/* * Copyright (C) STMicroelectronics 2009 * Copyright (C) ST-Ericsson SA 2010 * * License Terms: GNU General Public License v2 * Author: Kumar Sanghvi * Author: Sundar Iyer * Author: Mattias Nilsson * * U8500 PRCM Unit interface driver * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "dbx500-prcmu-regs.h" /* Offset for the firmware version within the TCPM */ #define PRCMU_FW_VERSION_OFFSET 0xA4 /* Index of different voltages to be used when accessing AVSData */ #define PRCM_AVS_BASE 0x2FC #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0) #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1) #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2) #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3) #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4) #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5) #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6) #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7) #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8) #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9) #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA) #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB) #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC) #define PRCM_AVS_VOLTAGE 0 #define PRCM_AVS_VOLTAGE_MASK 0x3f #define PRCM_AVS_ISSLOWSTARTUP 6 #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP) #define PRCM_AVS_ISMODEENABLE 7 #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE) #define PRCM_BOOT_STATUS 0xFFF #define PRCM_ROMCODE_A2P 0xFFE #define PRCM_ROMCODE_P2A 0xFFD #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */ #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */ #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */ #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0) #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1) #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2) #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3) #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4) #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5) #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8) /* Req Mailboxes */ #define PRCM_REQ_MB0 0xFDC /* 12 bytes */ #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */ #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */ #define PRCM_REQ_MB3 0xE4C /* 372 bytes */ #define PRCM_REQ_MB4 0xE48 /* 4 bytes */ #define PRCM_REQ_MB5 0xE44 /* 4 bytes */ /* Ack Mailboxes */ #define PRCM_ACK_MB0 0xE08 /* 52 bytes */ #define PRCM_ACK_MB1 0xE04 /* 4 bytes */ #define PRCM_ACK_MB2 0xE00 /* 4 bytes */ #define PRCM_ACK_MB3 0xDFC /* 4 bytes */ #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */ #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */ /* Mailbox 0 headers */ #define MB0H_POWER_STATE_TRANS 0 #define MB0H_CONFIG_WAKEUPS_EXE 1 #define MB0H_READ_WAKEUP_ACK 3 #define MB0H_CONFIG_WAKEUPS_SLEEP 4 #define MB0H_WAKEUP_EXE 2 #define MB0H_WAKEUP_SLEEP 5 /* Mailbox 0 REQs */ #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0) #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1) #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2) #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3) #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4) #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8) /* Mailbox 0 ACKs */ #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0) #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1) #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4) #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8) #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C) #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20) #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20 /* Mailbox 1 headers */ #define MB1H_ARM_APE_OPP 0x0 #define MB1H_RESET_MODEM 0x2 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4 #define MB1H_RELEASE_USB_WAKEUP 0x5 #define MB1H_PLL_ON_OFF 0x6 /* Mailbox 1 Requests */ #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0) #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1) #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4) #define PLL_SOC0_OFF 0x1 #define PLL_SOC0_ON 0x2 #define PLL_SOC1_OFF 0x4 #define PLL_SOC1_ON 0x8 /* Mailbox 1 ACKs */ #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0) #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1) #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2) #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3) /* Mailbox 2 headers */ #define MB2H_DPS 0x0 #define MB2H_AUTO_PWR 0x1 /* Mailbox 2 REQs */ #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0) #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1) #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2) #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3) #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4) #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5) #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6) #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7) #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8) #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC) /* Mailbox 2 ACKs */ #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0) #define HWACC_PWR_ST_OK 0xFE /* Mailbox 3 headers */ #define MB3H_ANC 0x0 #define MB3H_SIDETONE 0x1 #define MB3H_SYSCLK 0xE /* Mailbox 3 Requests */ #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0) #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20) #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60) #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64) #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68) #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C) #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C) /* Mailbox 4 headers */ #define MB4H_DDR_INIT 0x0 #define MB4H_MEM_ST 0x1 #define MB4H_HOTDOG 0x12 #define MB4H_HOTMON 0x13 #define MB4H_HOT_PERIOD 0x14 #define MB4H_A9WDOG_CONF 0x16 #define MB4H_A9WDOG_EN 0x17 #define MB4H_A9WDOG_DIS 0x18 #define MB4H_A9WDOG_LOAD 0x19 #define MB4H_A9WDOG_KICK 0x20 /* Mailbox 4 Requests */ #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0) #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1) #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3) #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0) #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0) #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1) #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2) #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0) #define HOTMON_CONFIG_LOW BIT(0) #define HOTMON_CONFIG_HIGH BIT(1) #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0) #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1) #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2) #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3) #define A9WDOG_AUTO_OFF_EN BIT(7) #define A9WDOG_AUTO_OFF_DIS 0 #define A9WDOG_ID_MASK 0xf /* Mailbox 5 Requests */ #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0) #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1) #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2) #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3) #define PRCMU_I2C_WRITE(slave) \ (((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0)) #define PRCMU_I2C_READ(slave) \ (((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0)) #define PRCMU_I2C_STOP_EN BIT(3) /* Mailbox 5 ACKs */ #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1) #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3) #define I2C_WR_OK 0x1 #define I2C_RD_OK 0x2 #define NUM_MB 8 #define MBOX_BIT BIT #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1) /* * Wakeups/IRQs */ #define WAKEUP_BIT_RTC BIT(0) #define WAKEUP_BIT_RTT0 BIT(1) #define WAKEUP_BIT_RTT1 BIT(2) #define WAKEUP_BIT_HSI0 BIT(3) #define WAKEUP_BIT_HSI1 BIT(4) #define WAKEUP_BIT_CA_WAKE BIT(5) #define WAKEUP_BIT_USB BIT(6) #define WAKEUP_BIT_ABB BIT(7) #define WAKEUP_BIT_ABB_FIFO BIT(8) #define WAKEUP_BIT_SYSCLK_OK BIT(9) #define WAKEUP_BIT_CA_SLEEP BIT(10) #define WAKEUP_BIT_AC_WAKE_ACK BIT(11) #define WAKEUP_BIT_SIDE_TONE_OK BIT(12) #define WAKEUP_BIT_ANC_OK BIT(13) #define WAKEUP_BIT_SW_ERROR BIT(14) #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15) #define WAKEUP_BIT_ARM BIT(17) #define WAKEUP_BIT_HOTMON_LOW BIT(18) #define WAKEUP_BIT_HOTMON_HIGH BIT(19) #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20) #define WAKEUP_BIT_GPIO0 BIT(23) #define WAKEUP_BIT_GPIO1 BIT(24) #define WAKEUP_BIT_GPIO2 BIT(25) #define WAKEUP_BIT_GPIO3 BIT(26) #define WAKEUP_BIT_GPIO4 BIT(27) #define WAKEUP_BIT_GPIO5 BIT(28) #define WAKEUP_BIT_GPIO6 BIT(29) #define WAKEUP_BIT_GPIO7 BIT(30) #define WAKEUP_BIT_GPIO8 BIT(31) static struct { bool valid; struct prcmu_fw_version version; } fw_info; /* * This vector maps irq numbers to the bits in the bit field used in * communication with the PRCMU firmware. * * The reason for having this is to keep the irq numbers contiguous even though * the bits in the bit field are not. (The bits also have a tendency to move * around, to further complicate matters.) */ #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE) #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name) static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = { IRQ_ENTRY(RTC), IRQ_ENTRY(RTT0), IRQ_ENTRY(RTT1), IRQ_ENTRY(HSI0), IRQ_ENTRY(HSI1), IRQ_ENTRY(CA_WAKE), IRQ_ENTRY(USB), IRQ_ENTRY(ABB), IRQ_ENTRY(ABB_FIFO), IRQ_ENTRY(CA_SLEEP), IRQ_ENTRY(ARM), IRQ_ENTRY(HOTMON_LOW), IRQ_ENTRY(HOTMON_HIGH), IRQ_ENTRY(MODEM_SW_RESET_REQ), IRQ_ENTRY(GPIO0), IRQ_ENTRY(GPIO1), IRQ_ENTRY(GPIO2), IRQ_ENTRY(GPIO3), IRQ_ENTRY(GPIO4), IRQ_ENTRY(GPIO5), IRQ_ENTRY(GPIO6), IRQ_ENTRY(GPIO7), IRQ_ENTRY(GPIO8) }; #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1) #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name) static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = { WAKEUP_ENTRY(RTC), WAKEUP_ENTRY(RTT0), WAKEUP_ENTRY(RTT1), WAKEUP_ENTRY(HSI0), WAKEUP_ENTRY(HSI1), WAKEUP_ENTRY(USB), WAKEUP_ENTRY(ABB), WAKEUP_ENTRY(ABB_FIFO), WAKEUP_ENTRY(ARM) }; /* * mb0_transfer - state needed for mailbox 0 communication. * @lock: The transaction lock. * @dbb_events_lock: A lock used to handle concurrent access to (parts of) * the request data. * @mask_work: Work structure used for (un)masking wakeup interrupts. * @req: Request data that need to persist between requests. */ static struct { spinlock_t lock; spinlock_t dbb_irqs_lock; struct work_struct mask_work; struct mutex ac_wake_lock; struct completion ac_wake_work; struct { u32 dbb_irqs; u32 dbb_wakeups; u32 abb_events; } req; } mb0_transfer; /* * mb1_transfer - state needed for mailbox 1 communication. * @lock: The transaction lock. * @work: The transaction completion structure. * @ape_opp: The current APE OPP. * @ack: Reply ("acknowledge") data. */ static struct { struct mutex lock; struct completion work; u8 ape_opp; struct { u8 header; u8 arm_opp; u8 ape_opp; u8 ape_voltage_status; } ack; } mb1_transfer; /* * mb2_transfer - state needed for mailbox 2 communication. * @lock: The transaction lock. * @work: The transaction completion structure. * @auto_pm_lock: The autonomous power management configuration lock. * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled. * @req: Request data that need to persist between requests. * @ack: Reply ("acknowledge") data. */ static struct { struct mutex lock; struct completion work; spinlock_t auto_pm_lock; bool auto_pm_enabled; struct { u8 status; } ack; } mb2_transfer; /* * mb3_transfer - state needed for mailbox 3 communication. * @lock: The request lock. * @sysclk_lock: A lock used to handle concurrent sysclk requests. * @sysclk_work: Work structure used for sysclk requests. */ static struct { spinlock_t lock; struct mutex sysclk_lock; struct completion sysclk_work; } mb3_transfer; /* * mb4_transfer - state needed for mailbox 4 communication. * @lock: The transaction lock. * @work: The transaction completion structure. */ static struct { struct mutex lock; struct completion work; } mb4_transfer; /* * mb5_transfer - state needed for mailbox 5 communication. * @lock: The transaction lock. * @work: The transaction completion structure. * @ack: Reply ("acknowledge") data. */ static struct { struct mutex lock; struct completion work; struct { u8 status; u8 value; } ack; } mb5_transfer; static atomic_t ac_wake_req_state = ATOMIC_INIT(0); /* Spinlocks */ static DEFINE_SPINLOCK(prcmu_lock); static DEFINE_SPINLOCK(clkout_lock); /* Global var to runtime determine TCDM base for v2 or v1 */ static __iomem void *tcdm_base; struct clk_mgt { void __iomem *reg; u32 pllsw; int branch; bool clk38div; }; enum { PLL_RAW, PLL_FIX, PLL_DIV }; static DEFINE_SPINLOCK(clk_mgt_lock); #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \ { (PRCM_##_name##_MGT), 0 , _branch, _clk38div} struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = { CLK_MGT_ENTRY(SGACLK, PLL_DIV, false), CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true), CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true), CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true), CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true), CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true), CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true), CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true), CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true), CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true), CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true), CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true), CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true), CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true), CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true), CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true), CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true), CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false), CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true), CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true), CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true), CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true), CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false), CLK_MGT_ENTRY(DMACLK, PLL_DIV, true), CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true), CLK_MGT_ENTRY(TVCLK, PLL_FIX, true), CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true), CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true), CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false), }; struct dsiclk { u32 divsel_mask; u32 divsel_shift; u32 divsel; }; static struct dsiclk dsiclk[2] = { { .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK, .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT, .divsel = PRCM_DSI_PLLOUT_SEL_PHI, }, { .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK, .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT, .divsel = PRCM_DSI_PLLOUT_SEL_PHI, } }; struct dsiescclk { u32 en; u32 div_mask; u32 div_shift; }; static struct dsiescclk dsiescclk[3] = { { .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN, .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK, .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT, }, { .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN, .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK, .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT, }, { .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN, .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK, .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT, } }; static struct regulator *hwacc_regulator[NUM_HW_ACC]; static struct regulator *hwacc_ret_regulator[NUM_HW_ACC]; static bool hwacc_enabled[NUM_HW_ACC]; static bool hwacc_ret_enabled[NUM_HW_ACC]; static const char *hwacc_regulator_name[NUM_HW_ACC] = { [HW_ACC_SVAMMDSP] = "hwacc-sva-mmdsp", [HW_ACC_SVAPIPE] = "hwacc-sva-pipe", [HW_ACC_SIAMMDSP] = "hwacc-sia-mmdsp", [HW_ACC_SIAPIPE] = "hwacc-sia-pipe", [HW_ACC_SGA] = "hwacc-sga", [HW_ACC_B2R2] = "hwacc-b2r2", [HW_ACC_MCDE] = "hwacc-mcde", [HW_ACC_ESRAM1] = "hwacc-esram1", [HW_ACC_ESRAM2] = "hwacc-esram2", [HW_ACC_ESRAM3] = "hwacc-esram3", [HW_ACC_ESRAM4] = "hwacc-esram4", }; static const char *hwacc_ret_regulator_name[NUM_HW_ACC] = { [HW_ACC_SVAMMDSP] = "hwacc-sva-mmdsp-ret", [HW_ACC_SIAMMDSP] = "hwacc-sia-mmdsp-ret", [HW_ACC_ESRAM1] = "hwacc-esram1-ret", [HW_ACC_ESRAM2] = "hwacc-esram2-ret", [HW_ACC_ESRAM3] = "hwacc-esram3-ret", [HW_ACC_ESRAM4] = "hwacc-esram4-ret", }; /* * Used by MCDE to setup all necessary PRCMU registers */ #define PRCMU_RESET_DSIPLL 0x00004000 #define PRCMU_UNCLAMP_DSIPLL 0x00400800 #define PRCMU_CLK_PLL_DIV_SHIFT 0 #define PRCMU_CLK_PLL_SW_SHIFT 5 #define PRCMU_CLK_38 (1 << 9) #define PRCMU_CLK_38_SRC (1 << 10) #define PRCMU_CLK_38_DIV (1 << 11) /* PLLDIV=12, PLLSW=4 (PLLDDR) */ #define PRCMU_DSI_CLOCK_SETTING 0x0000008C /* DPI 50000000 Hz */ #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \ (16 << PRCMU_CLK_PLL_DIV_SHIFT)) #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00 /* D=101, N=1, R=4, SELDIV2=0 */ #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165 #define PRCMU_ENABLE_PLLDSI 0x00000001 #define PRCMU_DISABLE_PLLDSI 0x00000000 #define PRCMU_RELEASE_RESET_DSS 0x0000400C #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202 /* ESC clk, div0=1, div1=1, div2=3 */ #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101 #define PRCMU_DSI_RESET_SW 0x00000007 #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3 int db8500_prcmu_enable_dsipll(void) { int i; /* Clear DSIPLL_RESETN */ writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR); /* Unclamp DSIPLL in/out */ writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR); /* Set DSI PLL FREQ */ writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ); writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL); /* Enable Escape clocks */ writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV); /* Start DSI PLL */ writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE); /* Reset DSI PLL */ writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET); for (i = 0; i < 10; i++) { if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED) == PRCMU_PLLDSI_LOCKP_LOCKED) break; udelay(100); } /* Set DSIPLL_RESETN */ writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET); return 0; } int db8500_prcmu_disable_dsipll(void) { /* Disable dsi pll */ writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE); /* Disable escapeclock */ writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV); return 0; } int db8500_prcmu_set_display_clocks(void) { unsigned long flags; spin_lock_irqsave(&clk_mgt_lock, flags); /* Grab the HW semaphore. */ while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) cpu_relax(); writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT); writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT); writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT); /* Release the HW semaphore. */ writel(0, PRCM_SEM); spin_unlock_irqrestore(&clk_mgt_lock, flags); return 0; } u32 db8500_prcmu_read(unsigned int reg) { return readl(_PRCMU_BASE + reg); } void db8500_prcmu_write(unsigned int reg, u32 value) { unsigned long flags; spin_lock_irqsave(&prcmu_lock, flags); writel(value, (_PRCMU_BASE + reg)); spin_unlock_irqrestore(&prcmu_lock, flags); } void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value) { u32 val; unsigned long flags; spin_lock_irqsave(&prcmu_lock, flags); val = readl(_PRCMU_BASE + reg); val = ((val & ~mask) | (value & mask)); writel(val, (_PRCMU_BASE + reg)); spin_unlock_irqrestore(&prcmu_lock, flags); } struct prcmu_fw_version *prcmu_get_fw_version(void) { return fw_info.valid ? &fw_info.version : NULL; } bool prcmu_has_arm_maxopp(void) { return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) & PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK; } /** * prcmu_get_boot_status - PRCMU boot status checking * Returns: the current PRCMU boot status */ int prcmu_get_boot_status(void) { return readb(tcdm_base + PRCM_BOOT_STATUS); } /** * prcmu_set_rc_a2p - This function is used to run few power state sequences * @val: Value to be set, i.e. transition requested * Returns: 0 on success, -EINVAL on invalid argument * * This function is used to run the following power state sequences - * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep */ int prcmu_set_rc_a2p(enum romcode_write val) { if (val < RDY_2_DS || val > RDY_2_XP70_RST) return -EINVAL; writeb(val, (tcdm_base + PRCM_ROMCODE_A2P)); return 0; } /** * prcmu_get_rc_p2a - This function is used to get power state sequences * Returns: the power transition that has last happened * * This function can return the following transitions- * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep */ enum romcode_read prcmu_get_rc_p2a(void) { return readb(tcdm_base + PRCM_ROMCODE_P2A); } /** * prcmu_get_current_mode - Return the current XP70 power mode * Returns: Returns the current AP(ARM) power mode: init, * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset */ enum ap_pwrst prcmu_get_xp70_current_state(void) { return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE); } /** * prcmu_config_clkout - Configure one of the programmable clock outputs. * @clkout: The CLKOUT number (0 or 1). * @source: The clock to be used (one of the PRCMU_CLKSRC_*). * @div: The divider to be applied. * * Configures one of the programmable clock outputs (CLKOUTs). * @div should be in the range [1,63] to request a configuration, or 0 to * inform that the configuration is no longer requested. */ int prcmu_config_clkout(u8 clkout, u8 source, u8 div) { static int requests[2]; int r = 0; unsigned long flags; u32 val; u32 bits; u32 mask; u32 div_mask; BUG_ON(clkout > 1); BUG_ON(div > 63); BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009)); if (!div && !requests[clkout]) return -EINVAL; switch (clkout) { case 0: div_mask = PRCM_CLKOCR_CLKODIV0_MASK; mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK); bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) | (div << PRCM_CLKOCR_CLKODIV0_SHIFT)); break; case 1: div_mask = PRCM_CLKOCR_CLKODIV1_MASK; mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK | PRCM_CLKOCR_CLK1TYPE); bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) | (div << PRCM_CLKOCR_CLKODIV1_SHIFT)); break; } bits &= mask; spin_lock_irqsave(&clkout_lock, flags); val = readl(PRCM_CLKOCR); if (val & div_mask) { if (div) { if ((val & mask) != bits) { r = -EBUSY; goto unlock_and_return; } } else { if ((val & mask & ~div_mask) != bits) { r = -EINVAL; goto unlock_and_return; } } } writel((bits | (val & ~mask)), PRCM_CLKOCR); requests[clkout] += (div ? 1 : -1); unlock_and_return: spin_unlock_irqrestore(&clkout_lock, flags); return r; } int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll) { unsigned long flags; BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state)); spin_lock_irqsave(&mb0_transfer.lock, flags); while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0)) cpu_relax(); writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0)); writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE)); writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE)); writeb((keep_ulp_clk ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE)); writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI)); writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET); spin_unlock_irqrestore(&mb0_transfer.lock, flags); return 0; } u8 db8500_prcmu_get_power_state_result(void) { return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS); } /* This function decouple the gic from the prcmu */ int db8500_prcmu_gic_decouple(void) { u32 val = readl(PRCM_A9_MASK_REQ); /* Set bit 0 register value to 1 */ writel(val | PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ, PRCM_A9_MASK_REQ); /* Make sure the register is updated */ readl(PRCM_A9_MASK_REQ); /* Wait a few cycles for the gic mask completion */ udelay(1); return 0; } /* This function recouple the gic with the prcmu */ int db8500_prcmu_gic_recouple(void) { u32 val = readl(PRCM_A9_MASK_REQ); /* Set bit 0 register value to 0 */ writel(val & ~PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ, PRCM_A9_MASK_REQ); return 0; } #define PRCMU_GIC_NUMBER_REGS 5 /* * This function checks if there are pending irq on the gic. It only * makes sense if the gic has been decoupled before with the * db8500_prcmu_gic_decouple function. Disabling an interrupt only * disables the forwarding of the interrupt to any CPU interface. It * does not prevent the interrupt from changing state, for example * becoming pending, or active and pending if it is already * active. Hence, we have to check the interrupt is pending *and* is * active. */ bool db8500_prcmu_gic_pending_irq(void) { u32 pr; /* Pending register */ u32 er; /* Enable register */ void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE); int i; /* 5 registers. STI & PPI not skipped */ for (i = 0; i < PRCMU_GIC_NUMBER_REGS; i++) { pr = readl_relaxed(dist_base + GIC_DIST_PENDING_SET + i * 4); er = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4); if (pr & er) return true; /* There is a pending interrupt */ } return false; } /* * This function checks if there are pending interrupt on the * prcmu which has been delegated to monitor the irqs with the * db8500_prcmu_copy_gic_settings function. */ bool db8500_prcmu_pending_irq(void) { u32 it, im; int i; for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) { it = readl(PRCM_ARMITVAL31TO0 + i * 4); im = readl(PRCM_ARMITMSK31TO0 + i * 4); if (it & im) return true; /* There is a pending interrupt */ } return false; } /* * This function checks if the specified cpu is in in WFI. It's usage * makes sense only if the gic is decoupled with the db8500_prcmu_gic_decouple * function. Of course passing smp_processor_id() to this function will * always return false... */ bool db8500_prcmu_is_cpu_in_wfi(int cpu) { return readl(PRCM_ARM_WFI_STANDBY) & cpu ? PRCM_ARM_WFI_STANDBY_WFI1 : PRCM_ARM_WFI_STANDBY_WFI0; } /* * This function copies the gic SPI settings to the prcmu in order to * monitor them and abort/finish the retention/off sequence or state. */ int db8500_prcmu_copy_gic_settings(void) { u32 er; /* Enable register */ void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE); int i; /* We skip the STI and PPI */ for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) { er = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + (i + 1) * 4); writel(er, PRCM_ARMITMSK31TO0 + i * 4); } return 0; } /* This function should only be called while mb0_transfer.lock is held. */ static void config_wakeups(void) { const u8 header[2] = { MB0H_CONFIG_WAKEUPS_EXE, MB0H_CONFIG_WAKEUPS_SLEEP }; static u32 last_dbb_events; static u32 last_abb_events; u32 dbb_events; u32 abb_events; unsigned int i; dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups; dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK); abb_events = mb0_transfer.req.abb_events; if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events)) return; for (i = 0; i < 2; i++) { while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0)) cpu_relax(); writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500)); writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500)); writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0)); writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET); } last_dbb_events = dbb_events; last_abb_events = abb_events; } void db8500_prcmu_enable_wakeups(u32 wakeups) { unsigned long flags; u32 bits; int i; BUG_ON(wakeups != (wakeups & VALID_WAKEUPS)); for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) { if (wakeups & BIT(i)) bits |= prcmu_wakeup_bit[i]; } spin_lock_irqsave(&mb0_transfer.lock, flags); mb0_transfer.req.dbb_wakeups = bits; config_wakeups(); spin_unlock_irqrestore(&mb0_transfer.lock, flags); } void db8500_prcmu_config_abb_event_readout(u32 abb_events) { unsigned long flags; spin_lock_irqsave(&mb0_transfer.lock, flags); mb0_transfer.req.abb_events = abb_events; config_wakeups(); spin_unlock_irqrestore(&mb0_transfer.lock, flags); } void db8500_prcmu_get_abb_event_buffer(void __iomem **buf) { if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1) *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500); else *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500); } /** * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP * @opp: The new ARM operating point to which transition is to be made * Returns: 0 on success, non-zero on failure * * This function sets the the operating point of the ARM. */ int db8500_prcmu_set_arm_opp(u8 opp) { int r; if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK) return -EINVAL; r = 0; mutex_lock(&mb1_transfer.lock); while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) cpu_relax(); writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP)); writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP)); writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); wait_for_completion(&mb1_transfer.work); if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) || (mb1_transfer.ack.arm_opp != opp)) r = -EIO; mutex_unlock(&mb1_transfer.lock); return r; } /** * db8500_prcmu_get_arm_opp - get the current ARM OPP * * Returns: the current ARM OPP */ int db8500_prcmu_get_arm_opp(void) { return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP); } /** * db8500_prcmu_get_ddr_opp - get the current DDR OPP * * Returns: the current DDR OPP */ int db8500_prcmu_get_ddr_opp(void) { return readb(PRCM_DDR_SUBSYS_APE_MINBW); } /** * db8500_set_ddr_opp - set the appropriate DDR OPP * @opp: The new DDR operating point to which transition is to be made * Returns: 0 on success, non-zero on failure * * This function sets the operating point of the DDR. */ int db8500_prcmu_set_ddr_opp(u8 opp) { if (opp < DDR_100_OPP || opp > DDR_25_OPP) return -EINVAL; /* Changing the DDR OPP can hang the hardware pre-v21 */ if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20()) writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW); return 0; } /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */ static void request_even_slower_clocks(bool enable) { void __iomem *clock_reg[] = { PRCM_ACLK_MGT, PRCM_DMACLK_MGT }; unsigned long flags; unsigned int i; spin_lock_irqsave(&clk_mgt_lock, flags); /* Grab the HW semaphore. */ while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) cpu_relax(); for (i = 0; i < ARRAY_SIZE(clock_reg); i++) { u32 val; u32 div; val = readl(clock_reg[i]); div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK); if (enable) { if ((div <= 1) || (div > 15)) { pr_err("prcmu: Bad clock divider %d in %s\n", div, __func__); goto unlock_and_return; } div <<= 1; } else { if (div <= 2) goto unlock_and_return; div >>= 1; } val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) | (div & PRCM_CLK_MGT_CLKPLLDIV_MASK)); writel(val, clock_reg[i]); } unlock_and_return: /* Release the HW semaphore. */ writel(0, PRCM_SEM); spin_unlock_irqrestore(&clk_mgt_lock, flags); } /** * db8500_set_ape_opp - set the appropriate APE OPP * @opp: The new APE operating point to which transition is to be made * Returns: 0 on success, non-zero on failure * * This function sets the operating point of the APE. */ int db8500_prcmu_set_ape_opp(u8 opp) { int r = 0; if (opp == mb1_transfer.ape_opp) return 0; mutex_lock(&mb1_transfer.lock); if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP) request_even_slower_clocks(false); if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP)) goto skip_message; while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) cpu_relax(); writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP)); writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp), (tcdm_base + PRCM_REQ_MB1_APE_OPP)); writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); wait_for_completion(&mb1_transfer.work); if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) || (mb1_transfer.ack.ape_opp != opp)) r = -EIO; skip_message: if ((!r && (opp == APE_50_PARTLY_25_OPP)) || (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP))) request_even_slower_clocks(true); if (!r) mb1_transfer.ape_opp = opp; mutex_unlock(&mb1_transfer.lock); return r; } /** * db8500_prcmu_get_ape_opp - get the current APE OPP * * Returns: the current APE OPP */ int db8500_prcmu_get_ape_opp(void) { return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP); } /** * prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage * @enable: true to request the higher voltage, false to drop a request. * * Calls to this function to enable and disable requests must be balanced. */ int prcmu_request_ape_opp_100_voltage(bool enable) { int r = 0; u8 header; static unsigned int requests; mutex_lock(&mb1_transfer.lock); if (enable) { if (0 != requests++) goto unlock_and_return; header = MB1H_REQUEST_APE_OPP_100_VOLT; } else { if (requests == 0) { r = -EIO; goto unlock_and_return; } else if (1 != requests--) { goto unlock_and_return; } header = MB1H_RELEASE_APE_OPP_100_VOLT; } while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) cpu_relax(); writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); wait_for_completion(&mb1_transfer.work); if ((mb1_transfer.ack.header != header) || ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0)) r = -EIO; unlock_and_return: mutex_unlock(&mb1_transfer.lock); return r; } /** * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup * * This function releases the power state requirements of a USB wakeup. */ int prcmu_release_usb_wakeup_state(void) { int r = 0; mutex_lock(&mb1_transfer.lock); while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) cpu_relax(); writeb(MB1H_RELEASE_USB_WAKEUP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); wait_for_completion(&mb1_transfer.work); if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) || ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0)) r = -EIO; mutex_unlock(&mb1_transfer.lock); return r; } static int request_pll(u8 clock, bool enable) { int r = 0; if (clock == PRCMU_PLLSOC0) clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF); else if (clock == PRCMU_PLLSOC1) clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF); else return -EINVAL; mutex_lock(&mb1_transfer.lock); while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) cpu_relax(); writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF)); writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); wait_for_completion(&mb1_transfer.work); if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF) r = -EIO; mutex_unlock(&mb1_transfer.lock); return r; } /** * prcmu_set_hwacc - set the power state of a h/w accelerator * @hwacc_dev: The hardware accelerator (enum hw_acc_dev). * @state: The new power state (enum hw_acc_state). * * This function sets the power state of a hardware accelerator. * This function should not be called from interrupt context. * * NOTE! Deprecated, to be removed when all users switched over to use the * regulator framework API. */ int prcmu_set_hwacc(u16 hwacc_dev, u8 state) { int r = 0; bool ram_retention = false; bool enable, enable_ret; /* check argument */ BUG_ON(hwacc_dev >= NUM_HW_ACC); /* get state of switches */ enable = hwacc_enabled[hwacc_dev]; enable_ret = hwacc_ret_enabled[hwacc_dev]; /* set flag if retention is possible */ switch (hwacc_dev) { case HW_ACC_SVAMMDSP: case HW_ACC_SIAMMDSP: case HW_ACC_ESRAM1: case HW_ACC_ESRAM2: case HW_ACC_ESRAM3: case HW_ACC_ESRAM4: ram_retention = true; break; } /* check argument */ BUG_ON(state > HW_ON); BUG_ON(state == HW_OFF_RAMRET && !ram_retention); /* modify enable flags */ switch (state) { case HW_OFF: enable_ret = false; enable = false; break; case HW_ON: enable = true; break; case HW_OFF_RAMRET: enable_ret = true; enable = false; break; } /* get regulator (lazy) */ if (hwacc_regulator[hwacc_dev] == NULL) { hwacc_regulator[hwacc_dev] = regulator_get(NULL, hwacc_regulator_name[hwacc_dev]); if (IS_ERR(hwacc_regulator[hwacc_dev])) { pr_err("prcmu: failed to get supply %s\n", hwacc_regulator_name[hwacc_dev]); r = PTR_ERR(hwacc_regulator[hwacc_dev]); goto out; } } if (ram_retention) { if (hwacc_ret_regulator[hwacc_dev] == NULL) { hwacc_ret_regulator[hwacc_dev] = regulator_get(NULL, hwacc_ret_regulator_name[hwacc_dev]); if (IS_ERR(hwacc_ret_regulator[hwacc_dev])) { pr_err("prcmu: failed to get supply %s\n", hwacc_ret_regulator_name[hwacc_dev]); r = PTR_ERR(hwacc_ret_regulator[hwacc_dev]); goto out; } } } /* set regulators */ if (ram_retention) { if (enable_ret && !hwacc_ret_enabled[hwacc_dev]) { r = regulator_enable(hwacc_ret_regulator[hwacc_dev]); if (r < 0) { pr_err("prcmu_set_hwacc: ret enable failed\n"); goto out; } hwacc_ret_enabled[hwacc_dev] = true; } } if (enable && !hwacc_enabled[hwacc_dev]) { r = regulator_enable(hwacc_regulator[hwacc_dev]); if (r < 0) { pr_err("prcmu_set_hwacc: enable failed\n"); goto out; } hwacc_enabled[hwacc_dev] = true; } if (!enable && hwacc_enabled[hwacc_dev]) { r = regulator_disable(hwacc_regulator[hwacc_dev]); if (r < 0) { pr_err("prcmu_set_hwacc: disable failed\n"); goto out; } hwacc_enabled[hwacc_dev] = false; } if (ram_retention) { if (!enable_ret && hwacc_ret_enabled[hwacc_dev]) { r = regulator_disable(hwacc_ret_regulator[hwacc_dev]); if (r < 0) { pr_err("prcmu_set_hwacc: ret disable failed\n"); goto out; } hwacc_ret_enabled[hwacc_dev] = false; } } out: return r; } EXPORT_SYMBOL(prcmu_set_hwacc); /** * db8500_prcmu_set_epod - set the state of a EPOD (power domain) * @epod_id: The EPOD to set * @epod_state: The new EPOD state * * This function sets the state of a EPOD (power domain). It may not be called * from interrupt context. */ int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state) { int r = 0; bool ram_retention = false; int i; /* check argument */ BUG_ON(epod_id >= NUM_EPOD_ID); /* set flag if retention is possible */ switch (epod_id) { case EPOD_ID_SVAMMDSP: case EPOD_ID_SIAMMDSP: case EPOD_ID_ESRAM12: case EPOD_ID_ESRAM34: ram_retention = true; break; } /* check argument */ BUG_ON(epod_state > EPOD_STATE_ON); BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention); /* get lock */ mutex_lock(&mb2_transfer.lock); /* wait for mailbox */ while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2)) cpu_relax(); /* fill in mailbox */ for (i = 0; i < NUM_EPOD_ID; i++) writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i)); writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id)); writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2)); writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET); /* * The current firmware version does not handle errors correctly, * and we cannot recover if there is an error. * This is expected to change when the firmware is updated. */ if (!wait_for_completion_timeout(&mb2_transfer.work, msecs_to_jiffies(20000))) { pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", __func__); r = -EIO; goto unlock_and_return; } if (mb2_transfer.ack.status != HWACC_PWR_ST_OK) r = -EIO; unlock_and_return: mutex_unlock(&mb2_transfer.lock); return r; } /** * prcmu_configure_auto_pm - Configure autonomous power management. * @sleep: Configuration for ApSleep. * @idle: Configuration for ApIdle. */ void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep, struct prcmu_auto_pm_config *idle) { u32 sleep_cfg; u32 idle_cfg; unsigned long flags; BUG_ON((sleep == NULL) || (idle == NULL)); sleep_cfg = (sleep->sva_auto_pm_enable & 0xF); sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF)); sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF)); sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF)); sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF)); sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF)); idle_cfg = (idle->sva_auto_pm_enable & 0xF); idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF)); idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF)); idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF)); idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF)); idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF)); spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags); /* * The autonomous power management configuration is done through * fields in mailbox 2, but these fields are only used as shared * variables - i.e. there is no need to send a message. */ writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP)); writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE)); mb2_transfer.auto_pm_enabled = ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) || (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) || (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) || (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON)); spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags); } EXPORT_SYMBOL(prcmu_configure_auto_pm); bool prcmu_is_auto_pm_enabled(void) { return mb2_transfer.auto_pm_enabled; } static int request_sysclk(bool enable) { int r; unsigned long flags; r = 0; mutex_lock(&mb3_transfer.sysclk_lock); spin_lock_irqsave(&mb3_transfer.lock, flags); while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3)) cpu_relax(); writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT)); writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3)); writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET); spin_unlock_irqrestore(&mb3_transfer.lock, flags); /* * The firmware only sends an ACK if we want to enable the * SysClk, and it succeeds. */ if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work, msecs_to_jiffies(20000))) { pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", __func__); r = -EIO; } mutex_unlock(&mb3_transfer.sysclk_lock); return r; } static int request_timclk(bool enable) { u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK); if (!enable) val |= PRCM_TCR_STOP_TIMERS; writel(val, PRCM_TCR); return 0; } static int request_clock(u8 clock, bool enable) { u32 val; unsigned long flags; spin_lock_irqsave(&clk_mgt_lock, flags); /* Grab the HW semaphore. */ while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) cpu_relax(); val = readl(clk_mgt[clock].reg); if (enable) { val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw); } else { clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK); val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK); } writel(val, clk_mgt[clock].reg); /* Release the HW semaphore. */ writel(0, PRCM_SEM); spin_unlock_irqrestore(&clk_mgt_lock, flags); return 0; } static int request_sga_clock(u8 clock, bool enable) { u32 val; int ret; if (enable) { val = readl(PRCM_CGATING_BYPASS); writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS); } ret = request_clock(clock, enable); if (!ret && !enable) { val = readl(PRCM_CGATING_BYPASS); writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS); } return ret; } static inline bool plldsi_locked(void) { return (readl(PRCM_PLLDSI_LOCKP) & (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 | PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) == (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 | PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3); } static int request_plldsi(bool enable) { int r = 0; u32 val; writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP | PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ? PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET)); val = readl(PRCM_PLLDSI_ENABLE); if (enable) val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE; else val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE; writel(val, PRCM_PLLDSI_ENABLE); if (enable) { unsigned int i; bool locked = plldsi_locked(); for (i = 10; !locked && (i > 0); --i) { udelay(100); locked = plldsi_locked(); } if (locked) { writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_SET); } else { writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP | PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), PRCM_MMIP_LS_CLAMP_SET); val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE; writel(val, PRCM_PLLDSI_ENABLE); r = -EAGAIN; } } else { writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR); } return r; } static int request_dsiclk(u8 n, bool enable) { u32 val; val = readl(PRCM_DSI_PLLOUT_SEL); val &= ~dsiclk[n].divsel_mask; val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) << dsiclk[n].divsel_shift); writel(val, PRCM_DSI_PLLOUT_SEL); return 0; } static int request_dsiescclk(u8 n, bool enable) { u32 val; val = readl(PRCM_DSITVCLK_DIV); enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en); writel(val, PRCM_DSITVCLK_DIV); return 0; } /** * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled. * @clock: The clock for which the request is made. * @enable: Whether the clock should be enabled (true) or disabled (false). * * This function should only be used by the clock implementation. * Do not use it from any other place! */ int db8500_prcmu_request_clock(u8 clock, bool enable) { if (clock == PRCMU_SGACLK) return request_sga_clock(clock, enable); else if (clock < PRCMU_NUM_REG_CLOCKS) return request_clock(clock, enable); else if (clock == PRCMU_TIMCLK) return request_timclk(enable); else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) return request_dsiclk((clock - PRCMU_DSI0CLK), enable); else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable); else if (clock == PRCMU_PLLDSI) return request_plldsi(enable); else if (clock == PRCMU_SYSCLK) return request_sysclk(enable); else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1)) return request_pll(clock, enable); else return -EINVAL; } static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate, int branch) { u64 rate; u32 val; u32 d; u32 div = 1; val = readl(reg); rate = src_rate; rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT); d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT); if (d > 1) div *= d; d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT); if (d > 1) div *= d; if (val & PRCM_PLL_FREQ_SELDIV2) div *= 2; if ((branch == PLL_FIX) || ((branch == PLL_DIV) && (val & PRCM_PLL_FREQ_DIV2EN) && ((reg == PRCM_PLLSOC0_FREQ) || (reg == PRCM_PLLDDR_FREQ)))) div *= 2; (void)do_div(rate, div); return (unsigned long)rate; } #define ROOT_CLOCK_RATE 38400000 static unsigned long clock_rate(u8 clock) { u32 val; u32 pllsw; unsigned long rate = ROOT_CLOCK_RATE; val = readl(clk_mgt[clock].reg); if (val & PRCM_CLK_MGT_CLK38) { if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV)) rate /= 2; return rate; } val |= clk_mgt[clock].pllsw; pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK); if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0) rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch); else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1) rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch); else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR) rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch); else return 0; if ((clock == PRCMU_SGACLK) && (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) { u64 r = (rate * 10); (void)do_div(r, 25); return (unsigned long)r; } val &= PRCM_CLK_MGT_CLKPLLDIV_MASK; if (val) return rate / val; else return 0; } static unsigned long dsiclk_rate(u8 n) { u32 divsel; u32 div = 1; divsel = readl(PRCM_DSI_PLLOUT_SEL); divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift); if (divsel == PRCM_DSI_PLLOUT_SEL_OFF) divsel = dsiclk[n].divsel; switch (divsel) { case PRCM_DSI_PLLOUT_SEL_PHI_4: div *= 2; case PRCM_DSI_PLLOUT_SEL_PHI_2: div *= 2; case PRCM_DSI_PLLOUT_SEL_PHI: return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK), PLL_RAW) / div; default: return 0; } } static unsigned long dsiescclk_rate(u8 n) { u32 div; div = readl(PRCM_DSITVCLK_DIV); div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift)); return clock_rate(PRCMU_TVCLK) / max((u32)1, div); } unsigned long prcmu_clock_rate(u8 clock) { if (clock < PRCMU_NUM_REG_CLOCKS) return clock_rate(clock); else if (clock == PRCMU_TIMCLK) return ROOT_CLOCK_RATE / 16; else if (clock == PRCMU_SYSCLK) return ROOT_CLOCK_RATE; else if (clock == PRCMU_PLLSOC0) return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW); else if (clock == PRCMU_PLLSOC1) return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW); else if (clock == PRCMU_PLLDDR) return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW); else if (clock == PRCMU_PLLDSI) return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK), PLL_RAW); else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) return dsiclk_rate(clock - PRCMU_DSI0CLK); else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK); else return 0; } static unsigned long clock_source_rate(u32 clk_mgt_val, int branch) { if (clk_mgt_val & PRCM_CLK_MGT_CLK38) return ROOT_CLOCK_RATE; clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK; if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0) return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch); else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1) return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch); else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR) return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch); else return 0; } static u32 clock_divider(unsigned long src_rate, unsigned long rate) { u32 div; div = (src_rate / rate); if (div == 0) return 1; if (rate < (src_rate / div)) div++; return div; } static long round_clock_rate(u8 clock, unsigned long rate) { u32 val; u32 div; unsigned long src_rate; long rounded_rate; val = readl(clk_mgt[clock].reg); src_rate = clock_source_rate((val | clk_mgt[clock].pllsw), clk_mgt[clock].branch); div = clock_divider(src_rate, rate); if (val & PRCM_CLK_MGT_CLK38) { if (clk_mgt[clock].clk38div) { if (div > 2) div = 2; } else { div = 1; } } else if ((clock == PRCMU_SGACLK) && (div == 3)) { u64 r = (src_rate * 10); (void)do_div(r, 25); if (r <= rate) return (unsigned long)r; } rounded_rate = (src_rate / min(div, (u32)31)); return rounded_rate; } #define MIN_PLL_VCO_RATE 600000000ULL #define MAX_PLL_VCO_RATE 1680640000ULL static long round_plldsi_rate(unsigned long rate) { long rounded_rate = 0; unsigned long src_rate; unsigned long rem; u32 r; src_rate = clock_rate(PRCMU_HDMICLK); rem = rate; for (r = 7; (rem > 0) && (r > 0); r--) { u64 d; d = (r * rate); (void)do_div(d, src_rate); if (d < 6) d = 6; else if (d > 255) d = 255; d *= src_rate; if (((2 * d) < (r * MIN_PLL_VCO_RATE)) || ((r * MAX_PLL_VCO_RATE) < (2 * d))) continue; (void)do_div(d, r); if (rate < d) { if (rounded_rate == 0) rounded_rate = (long)d; break; } if ((rate - d) < rem) { rem = (rate - d); rounded_rate = (long)d; } } return rounded_rate; } static long round_dsiclk_rate(unsigned long rate) { u32 div; unsigned long src_rate; long rounded_rate; src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK), PLL_RAW); div = clock_divider(src_rate, rate); rounded_rate = (src_rate / ((div > 2) ? 4 : div)); return rounded_rate; } static long round_dsiescclk_rate(unsigned long rate) { u32 div; unsigned long src_rate; long rounded_rate; src_rate = clock_rate(PRCMU_TVCLK); div = clock_divider(src_rate, rate); rounded_rate = (src_rate / min(div, (u32)255)); return rounded_rate; } long prcmu_round_clock_rate(u8 clock, unsigned long rate) { if (clock < PRCMU_NUM_REG_CLOCKS) return round_clock_rate(clock, rate); else if (clock == PRCMU_PLLDSI) return round_plldsi_rate(rate); else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) return round_dsiclk_rate(rate); else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) return round_dsiescclk_rate(rate); else return (long)prcmu_clock_rate(clock); } static void set_clock_rate(u8 clock, unsigned long rate) { u32 val; u32 div; unsigned long src_rate; unsigned long flags; spin_lock_irqsave(&clk_mgt_lock, flags); /* Grab the HW semaphore. */ while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) cpu_relax(); val = readl(clk_mgt[clock].reg); src_rate = clock_source_rate((val | clk_mgt[clock].pllsw), clk_mgt[clock].branch); div = clock_divider(src_rate, rate); if (val & PRCM_CLK_MGT_CLK38) { if (clk_mgt[clock].clk38div) { if (div > 1) val |= PRCM_CLK_MGT_CLK38DIV; else val &= ~PRCM_CLK_MGT_CLK38DIV; } } else if (clock == PRCMU_SGACLK) { val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK | PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN); if (div == 3) { u64 r = (src_rate * 10); (void)do_div(r, 25); if (r <= rate) { val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN; div = 0; } } val |= min(div, (u32)31); } else { val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK; val |= min(div, (u32)31); } writel(val, clk_mgt[clock].reg); /* Release the HW semaphore. */ writel(0, PRCM_SEM); spin_unlock_irqrestore(&clk_mgt_lock, flags); } static int set_plldsi_rate(unsigned long rate) { unsigned long src_rate; unsigned long rem; u32 pll_freq = 0; u32 r; src_rate = clock_rate(PRCMU_HDMICLK); rem = rate; for (r = 7; (rem > 0) && (r > 0); r--) { u64 d; u64 hwrate; d = (r * rate); (void)do_div(d, src_rate); if (d < 6) d = 6; else if (d > 255) d = 255; hwrate = (d * src_rate); if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) || ((r * MAX_PLL_VCO_RATE) < (2 * hwrate))) continue; (void)do_div(hwrate, r); if (rate < hwrate) { if (pll_freq == 0) pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) | (r << PRCM_PLL_FREQ_R_SHIFT)); break; } if ((rate - hwrate) < rem) { rem = (rate - hwrate); pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) | (r << PRCM_PLL_FREQ_R_SHIFT)); } } if (pll_freq == 0) return -EINVAL; pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT); writel(pll_freq, PRCM_PLLDSI_FREQ); return 0; } static void set_dsiclk_rate(u8 n, unsigned long rate) { u32 val; u32 div; div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK), PLL_RAW), rate); dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI : (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 : /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4; val = readl(PRCM_DSI_PLLOUT_SEL); val &= ~dsiclk[n].divsel_mask; val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift); writel(val, PRCM_DSI_PLLOUT_SEL); } static void set_dsiescclk_rate(u8 n, unsigned long rate) { u32 val; u32 div; div = clock_divider(clock_rate(PRCMU_TVCLK), rate); val = readl(PRCM_DSITVCLK_DIV); val &= ~dsiescclk[n].div_mask; val |= (min(div, (u32)255) << dsiescclk[n].div_shift); writel(val, PRCM_DSITVCLK_DIV); } int prcmu_set_clock_rate(u8 clock, unsigned long rate) { if (clock < PRCMU_NUM_REG_CLOCKS) set_clock_rate(clock, rate); else if (clock == PRCMU_PLLDSI) return set_plldsi_rate(rate); else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate); else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate); return 0; } int db8500_prcmu_config_esram0_deep_sleep(u8 state) { if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) || (state < ESRAM0_DEEP_SLEEP_STATE_OFF)) return -EINVAL; mutex_lock(&mb4_transfer.lock); while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) cpu_relax(); writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON), (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE)); writeb(DDR_PWR_STATE_ON, (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE)); writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST)); writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); wait_for_completion(&mb4_transfer.work); mutex_unlock(&mb4_transfer.lock); return 0; } int db8500_prcmu_config_hotdog(u8 threshold) { mutex_lock(&mb4_transfer.lock); while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) cpu_relax(); writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD)); writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); wait_for_completion(&mb4_transfer.work); mutex_unlock(&mb4_transfer.lock); return 0; } int db8500_prcmu_config_hotmon(u8 low, u8 high) { mutex_lock(&mb4_transfer.lock); while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) cpu_relax(); writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW)); writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH)); writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH), (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG)); writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); wait_for_completion(&mb4_transfer.work); mutex_unlock(&mb4_transfer.lock); return 0; } static int config_hot_period(u16 val) { mutex_lock(&mb4_transfer.lock); while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) cpu_relax(); writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD)); writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); wait_for_completion(&mb4_transfer.work); mutex_unlock(&mb4_transfer.lock); return 0; } int db8500_prcmu_start_temp_sense(u16 cycles32k) { if (cycles32k == 0xFFFF) return -EINVAL; return config_hot_period(cycles32k); } int db8500_prcmu_stop_temp_sense(void) { return config_hot_period(0xFFFF); } static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3) { mutex_lock(&mb4_transfer.lock); while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) cpu_relax(); writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0)); writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1)); writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2)); writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3)); writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); wait_for_completion(&mb4_transfer.work); mutex_unlock(&mb4_transfer.lock); return 0; } int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off) { BUG_ON(num == 0 || num > 0xf); return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0, sleep_auto_off ? A9WDOG_AUTO_OFF_EN : A9WDOG_AUTO_OFF_DIS); } int db8500_prcmu_enable_a9wdog(u8 id) { return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0); } int db8500_prcmu_disable_a9wdog(u8 id) { return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0); } int db8500_prcmu_kick_a9wdog(u8 id) { return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0); } /* * timeout is 28 bit, in ms. */ int db8500_prcmu_load_a9wdog(u8 id, u32 timeout) { return prcmu_a9wdog(MB4H_A9WDOG_LOAD, (id & A9WDOG_ID_MASK) | /* * Put the lowest 28 bits of timeout at * offset 4. Four first bits are used for id. */ (u8)((timeout << 4) & 0xf0), (u8)((timeout >> 4) & 0xff), (u8)((timeout >> 12) & 0xff), (u8)((timeout >> 20) & 0xff)); } /** * prcmu_abb_read() - Read register value(s) from the ABB. * @slave: The I2C slave address. * @reg: The (start) register address. * @value: The read out value(s). * @size: The number of registers to read. * * Reads register value(s) from the ABB. * @size has to be 1 for the current firmware version. */ int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size) { int r; if (size != 1) return -EINVAL; mutex_lock(&mb5_transfer.lock); while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5)) cpu_relax(); writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5)); writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP)); writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS)); writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG)); writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL)); writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET); if (!wait_for_completion_timeout(&mb5_transfer.work, msecs_to_jiffies(20000))) { pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", __func__); r = -EIO; } else { r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO); } if (!r) *value = mb5_transfer.ack.value; mutex_unlock(&mb5_transfer.lock); return r; } /** * prcmu_abb_write_masked() - Write masked register value(s) to the ABB. * @slave: The I2C slave address. * @reg: The (start) register address. * @value: The value(s) to write. * @mask: The mask(s) to use. * @size: The number of registers to write. * * Writes masked register value(s) to the ABB. * For each @value, only the bits set to 1 in the corresponding @mask * will be written. The other bits are not changed. * @size has to be 1 for the current firmware version. */ int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size) { int r; if (size != 1) return -EINVAL; mutex_lock(&mb5_transfer.lock); while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5)) cpu_relax(); writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5)); writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP)); writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS)); writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG)); writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL)); writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET); if (!wait_for_completion_timeout(&mb5_transfer.work, msecs_to_jiffies(20000))) { pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", __func__); r = -EIO; } else { r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO); } mutex_unlock(&mb5_transfer.lock); return r; } /** * prcmu_abb_write() - Write register value(s) to the ABB. * @slave: The I2C slave address. * @reg: The (start) register address. * @value: The value(s) to write. * @size: The number of registers to write. * * Writes register value(s) to the ABB. * @size has to be 1 for the current firmware version. */ int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size) { u8 mask = ~0; return prcmu_abb_write_masked(slave, reg, value, &mask, size); } /** * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem */ void prcmu_ac_wake_req(void) { u32 val; u32 status; mutex_lock(&mb0_transfer.ac_wake_lock); val = readl(PRCM_HOSTACCESS_REQ); if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ) goto unlock_and_return; atomic_set(&ac_wake_req_state, 1); retry: writel((val | PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ), PRCM_HOSTACCESS_REQ); if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work, msecs_to_jiffies(5000))) { pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n", __func__); goto unlock_and_return; } /* * The modem can generate an AC_WAKE_ACK, and then still go to sleep. * As a workaround, we wait, and then check that the modem is indeed * awake (in terms of the value of the PRCM_MOD_AWAKE_STATUS * register, which may not be the whole truth). */ udelay(400); status = (readl(PRCM_MOD_AWAKE_STATUS) & BITS(0, 2)); if (status != (PRCM_MOD_AWAKE_STATUS_PRCM_MOD_AAPD_AWAKE | PRCM_MOD_AWAKE_STATUS_PRCM_MOD_COREPD_AWAKE)) { pr_err("prcmu: %s received ack, but modem not awake (0x%X).\n", __func__, status); udelay(1200); writel(val, PRCM_HOSTACCESS_REQ); if (wait_for_completion_timeout(&mb0_transfer.ac_wake_work, msecs_to_jiffies(5000))) goto retry; pr_crit("prcmu: %s timed out (5 s) waiting for AC_SLEEP_ACK.\n", __func__); } unlock_and_return: mutex_unlock(&mb0_transfer.ac_wake_lock); } /** * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem */ void prcmu_ac_sleep_req() { u32 val; mutex_lock(&mb0_transfer.ac_wake_lock); val = readl(PRCM_HOSTACCESS_REQ); if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)) goto unlock_and_return; writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ), PRCM_HOSTACCESS_REQ); if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work, msecs_to_jiffies(5000))) { pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n", __func__); } atomic_set(&ac_wake_req_state, 0); unlock_and_return: mutex_unlock(&mb0_transfer.ac_wake_lock); } bool db8500_prcmu_is_ac_wake_requested(void) { return (atomic_read(&ac_wake_req_state) != 0); } /** * db8500_prcmu_system_reset - System reset * * Saves the reset reason code and then sets the APE_SOFTRST register which * fires interrupt to fw */ void db8500_prcmu_system_reset(u16 reset_code) { writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON)); writel(1, PRCM_APE_SOFTRST); } /** * db8500_prcmu_get_reset_code - Retrieve SW reset reason code * * Retrieves the reset reason code stored by prcmu_system_reset() before * last restart. */ u16 db8500_prcmu_get_reset_code(void) { return readw(tcdm_base + PRCM_SW_RST_REASON); } /** * db8500_prcmu_reset_modem - ask the PRCMU to reset modem */ void db8500_prcmu_modem_reset(void) { mutex_lock(&mb1_transfer.lock); while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) cpu_relax(); writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); wait_for_completion(&mb1_transfer.work); /* * No need to check return from PRCMU as modem should go in reset state * This state is already managed by upper layer */ mutex_unlock(&mb1_transfer.lock); } static void ack_dbb_wakeup(void) { unsigned long flags; spin_lock_irqsave(&mb0_transfer.lock, flags); while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0)) cpu_relax(); writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0)); writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET); spin_unlock_irqrestore(&mb0_transfer.lock, flags); } static inline void print_unknown_header_warning(u8 n, u8 header) { pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n", header, n); } static bool read_mailbox_0(void) { bool r; u32 ev; unsigned int n; u8 header; header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0); switch (header) { case MB0H_WAKEUP_EXE: case MB0H_WAKEUP_SLEEP: if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1) ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500); else ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500); if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK)) complete(&mb0_transfer.ac_wake_work); if (ev & WAKEUP_BIT_SYSCLK_OK) complete(&mb3_transfer.sysclk_work); ev &= mb0_transfer.req.dbb_irqs; for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) { if (ev & prcmu_irq_bit[n]) generic_handle_irq(IRQ_PRCMU_BASE + n); } r = true; break; default: print_unknown_header_warning(0, header); r = false; break; } writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR); return r; } static bool read_mailbox_1(void) { mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1); mb1_transfer.ack.arm_opp = readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP); mb1_transfer.ack.ape_opp = readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP); mb1_transfer.ack.ape_voltage_status = readb(tcdm_base + PRCM_ACK_MB1_APE_VOLTAGE_STATUS); writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR); complete(&mb1_transfer.work); return false; } static bool read_mailbox_2(void) { mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS); writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR); complete(&mb2_transfer.work); return false; } static bool read_mailbox_3(void) { writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR); return false; } static bool read_mailbox_4(void) { u8 header; bool do_complete = true; header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4); switch (header) { case MB4H_MEM_ST: case MB4H_HOTDOG: case MB4H_HOTMON: case MB4H_HOT_PERIOD: case MB4H_A9WDOG_CONF: case MB4H_A9WDOG_EN: case MB4H_A9WDOG_DIS: case MB4H_A9WDOG_LOAD: case MB4H_A9WDOG_KICK: break; default: print_unknown_header_warning(4, header); do_complete = false; break; } writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR); if (do_complete) complete(&mb4_transfer.work); return false; } static bool read_mailbox_5(void) { mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS); mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL); writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR); complete(&mb5_transfer.work); return false; } static bool read_mailbox_6(void) { writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR); return false; } static bool read_mailbox_7(void) { writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR); return false; } static bool (* const read_mailbox[NUM_MB])(void) = { read_mailbox_0, read_mailbox_1, read_mailbox_2, read_mailbox_3, read_mailbox_4, read_mailbox_5, read_mailbox_6, read_mailbox_7 }; static irqreturn_t prcmu_irq_handler(int irq, void *data) { u32 bits; u8 n; irqreturn_t r; bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS); if (unlikely(!bits)) return IRQ_NONE; r = IRQ_HANDLED; for (n = 0; bits; n++) { if (bits & MBOX_BIT(n)) { bits -= MBOX_BIT(n); if (read_mailbox[n]()) r = IRQ_WAKE_THREAD; } } return r; } static irqreturn_t prcmu_irq_thread_fn(int irq, void *data) { ack_dbb_wakeup(); return IRQ_HANDLED; } static void prcmu_mask_work(struct work_struct *work) { unsigned long flags; spin_lock_irqsave(&mb0_transfer.lock, flags); config_wakeups(); spin_unlock_irqrestore(&mb0_transfer.lock, flags); } static void prcmu_irq_mask(struct irq_data *d) { unsigned long flags; spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags); mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE]; spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags); if (d->irq != IRQ_PRCMU_CA_SLEEP) schedule_work(&mb0_transfer.mask_work); } static void prcmu_irq_unmask(struct irq_data *d) { unsigned long flags; spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags); mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE]; spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags); if (d->irq != IRQ_PRCMU_CA_SLEEP) schedule_work(&mb0_transfer.mask_work); } static void noop(struct irq_data *d) { } static struct irq_chip prcmu_irq_chip = { .name = "prcmu", .irq_disable = prcmu_irq_mask, .irq_ack = noop, .irq_mask = prcmu_irq_mask, .irq_unmask = prcmu_irq_unmask, }; static char *fw_project_name(u8 project) { switch (project) { case PRCMU_FW_PROJECT_U8500: return "U8500"; case PRCMU_FW_PROJECT_U8500_C2: return "U8500 C2"; case PRCMU_FW_PROJECT_U9500: return "U9500"; case PRCMU_FW_PROJECT_U9500_C2: return "U9500 C2"; default: return "Unknown"; } } void __init db8500_prcmu_early_init(void) { unsigned int i; if (cpu_is_u8500v2()) { void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K); if (tcpm_base != NULL) { u32 version; version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET); fw_info.version.project = version & 0xFF; fw_info.version.api_version = (version >> 8) & 0xFF; fw_info.version.func_version = (version >> 16) & 0xFF; fw_info.version.errata = (version >> 24) & 0xFF; fw_info.valid = true; pr_info("PRCMU firmware: %s, version %d.%d.%d\n", fw_project_name(fw_info.version.project), (version >> 8) & 0xFF, (version >> 16) & 0xFF, (version >> 24) & 0xFF); iounmap(tcpm_base); } tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE); } else { pr_err("prcmu: Unsupported chip version\n"); BUG(); } spin_lock_init(&mb0_transfer.lock); spin_lock_init(&mb0_transfer.dbb_irqs_lock); mutex_init(&mb0_transfer.ac_wake_lock); init_completion(&mb0_transfer.ac_wake_work); mutex_init(&mb1_transfer.lock); init_completion(&mb1_transfer.work); mb1_transfer.ape_opp = APE_NO_CHANGE; mutex_init(&mb2_transfer.lock); init_completion(&mb2_transfer.work); spin_lock_init(&mb2_transfer.auto_pm_lock); spin_lock_init(&mb3_transfer.lock); mutex_init(&mb3_transfer.sysclk_lock); init_completion(&mb3_transfer.sysclk_work); mutex_init(&mb4_transfer.lock); init_completion(&mb4_transfer.work); mutex_init(&mb5_transfer.lock); init_completion(&mb5_transfer.work); INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work); /* Initalize irqs. */ for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) { unsigned int irq; irq = IRQ_PRCMU_BASE + i; irq_set_chip_and_handler(irq, &prcmu_irq_chip, handle_simple_irq); set_irq_flags(irq, IRQF_VALID); } } static void __init init_prcm_registers(void) { u32 val; val = readl(PRCM_A9PL_FORCE_CLKEN); val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN | PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN); writel(val, (PRCM_A9PL_FORCE_CLKEN)); } /* * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC */ static struct regulator_consumer_supply db8500_vape_consumers[] = { REGULATOR_SUPPLY("v-ape", NULL), REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"), REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"), REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"), REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"), /* "v-mmc" changed to "vcore" in the mainline kernel */ REGULATOR_SUPPLY("vcore", "sdi0"), REGULATOR_SUPPLY("vcore", "sdi1"), REGULATOR_SUPPLY("vcore", "sdi2"), REGULATOR_SUPPLY("vcore", "sdi3"), REGULATOR_SUPPLY("vcore", "sdi4"), REGULATOR_SUPPLY("v-dma", "dma40.0"), REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"), /* "v-uart" changed to "vcore" in the mainline kernel */ REGULATOR_SUPPLY("vcore", "uart0"), REGULATOR_SUPPLY("vcore", "uart1"), REGULATOR_SUPPLY("vcore", "uart2"), REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"), REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"), }; static struct regulator_consumer_supply db8500_vsmps2_consumers[] = { REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"), /* AV8100 regulator */ REGULATOR_SUPPLY("hdmi_1v8", "0-0070"), }; static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = { REGULATOR_SUPPLY("vsupply", "b2r2_bus"), REGULATOR_SUPPLY("vsupply", "mcde"), }; /* SVA MMDSP regulator switch */ static struct regulator_consumer_supply db8500_svammdsp_consumers[] = { REGULATOR_SUPPLY("sva-mmdsp", "cm_control"), }; /* SVA pipe regulator switch */ static struct regulator_consumer_supply db8500_svapipe_consumers[] = { REGULATOR_SUPPLY("sva-pipe", "cm_control"), }; /* SIA MMDSP regulator switch */ static struct regulator_consumer_supply db8500_siammdsp_consumers[] = { REGULATOR_SUPPLY("sia-mmdsp", "cm_control"), }; /* SIA pipe regulator switch */ static struct regulator_consumer_supply db8500_siapipe_consumers[] = { REGULATOR_SUPPLY("sia-pipe", "cm_control"), }; static struct regulator_consumer_supply db8500_sga_consumers[] = { REGULATOR_SUPPLY("v-mali", NULL), }; /* ESRAM1 and 2 regulator switch */ static struct regulator_consumer_supply db8500_esram12_consumers[] = { REGULATOR_SUPPLY("esram12", "cm_control"), }; /* ESRAM3 and 4 regulator switch */ static struct regulator_consumer_supply db8500_esram34_consumers[] = { REGULATOR_SUPPLY("v-esram34", "mcde"), REGULATOR_SUPPLY("esram34", "cm_control"), REGULATOR_SUPPLY("lcla_esram", "dma40.0"), }; static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = { [DB8500_REGULATOR_VAPE] = { .constraints = { .name = "db8500-vape", .valid_ops_mask = REGULATOR_CHANGE_STATUS, }, .consumer_supplies = db8500_vape_consumers, .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers), }, [DB8500_REGULATOR_VARM] = { .constraints = { .name = "db8500-varm", .valid_ops_mask = REGULATOR_CHANGE_STATUS, }, }, [DB8500_REGULATOR_VMODEM] = { .constraints = { .name = "db8500-vmodem", .valid_ops_mask = REGULATOR_CHANGE_STATUS, }, }, [DB8500_REGULATOR_VPLL] = { .constraints = { .name = "db8500-vpll", .valid_ops_mask = REGULATOR_CHANGE_STATUS, }, }, [DB8500_REGULATOR_VSMPS1] = { .constraints = { .name = "db8500-vsmps1", .valid_ops_mask = REGULATOR_CHANGE_STATUS, }, }, [DB8500_REGULATOR_VSMPS2] = { .constraints = { .name = "db8500-vsmps2", .valid_ops_mask = REGULATOR_CHANGE_STATUS, }, .consumer_supplies = db8500_vsmps2_consumers, .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers), }, [DB8500_REGULATOR_VSMPS3] = { .constraints = { .name = "db8500-vsmps3", .valid_ops_mask = REGULATOR_CHANGE_STATUS, }, }, [DB8500_REGULATOR_VRF1] = { .constraints = { .name = "db8500-vrf1", .valid_ops_mask = REGULATOR_CHANGE_STATUS, }, }, [DB8500_REGULATOR_SWITCH_SVAMMDSP] = { /* dependency to u8500-vape is handled outside regulator framework */ .constraints = { .name = "db8500-sva-mmdsp", .valid_ops_mask = REGULATOR_CHANGE_STATUS, }, .consumer_supplies = db8500_svammdsp_consumers, .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers), }, [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = { .constraints = { /* "ret" means "retention" */ .name = "db8500-sva-mmdsp-ret", .valid_ops_mask = REGULATOR_CHANGE_STATUS, }, }, [DB8500_REGULATOR_SWITCH_SVAPIPE] = { /* dependency to u8500-vape is handled outside regulator framework */ .constraints = { .name = "db8500-sva-pipe", .valid_ops_mask = REGULATOR_CHANGE_STATUS, }, .consumer_supplies = db8500_svapipe_consumers, .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers), }, [DB8500_REGULATOR_SWITCH_SIAMMDSP] = { /* dependency to u8500-vape is handled outside regulator framework */ .constraints = { .name = "db8500-sia-mmdsp", .valid_ops_mask = REGULATOR_CHANGE_STATUS, }, .consumer_supplies = db8500_siammdsp_consumers, .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers), }, [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = { .constraints = { .name = "db8500-sia-mmdsp-ret", .valid_ops_mask = REGULATOR_CHANGE_STATUS, }, }, [DB8500_REGULATOR_SWITCH_SIAPIPE] = { /* dependency to u8500-vape is handled outside regulator framework */ .constraints = { .name = "db8500-sia-pipe", .valid_ops_mask = REGULATOR_CHANGE_STATUS, }, .consumer_supplies = db8500_siapipe_consumers, .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers), }, [DB8500_REGULATOR_SWITCH_SGA] = { .supply_regulator = "db8500-vape", .constraints = { .name = "db8500-sga", .valid_ops_mask = REGULATOR_CHANGE_STATUS, }, .consumer_supplies = db8500_sga_consumers, .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers), }, [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = { .supply_regulator = "db8500-vape", .constraints = { .name = "db8500-b2r2-mcde", .valid_ops_mask = REGULATOR_CHANGE_STATUS, }, .consumer_supplies = db8500_b2r2_mcde_consumers, .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers), }, [DB8500_REGULATOR_SWITCH_ESRAM12] = { /* * esram12 is set in retention and supplied by Vsafe when Vape is off, * no need to hold Vape */ .constraints = { .name = "db8500-esram12", .valid_ops_mask = REGULATOR_CHANGE_STATUS, }, .consumer_supplies = db8500_esram12_consumers, .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers), }, [DB8500_REGULATOR_SWITCH_ESRAM12RET] = { .constraints = { .name = "db8500-esram12-ret", .valid_ops_mask = REGULATOR_CHANGE_STATUS, }, }, [DB8500_REGULATOR_SWITCH_ESRAM34] = { /* * esram34 is set in retention and supplied by Vsafe when Vape is off, * no need to hold Vape */ .constraints = { .name = "db8500-esram34", .valid_ops_mask = REGULATOR_CHANGE_STATUS, }, .consumer_supplies = db8500_esram34_consumers, .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers), }, [DB8500_REGULATOR_SWITCH_ESRAM34RET] = { .constraints = { .name = "db8500-esram34-ret", .valid_ops_mask = REGULATOR_CHANGE_STATUS, }, }, }; static struct mfd_cell db8500_prcmu_devs[] = { { .name = "db8500-prcmu-regulators", .platform_data = &db8500_regulators, .pdata_size = sizeof(db8500_regulators), }, { .name = "cpufreq-u8500", }, }; /** * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic * */ static int __init db8500_prcmu_probe(struct platform_device *pdev) { int err = 0; if (ux500_is_svp()) return -ENODEV; init_prcm_registers(); /* Clean up the mailbox interrupts after pre-kernel code. */ writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR); err = request_threaded_irq(IRQ_DB8500_PRCMU1, prcmu_irq_handler, prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL); if (err < 0) { pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n"); err = -EBUSY; goto no_irq_return; } if (cpu_is_u8500v20_or_later()) prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET); err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs, ARRAY_SIZE(db8500_prcmu_devs), NULL, 0); if (err) pr_err("prcmu: Failed to add subdevices\n"); else pr_info("DB8500 PRCMU initialized\n"); no_irq_return: return err; } static struct platform_driver db8500_prcmu_driver = { .driver = { .name = "db8500-prcmu", .owner = THIS_MODULE, }, }; static int __init db8500_prcmu_init(void) { return platform_driver_probe(&db8500_prcmu_driver, db8500_prcmu_probe); } arch_initcall(db8500_prcmu_init); MODULE_AUTHOR("Mattias Nilsson "); MODULE_DESCRIPTION("DB8500 PRCM Unit driver"); MODULE_LICENSE("GPL v2");