_tlb); if (copy_from_user(&req, (void __user *)arg, sizeof(req))) return -EFAULT; gru_dbg(grudev, "gseg 0x%lx, vaddr 0x%lx, len 0x%lx\n", req.gseg, req.vaddr, req.len); gts = gru_find_lock_gts(req.gseg); if (!gts) return -EINVAL; gms = gts->ts_gms; gru_unlock_gts(gts); gru_flush_tlb_range(gms, req.vaddr, req.len); return 0; } /* * Fetch GSEG statisticss */ long gru_get_gseg_statistics(unsigned long arg) { struct gru_thread_state *gts; struct gru_get_gseg_statistics_req req; if (copy_from_user(&req, (void __user *)arg, sizeof(req))) return -EFAULT; /* * The library creates arrays of contexts for threaded programs. * If no gts exists in the array, the context has never been used & all * statistics are implicitly 0. */ gts = gru_find_lock_gts(req.gseg); if (gts) { memcpy(&req.stats, >s->ustats, sizeof(gts->ustats)); gru_unlock_gts(gts); } else { memset(&req.stats, 0, sizeof(gts->ustats)); } if (copy_to_user((void __user *)arg, &req, sizeof(req))) return -EFAULT; return 0; } /* * Register the current task as the user of the GSEG slice. * Needed for TLB fault interrupt targeting. */ int gru_set_context_option(unsigned long arg) { struct gru_thread_state *gts; struct gru_set_context_option_req req; int ret = 0; STAT(set_context_option); if (copy_from_user(&req, (void __user *)arg, sizeof(req))) return -EFAULT; gru_dbg(grudev, "op %d, gseg 0x%lx, value1 0x%lx\n", req.op, req.gseg, req.val1); gts = gru_find_lock_gts(req.gseg); if (!gts) { gts = gru_alloc_locked_gts(req.gseg); if (IS_ERR(gts)) return PTR_ERR(gts); } switch (req.op) { case sco_blade_chiplet: /* Select blade/chiplet for GRU context */ if (req.val1 < -1 || req.val1 >= GRU_MAX_BLADES || !gru_base[req.val1] || req.val0 < -1 || req.val0 >= GRU_CHIPLETS_PER_HUB) { ret = -EINVAL; } else { gts->ts_user_blade_id = req.val1; gts->ts_user_chiplet_id = req.val0; gru_check_context_placement(gts); } break; case sco_gseg_owner: /* Register the current task as the GSEG owner */ gts->ts_tgid_owner = current->tgid; break; case sco_cch_req_slice: /* Set the CCH slice option */ gts->ts_cch_req_slice = req.val1 & 3; break; default: ret = -EINVAL; } gru_unlock_gts(gts); return ret; }