/* * EMIF driver * * Copyright (C) 2012 Texas Instruments, Inc. * * Aneesh V * Santosh Shilimkar * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "emif.h" #include "of_memory.h" /** * struct emif_data - Per device static data for driver's use * @duplicate: Whether the DDR devices attached to this EMIF * instance are exactly same as that on EMIF1. In * this case we can save some memory and processing * @temperature_level: Maximum temperature of LPDDR2 devices attached * to this EMIF - read from MR4 register. If there * are two devices attached to this EMIF, this * value is the maximum of the two temperature * levels. * @node: node in the device list * @base: base address of memory-mapped IO registers. * @dev: device pointer. * @addressing table with addressing information from the spec * @regs_cache: An array of 'struct emif_regs' that stores * calculated register values for different * frequencies, to avoid re-calculating them on * each DVFS transition. * @curr_regs: The set of register values used in the last * frequency change (i.e. corresponding to the * frequency in effect at the moment) * @plat_data: Pointer to saved platform data. * @debugfs_root: dentry to the root folder for EMIF in debugfs * @np_ddr: Pointer to ddr device tree node */ struct emif_data { u8 duplicate; u8 temperature_level; u8 lpmode; struct list_head node; unsigned long irq_state; void __iomem *base; struct device *dev; const struct lpddr2_addressing *addressing; struct emif_regs *regs_cache[EMIF_MAX_NUM_FREQUENCIES]; struct emif_regs *curr_regs; struct emif_platform_data *plat_data; struct dentry *debugfs_root; struct device_node *np_ddr; }; static struct emif_data *emif1; static spinlock_t emif_lock; static unsigned long irq_state; static u32 t_ck; /* DDR clock period in ps */ static LIST_HEAD(device_list); #ifdef CONFIG_DEBUG_FS static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif, struct emif_regs *regs) { u32 type = emif->plat_data->device_info->type; u32 ip_rev = emif->plat_data->ip_rev; seq_printf(s, "EMIF register cache dump for %dMHz\n", regs->freq/1000000); seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw); seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw); seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw); seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw); if (ip_rev == EMIF_4D) { seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n", regs->read_idle_ctrl_shdw_normal); seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n", regs->read_idle_ctrl_shdw_volt_ramp); } else if (ip_rev == EMIF_4D5) { seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n", regs->dll_calib_ctrl_shdw_normal); seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n", regs->dll_calib_ctrl_shdw_volt_ramp); } if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) { seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n", regs->ref_ctrl_shdw_derated); seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n", regs->sdram_tim1_shdw_derated); seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n", regs->sdram_tim3_shdw_derated); } } static int emif_regdump_show(struct seq_file *s, void *unused) { struct emif_data *emif = s->private; struct emif_regs **regs_cache; int i; if (emif->duplicate) regs_cache = emif1->regs_cache; else regs_cache = emif->regs_cache; for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) { do_emif_regdump_show(s, emif, regs_cache[i]); seq_printf(s, "\n"); } return 0; } static int emif_regdump_open(struct inode *inode, struct file *file) { return single_open(file, emif_regdump_show, inode->i_private); } static const struct file_operations emif_regdump_fops = { .open = emif_regdump_open, .read = seq_read, .release = single_release, }; static int emif_mr4_show(struct seq_file *s, void *unused) { struct emif_data *emif = s->private; seq_printf(s, "MR4=%d\n", emif->temperature_level); return 0; } static int emif_mr4_open(struct inode *inode, struct file *file) { return single_open(file, emif_mr4_show, inode->i_private); } static const struct file_operations emif_mr4_fops = { .open = emif_mr4_open, .read = seq_read, .release = single_release, }; static int __init_or_module emif_debugfs_init(struct emif_data *emif) { struct dentry *dentry; int ret; dentry = debugfs_create_dir(dev_name(emif->dev), NULL); if (!dentry) { ret = -ENOMEM; goto err0; } emif->debugfs_root = dentry; dentry = debugfs_create_file("regcache_dump", S_IRUGO, emif->debugfs_root, emif, &emif_regdump_fops); if (!dentry) { ret = -ENOMEM; goto err1; } dentry = debugfs_create_file("mr4", S_IRUGO, emif->debugfs_root, emif, &emif_mr4_fops); if (!dentry) { ret = -ENOMEM; goto err1; } return 0; err1: debugfs_remove_recursive(emif->debugfs_root); err0: return ret; } static void __exit emif_debugfs_exit(struct emif_data *emif) { debugfs_remove_recursive(emif->debugfs_root); emif->debugfs_root = NULL; } #else static inline int __init_or_module emif_debugfs_init(struct emif_data *emif) { return 0; } static inline void __exit emif_debugfs_exit(struct emif_data *emif) { } #endif /* * Calculate the period of DDR clock from frequency value */ static void set_ddr_clk_period(u32 freq) { /* Divide 10^12 by frequency to get period in ps */ t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq); } /* * Get bus width used by EMIF. Note that this may be different from the * bus width of the DDR devices used. For instance two 16-bit DDR devices * may be connected to a given CS of EMIF. In this case bus width as far * as EMIF is concerned is 32, where as the DDR bus width is 16 bits. */ static u32 get_emif_bus_width(struct emif_data *emif) { u32 width; void __iomem *base = emif->base; width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK) >> NARROW_MODE_SHIFT; width = width == 0 ? 32 : 16; return width; } /* * Get the CL from SDRAM_CONFIG register */ static u32 get_cl(struct emif_data *emif) { u32 cl; void __iomem *base = emif->base; cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT; return cl; } static void set_lpmode(struct emif_data *emif, u8 lpmode) { u32 temp; void __iomem *base = emif->base; temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL); temp &= ~LP_MODE_MASK; temp |= (lpmode << LP_MODE_SHIFT); writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL); } static void do_freq_update(void) { struct emif_data *emif; /* * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE * * i728 DESCRIPTION: * The EMIF automatically puts the SDRAM into self-refresh mode * after the EMIF has not performed accesses during * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set * to 0x2. If during a small window the following three events * occur: * - The SR_TIMING counter expires * - And frequency change is requested * - And OCP access is requested * Then it causes instable clock on the DDR interface. * * WORKAROUND * To avoid the occurrence of the three events, the workaround * is to disable the self-refresh when requesting a frequency * change. Before requesting a frequency change the software must * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the * frequency change has been done, the software can reprogram * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2 */ list_for_each_entry(emif, &device_list, node) { if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) set_lpmode(emif, EMIF_LP_MODE_DISABLE); } /* * TODO: Do FREQ_UPDATE here when an API * is available for this as part of the new * clock framework */ list_for_each_entry(emif, &device_list, node) { if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH); } } /* Find addressing table entry based on the device's type and density */ static const struct lpddr2_addressing *get_addressing_table( const struct ddr_device_info *device_info) { u32 index, type, density; type = device_info->type; density = device_info->density; switch (type) { case DDR_TYPE_LPDDR2_S4: index = density - 1; break; case DDR_TYPE_LPDDR2_S2: switch (density) { case DDR_DENSITY_1Gb: case DDR_DENSITY_2Gb: index = density + 3; break; default: index = density - 1; } break; default: return NULL; } return &lpddr2_jedec_addressing_table[index]; } /* * Find the the right timing table from the array of timing * tables of the device using DDR clock frequency */ static const struct lpddr2_timings *get_timings_table(struct emif_data *emif, u32 freq) { u32 i, min, max, freq_nearest; const struct lpddr2_timings *timings = NULL; const struct lpddr2_timings *timings_arr = emif->plat_data->timings; struct device *dev = emif->dev; /* Start with a very high frequency - 1GHz */ freq_nearest = 1000000000; /* * Find the timings table such that: * 1. the frequency range covers the required frequency(safe) AND * 2. the max_freq is closest to the required frequency(optimal) */ for (i = 0; i < emif->plat_data->timings_arr_size; i++) { max = timings_arr[i].max_freq; min = timings_arr[i].min_freq; if ((freq >= min) && (freq <= max) && (max < freq_nearest)) { freq_nearest = max; timings = &timings_arr[i]; } } if (!timings) dev_err(dev, "%s: couldn't find timings for - %dHz\n", __func__, freq); dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n", __func__, freq, freq_nearest); return timings; } static u32 get_sdram_ref_ctrl_shdw(u32 freq, const struct lpddr2_addressing *addressing) { u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi; /* Scale down frequency and t_refi to avoid overflow */ freq_khz = freq / 1000; t_refi = addressing->tREFI_ns / 100; /* * refresh rate to be set is 'tREFI(in us) * freq in MHz * division by 10000 to account for change in units */ val = t_refi * freq_khz / 10000; ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT; return ref_ctrl_shdw; } static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings, const struct lpddr2_min_tck *min_tck, const struct lpddr2_addressing *addressing) { u32 tim1 = 0, val = 0; val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1; tim1 |= val << T_WTR_SHIFT; if (addressing->num_banks == B8) val = DIV_ROUND_UP(timings->tFAW, t_ck*4); else val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck)); tim1 |= (val - 1) << T_RRD_SHIFT; val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1; tim1 |= val << T_RC_SHIFT; val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck)); tim1 |= (val - 1) << T_RAS_SHIFT; val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1; tim1 |= val << T_WR_SHIFT; val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1; tim1 |= val << T_RCD_SHIFT; val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1; tim1 |= val << T_RP_SHIFT; return tim1; } static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings, const struct lpddr2_min_tck *min_tck, const struct lpddr2_addressing *addressing) { u32 tim1 = 0, val = 0; val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1; tim1 = val << T_WTR_SHIFT; /* * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps * to tFAW for de-rating */ if (addressing->num_banks == B8) { val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1; } else { val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck); val = max(min_tck->tRRD, val) - 1; } tim1 |= val << T_RRD_SHIFT; val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck); tim1 |= (val - 1) << T_RC_SHIFT; val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck); val = max(min_tck->tRASmin, val) - 1; tim1 |= val << T_RAS_SHIFT; val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1; tim1 |= val << T_WR_SHIFT; val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck)); tim1 |= (val - 1) << T_RCD_SHIFT; val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck)); tim1 |= (val - 1) << T_RP_SHIFT; return tim1; } static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings, const struct lpddr2_min_tck *min_tck, const struct lpddr2_addressing *addressing, u32 type) { u32 tim2 = 0, val = 0; val = min_tck->tCKE - 1; tim2 |= val << T_CKE_SHIFT; val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1; tim2 |= val << T_RTP_SHIFT; /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */ val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1; tim2 |= val << T_XSNR_SHIFT; /* XSRD same as XSNR for LPDDR2 */ tim2 |= val << T_XSRD_SHIFT; val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1; tim2 |= val << T_XP_SHIFT; return tim2; } static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings, const struct lpddr2_min_tck *min_tck, const struct lpddr2_addressing *addressing, u32 type, u32 ip_rev, u32 derated) { u32 tim3 = 0, val = 0, t_dqsck; val = timings->tRAS_max_ns / addressing->tREFI_ns - 1; val = val > 0xF ? 0xF : val; tim3 |= val << T_RAS_MAX_SHIFT; val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1; tim3 |= val << T_RFC_SHIFT; t_dqsck = (derated == EMIF_DERATED_TIMINGS) ? timings->tDQSCK_max_derated : timings->tDQSCK_max; if (ip_rev == EMIF_4D5) val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1; else val = DIV_ROUND_UP(t_dqsck, t_ck) - 1; tim3 |= val << T_TDQSCKMAX_SHIFT; val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1; tim3 |= val << ZQ_ZQCS_SHIFT; val = DIV_ROUND_UP(timings->tCKESR, t_ck); val = max(min_tck->tCKESR, val) - 1; tim3 |= val << T_CKESR_SHIFT; if (ip_rev == EMIF_4D5) { tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT; val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1; tim3 |= val << T_PDLL_UL_SHIFT; } return tim3; } static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing, bool cs1_used, bool cal_resistors_per_cs) { u32 zq = 0, val = 0; val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns; zq |= val << ZQ_REFINTERVAL_SHIFT; val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1; zq |= val << ZQ_ZQCL_MULT_SHIFT; val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1; zq |= val << ZQ_ZQINIT_MULT_SHIFT; zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT; if (cal_resistors_per_cs) zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT; else zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT; zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */ val = cs1_used ? 1 : 0; zq |= val << ZQ_CS1EN_SHIFT; return zq; } static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing, const struct emif_custom_configs *custom_configs, bool cs1_used, u32 sdram_io_width, u32 emif_bus_width) { u32 alert = 0, interval, devcnt; if (custom_configs && (custom_configs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)) interval = custom_configs->temp_alert_poll_interval_ms; else interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS; interval *= 1000000; /* Convert to ns */ interval /= addressing->tREFI_ns; /* Convert to refresh cycles */ alert |= (interval << TA_REFINTERVAL_SHIFT); /* * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width * also to this form and subtract to get TA_DEVCNT, which is * in log2(x) form. */ emif_bus_width = __fls(emif_bus_width) - 1; devcnt = emif_bus_width - sdram_io_width; alert |= devcnt << TA_DEVCNT_SHIFT; /* DEVWDT is in 'log2(x) - 3' form */ alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT; alert |= 1 << TA_SFEXITEN_SHIFT; alert |= 1 << TA_CS0EN_SHIFT; alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT; return alert; } static u32 get_read_idle_ctrl_shdw(u8 volt_ramp) { u32 idle = 0, val = 0; /* * Maximum value in normal conditions and increased frequency * when voltage is ramping */ if (volt_ramp) val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1; else val = 0x1FF; /* * READ_IDLE_CTRL register in EMIF4D has same offset and fields * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts */ idle |= val << DLL_CALIB_INTERVAL_SHIFT; idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT; return idle; } static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp) { u32 calib = 0, val = 0; if (volt_ramp == DDR_VOLTAGE_RAMPING) val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1; else val = 0; /* Disabled when voltage is stable */ calib |= val << DLL_CALIB_INTERVAL_SHIFT; calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT; return calib; } static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings, u32 freq, u8 RL) { u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0; val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1; phy |= val << READ_LATENCY_SHIFT_4D; if (freq <= 100000000) val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY; else if (freq <= 200000000) val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY; else val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY; phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D; return phy; } static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl) { u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay; /* * DLL operates at 266 MHz. If DDR frequency is near 266 MHz, * half-delay is not needed else set half-delay */ if (freq >= 265000000 && freq < 267000000) half_delay = 0; else half_delay = 1; phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5; phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS, t_ck) - 1) << READ_LATENCY_SHIFT_4D5); return phy; } static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void) { u32 fifo_we_slave_ratio; fifo_we_slave_ratio = DIV_ROUND_CLOSEST( EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 | fifo_we_slave_ratio << 22; } static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void) { u32 fifo_we_slave_ratio; fifo_we_slave_ratio = DIV_ROUND_CLOSEST( EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 | fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23; } static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void) { u32 fifo_we_slave_ratio; fifo_we_slave_ratio = DIV_ROUND_CLOSEST( EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 | fifo_we_slave_ratio << 13; } static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev) { u32 pwr_mgmt_ctrl = 0, timeout; u32 lpmode = EMIF_LP_MODE_SELF_REFRESH; u32 timeout_perf = EMIF_LP_MODE_TIMEOUT_PERFORMANCE; u32 timeout_pwr = EMIF_LP_MODE_TIMEOUT_POWER; u32 freq_threshold = EMIF_LP_MODE_FREQ_THRESHOLD; u32 mask; u8 shift; struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs; if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) { lpmode = cust_cfgs->lpmode; timeout_perf = cust_cfgs->lpmode_timeout_performance; timeout_pwr = cust_cfgs->lpmode_timeout_power; freq_threshold = cust_cfgs->lpmode_freq_threshold; } /* Timeout based on DDR frequency */ timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr; /* * The value to be set in register is "log2(timeout) - 3" * if timeout < 16 load 0 in register * if timeout is not a power of 2, round to next highest power of 2 */ if (timeout < 16) { timeout = 0; } else { if (timeout & (timeout - 1)) timeout <<= 1; timeout = __fls(timeout) - 3; } switch (lpmode) { case EMIF_LP_MODE_CLOCK_STOP: shift = CS_TIM_SHIFT; mask = CS_TIM_MASK; break; case EMIF_LP_MODE_SELF_REFRESH: /* Workaround for errata i735 */ if (timeout < 6) timeout = 6; shift = SR_TIM_SHIFT; mask = SR_TIM_MASK; break; case EMIF_LP_MODE_PWR_DN: shift = PD_TIM_SHIFT; mask = PD_TIM_MASK; break; case EMIF_LP_MODE_DISABLE: default: mask = 0; shift = 0; break; } /* Round to maximum in case of overflow, BUT warn! */ if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) { pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n", lpmode, timeout_perf, timeout_pwr, freq_threshold); WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n", timeout, mask >> shift); timeout = mask >> shift; } /* Setup required timing */ pwr_mgmt_ctrl = (timeout << shift) & mask; /* setup a default mask for rest of the modes */ pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) & ~mask; /* No CS_TIM in EMIF_4D5 */ if (ip_rev == EMIF_4D5) pwr_mgmt_ctrl &= ~CS_TIM_MASK; pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT; return pwr_mgmt_ctrl; } /* * Get the temperature level of the EMIF instance: * Reads the MR4 register of attached SDRAM parts to find out the temperature * level. If there are two parts attached(one on each CS), then the temperature * level for the EMIF instance is the higher of the two temperatures. */ static void get_temperature_level(struct emif_data *emif) { u32 temp, temperature_level; void __iomem *base; base = emif->base; /* Read mode register 4 */ writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG); temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA); temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >> MR4_SDRAM_REF_RATE_SHIFT; if (emif->plat_data->device_info->cs1_used) { writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG); temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA); temp = (temp & MR4_SDRAM_REF_RATE_MASK) >> MR4_SDRAM_REF_RATE_SHIFT; temperature_level = max(temp, temperature_level); } /* treat everything less than nominal(3) in MR4 as nominal */ if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL)) temperature_level = SDRAM_TEMP_NOMINAL; /* if we get reserved value in MR4 persist with the existing value */ if (likely(temperature_level != SDRAM_TEMP_RESERVED_4)) emif->temperature_level = temperature_level; } /* * Program EMIF shadow registers that are not dependent on temperature * or voltage */ static void setup_registers(struct emif_data *emif, struct emif_regs *regs) { void __iomem *base = emif->base; writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW); writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW); writel(regs->pwr_mgmt_ctrl_shdw, base + EMIF_POWER_MANAGEMENT_CTRL_SHDW); /* Settings specific for EMIF4D5 */ if (emif->plat_data->ip_rev != EMIF_4D5) return; writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW); writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW); writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW); } /* * When voltage ramps dll calibration and forced read idle should * happen more often */ static void setup_volt_sensitive_regs(struct emif_data *emif, struct emif_regs *regs, u32 volt_state) { u32 calib_ctrl; void __iomem *base = emif->base; /* * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_* * is an alias of the respective read_idle_ctrl_shdw_* (members of * a union). So, the below code takes care of both cases */ if (volt_state == DDR_VOLTAGE_RAMPING) calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp; else calib_ctrl = regs->dll_calib_ctrl_shdw_normal; writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW); } /* * setup_temperature_sensitive_regs() - set the timings for temperature * sensitive registers. This happens once at initialisation time based * on the temperature at boot time and subsequently based on the temperature * alert interrupt. Temperature alert can happen when the temperature * increases or drops. So this function can have the effect of either * derating the timings or going back to nominal values. */ static void setup_temperature_sensitive_regs(struct emif_data *emif, struct emif_regs *regs) { u32 tim1, tim3, ref_ctrl, type; void __iomem *base = emif->base; u32 temperature; type = emif->plat_data->device_info->type; tim1 = regs->sdram_tim1_shdw; tim3 = regs->sdram_tim3_shdw; ref_ctrl = regs->ref_ctrl_shdw; /* No de-rating for non-lpddr2 devices */ if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4) goto out; temperature = emif->temperature_level; if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) { ref_ctrl = regs->ref_ctrl_shdw_derated; } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) { tim1 = regs->sdram_tim1_shdw_derated; tim3 = regs->sdram_tim3_shdw_derated; ref_ctrl = regs->ref_ctrl_shdw_derated; } out: writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW); writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW); writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW); } static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif) { u32 old_temp_level; irqreturn_t ret = IRQ_HANDLED; spin_lock_irqsave(&emif_lock, irq_state); old_temp_level = emif->temperature_level; get_temperature_level(emif); if (unlikely(emif->temperature_level == old_temp_level)) { goto out; } else if (!emif->curr_regs) { dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n"); goto out; } if (emif->temperature_level < old_temp_level || emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) { /* * Temperature coming down - defer handling to thread OR * Temperature far too high - do kernel_power_off() from * thread context */ ret = IRQ_WAKE_THREAD; } else { /* Temperature is going up - handle immediately */ setup_temperature_sensitive_regs(emif, emif->curr_regs); do_freq_update(); } out: spin_unlock_irqrestore(&emif_lock, irq_state); return ret; } static irqreturn_t emif_interrupt_handler(int irq, void *dev_id) { u32 interrupts; struct emif_data *emif = dev_id; void __iomem *base = emif->base; struct device *dev = emif->dev; irqreturn_t ret = IRQ_HANDLED; /* Save the status and clear it */ interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); /* * Handle temperature alert * Temperature alert should be same for all ports * So, it's enough to process it only for one of the ports */ if (interrupts & TA_SYS_MASK) ret = handle_temp_alert(base, emif); if (interrupts & ERR_SYS_MASK) dev_err(dev, "Access error from SYS port - %x\n", interrupts); if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) { /* Save the status and clear it */ interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS); writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS); if (interrupts & ERR_LL_MASK) dev_err(dev, "Access error from LL port - %x\n", interrupts); } return ret; } static irqreturn_t emif_threaded_isr(int irq, void *dev_id) { struct emif_data *emif = dev_id; if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) { dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n"); kernel_power_off(); return IRQ_HANDLED; } spin_lock_irqsave(&emif_lock, irq_state); if (emif->curr_regs) { setup_temperature_sensitive_regs(emif, emif->curr_regs); do_freq_update(); } else { dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n"); } spin_unlock_irqrestore(&emif_lock, irq_state); return IRQ_HANDLED; } static void clear_all_interrupts(struct emif_data *emif) { void __iomem *base = emif->base; writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS), base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS), base + EMIF_LL_OCP_INTERRUPT_STATUS); } static void disable_and_clear_all_interrupts(struct emif_data *emif) { void __iomem *base = emif->base; /* Disable all interrupts */ writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET), base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR); if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET), base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR); /* Clear all interrupts */ clear_all_interrupts(emif); } static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq) { u32 interrupts, type; void __iomem *base = emif->base; type = emif->plat_data->device_info->type; clear_all_interrupts(emif); /* Enable interrupts for SYS interface */ interrupts = EN_ERR_SYS_MASK; if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) interrupts |= EN_TA_SYS_MASK; writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET); /* Enable interrupts for LL interface */ if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) { /* TA need not be enabled for LL */ interrupts = EN_ERR_LL_MASK; writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET); } /* setup IRQ handlers */ return devm_request_threaded_irq(emif->dev, irq, emif_interrupt_handler, emif_threaded_isr, 0, dev_name(emif->dev), emif); } static void __init_or_module emif_onetime_settings(struct emif_data *emif) { u32 pwr_mgmt_ctrl, zq, temp_alert_cfg; void __iomem *base = emif->base; const struct lpddr2_addressing *addressing; const struct ddr_device_info *device_info; device_info = emif->plat_data->device_info; addressing = get_addressing_table(device_info); /* * Init power management settings * We don't know the frequency yet. Use a high frequency * value for a conservative timeout setting */ pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif, emif->plat_data->ip_rev); emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT; writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL); /* Init ZQ calibration settings */ zq = get_zq_config_reg(addressing, device_info->cs1_used, device_info->cal_resistors_per_cs); writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG); /* Check temperature level temperature level*/ get_temperature_level(emif); if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n"); /* Init temperature polling */ temp_alert_cfg = get_temp_alert_config(addressing, emif->plat_data->custom_configs, device_info->cs1_used, device_info->io_width, get_emif_bus_width(emif)); writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG); /* * Program external PHY control registers that are not frequency * dependent */ if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY) return; writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW); writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW); writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW); writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW); writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW); writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW); writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW); writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW); writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW); writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW); writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW); writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW); writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW); writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW); writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW); writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW); writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW); writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW); writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW); writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW); writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW); } static void get_default_timings(struct emif_data *emif) { struct emif_platform_data *pd = emif->plat_data; pd->timings = lpddr2_jedec_timings; pd->timings_arr_size = ARRAY_SIZE(lpddr2_jedec_timings); dev_warn(emif->dev, "%s: using default timings\n", __func__); } static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type, u32 ip_rev, struct device *dev) { int valid; valid = (type == DDR_TYPE_LPDDR2_S4 || type == DDR_TYPE_LPDDR2_S2) && (density >= DDR_DENSITY_64Mb && density <= DDR_DENSITY_8Gb) && (io_width >= DDR_IO_WIDTH_8 && io_width <= DDR_IO_WIDTH_32); /* Combinations of EMIF and PHY revisions that we support today */ switch (ip_rev) { case EMIF_4D: valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY); break; case EMIF_4D5: valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY); break; default: valid = 0; } if (!valid) dev_err(dev, "%s: invalid DDR details\n", __func__); return valid; } static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs, struct device *dev) { int valid = 1; if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) && (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE)) valid = cust_cfgs->lpmode_freq_threshold && cust_cfgs->lpmode_timeout_performance && cust_cfgs->lpmode_timeout_power; if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL) valid = valid && cust_cfgs->temp_alert_poll_interval_ms; if (!valid) dev_warn(dev, "%s: invalid custom configs\n", __func__); return valid; } #if defined(CONFIG_OF) static void __init_or_module of_get_custom_configs(struct device_node *np_emif, struct emif_data *emif) { struct emif_custom_configs *cust_cfgs = NULL; int len; const int *lpmode, *poll_intvl; lpmode = of_get_property(np_emif, "low-power-mode", &len); poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len); if (lpmode || poll_intvl) cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs), GFP_KERNEL); if (!cust_cfgs) return; if (lpmode) { cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE; cust_cfgs->lpmode = *lpmode; of_property_read_u32(np_emif, "low-power-mode-timeout-performance", &cust_cfgs->lpmode_timeout_performance); of_property_read_u32(np_emif, "low-power-mode-timeout-power", &cust_cfgs->lpmode_timeout_power); of_property_read_u32(np_emif, "low-power-mode-freq-threshold", &cust_cfgs->lpmode_freq_threshold); } if (poll_intvl) { cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL; cust_cfgs->temp_alert_poll_interval_ms = *poll_intvl; } if (!is_custom_config_valid(cust_cfgs, emif->dev)) { devm_kfree(emif->dev, cust_cfgs); return; } emif->plat_data->custom_configs = cust_cfgs; } static void __init_or_module of_get_ddr_info(struct device_node *np_emif, struct device_node *np_ddr, struct ddr_device_info *dev_info) { u32 density = 0, io_width = 0; int len; if (of_find_property(np_emif, "cs1-used", &len)) dev_info->cs1_used = true; if (of_find_property(np_emif, "cal-resistor-per-cs", &len)) dev_info->cal_resistors_per_cs = true; if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s4")) dev_info->type = DDR_TYPE_LPDDR2_S4; else if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s2")) dev_info->type = DDR_TYPE_LPDDR2_S2; of_property_read_u32(np_ddr, "density", &density); of_property_read_u32(np_ddr, "io-width", &io_width); /* Convert from density in Mb to the density encoding in jedc_ddr.h */ if (density & (density - 1)) dev_info->density = 0; else dev_info->density = __fls(density) - 5; /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */ if (io_width & (io_width - 1)) dev_info->io_width = 0; else dev_info->io_width = __fls(io_width) - 1; } static struct emif_data * __init_or_module of_get_memory_device_details( struct device_node *np_emif, struct device *dev) { struct emif_data *emif = NULL; struct ddr_device_info *dev_info = NULL; struct emif_platform_data *pd = NULL; struct device_node *np_ddr; int len; np_ddr = of_parse_phandle(np_emif, "device-handle", 0); if (!np_ddr) goto error; emif = devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL); pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL); dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL); if (!emif || !pd || !dev_info) { dev_err(dev, "%s: Out of memory!!\n", __func__); goto error; } emif->plat_data = pd; pd->device_info = dev_info; emif->dev = dev; emif->np_ddr = np_ddr; emif->temperature_level = SDRAM_TEMP_NOMINAL; if (of_device_is_compatible(np_emif, "ti,emif-4d")) emif->plat_data->ip_rev = EMIF_4D; else if (of_device_is_compatible(np_emif, "ti,emif-4d5")) emif->plat_data->ip_rev = EMIF_4D5; of_property_read_u32(np_emif, "phy-type", &pd->phy_type); if (of_find_property(np_emif, "hw-caps-ll-interface", &len)) pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE; of_get_ddr_info(np_emif, np_ddr, dev_info); if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density, pd->device_info->io_width, pd->phy_type, pd->ip_rev, emif->dev)) { dev_err(dev, "%s: invalid device data!!\n", __func__); goto error; } /* * For EMIF instances other than EMIF1 see if the devices connected * are exactly same as on EMIF1(which is typically the case). If so, * mark it as a duplicate of EMIF1. This will save some memory and * computation. */ if (emif1 && emif1->np_ddr == np_ddr) { emif->duplicate = true; goto out; } else if (emif1) { dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n", __func__); } of_get_custom_configs(np_emif, emif); emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev, emif->plat_data->device_info->type, &emif->plat_data->timings_arr_size); emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev); goto out; error: return NULL; out: return emif; } #else static struct emif_data * __init_or_module of_get_memory_device_details( struct device_node *np_emif, struct device *dev) { return NULL; } #endif static struct emif_data *__init_or_module get_device_details( struct platform_device *pdev) { u32 size; struct emif_data *emif = NULL; struct ddr_device_info *dev_info; struct emif_custom_configs *cust_cfgs; struct emif_platform_data *pd; struct device *dev; void *temp; pd = pdev->dev.platform_data; dev = &pdev->dev; if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type, pd->device_info->density, pd->device_info->io_width, pd->phy_type, pd->ip_rev, dev))) { dev_err(dev, "%s: invalid device data\n", __func__); goto error; } emif = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL); temp = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL); dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL); if (!emif || !pd || !dev_info) { dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__); goto error; } memcpy(temp, pd, sizeof(*pd)); pd = temp; memcpy(dev_info, pd->device_info, sizeof(*dev_info)); pd->device_info = dev_info; emif->plat_data = pd; emif->dev = dev; emif->temperature_level = SDRAM_TEMP_NOMINAL; /* * For EMIF instances other than EMIF1 see if the devices connected * are exactly same as on EMIF1(which is typically the case). If so, * mark it as a duplicate of EMIF1 and skip copying timings data. * This will save some memory and some computation later. */ emif->duplicate = emif1 && (memcmp(dev_info, emif1->plat_data->device_info, sizeof(struct ddr_device_info)) == 0); if (emif->duplicate) { pd->timings = NULL; pd->min_tck = NULL; goto out; } else if (emif1) { dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n", __func__); } /* * Copy custom configs - ignore allocation error, if any, as * custom_configs is not very critical */ cust_cfgs = pd->custom_configs; if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) { temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL); if (temp) memcpy(temp, cust_cfgs, sizeof(*cust_cfgs)); else dev_warn(dev, "%s:%d: allocation error\n", __func__, __LINE__); pd->custom_configs = temp; } /* * Copy timings and min-tck values from platform data. If it is not * available or if memory allocation fails, use JEDEC defaults */ size = sizeof(struct lpddr2_timings) * pd->timings_arr_size; if (pd->timings) { temp = devm_kzalloc(dev, size, GFP_KERNEL); if (temp) { memcpy(temp, pd->timings, sizeof(*pd->timings)); pd->timings = temp; } else { dev_warn(dev, "%s:%d: allocation error\n", __func__, __LINE__); get_default_timings(emif); } } else { get_default_timings(emif); } if (pd->min_tck) { temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL); if (temp) { memcpy(temp, pd->min_tck, sizeof(*pd->min_tck)); pd->min_tck = temp; } else { dev_warn(dev, "%s:%d: allocation error\n", __func__, __LINE__); pd->min_tck = &lpddr2_jedec_min_tck; } } else { pd->min_tck = &lpddr2_jedec_min_tck; } out: return emif; error: return NULL; } static int __init_or_module emif_probe(struct platform_device *pdev) { struct emif_data *emif; struct resource *res; int irq; if (pdev->dev.of_node) emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev); else emif = get_device_details(pdev); if (!emif) { pr_err("%s: error getting device data\n", __func__); goto error; } list_add(&emif->node, &device_list); emif->addressing = get_addressing_table(emif->plat_data->device_info); /* Save pointers to each other in emif and device structures */ emif->dev = &pdev->dev; platform_set_drvdata(pdev, emif); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { dev_err(emif->dev, "%s: error getting memory resource\n", __func__); goto error; } emif->base = devm_ioremap_resource(emif->dev, res); if (IS_ERR(emif->base)) goto error; irq = platform_get_irq(pdev, 0); if (irq < 0) { dev_err(emif->dev, "%s: error getting IRQ resource - %d\n", __func__, irq); goto error; } emif_onetime_settings(emif); emif_debugfs_init(emif); disable_and_clear_all_interrupts(emif); setup_interrupts(emif, irq); /* One-time actions taken on probing the first device */ if (!emif1) { emif1 = emif; spin_lock_init(&emif_lock); /* * TODO: register notifiers for frequency and voltage * change here once the respective frameworks are * available */ } dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n", __func__, emif->base, irq); return 0; error: return -ENODEV; } static int __exit emif_remove(struct platform_device *pdev) { struct emif_data *emif = platform_get_drvdata(pdev); emif_debugfs_exit(emif); return 0; } static void emif_shutdown(struct platform_device *pdev) { struct emif_data *emif = platform_get_drvdata(pdev); disable_and_clear_all_interrupts(emif); } static int get_emif_reg_values(struct emif_data *emif, u32 freq, struct emif_regs *regs) { u32 cs1_used, ip_rev, phy_type; u32 cl, type; const struct lpddr2_timings *timings; const struct lpddr2_min_tck *min_tck; const struct ddr_device_info *device_info; const struct lpddr2_addressing *addressing; struct emif_data *emif_for_calc; struct device *dev; const struct emif_custom_configs *custom_configs; dev = emif->dev; /* * If the devices on this EMIF instance is duplicate of EMIF1, * use EMIF1 details for the calculation */ emif_for_calc = emif->duplicate ? emif1 : emif; timings = get_timings_table(emif_for_calc, freq); addressing = emif_for_calc->addressing; if (!timings || !addressing) { dev_err(dev, "%s: not enough data available for %dHz", __func__, freq); return -1; } device_info = emif_for_calc->plat_data->device_info; type = device_info->type; cs1_used = device_info->cs1_used; ip_rev = emif_for_calc->plat_data->ip_rev; phy_type = emif_for_calc->plat_data->phy_type; min_tck = emif_for_calc->plat_data->min_tck; custom_configs = emif_for_calc->plat_data->custom_configs; set_ddr_clk_period(freq); regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing); regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck, addressing); regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck, addressing, type); regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck, addressing, type, ip_rev, EMIF_NORMAL_TIMINGS); cl = get_cl(emif); if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) { regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d( timings, freq, cl); } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) { regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl); regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5(); regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5(); regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5(); } else { return -1; } /* Only timeout values in pwr_mgmt_ctrl_shdw register */ regs->pwr_mgmt_ctrl_shdw = get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) & (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK); if (ip_rev & EMIF_4D) { regs->read_idle_ctrl_shdw_normal = get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE); regs->read_idle_ctrl_shdw_volt_ramp = get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING); } else if (ip_rev & EMIF_4D5) { regs->dll_calib_ctrl_shdw_normal = get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE); regs->dll_calib_ctrl_shdw_volt_ramp = get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING); } if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) { regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4, addressing); regs->sdram_tim1_shdw_derated = get_sdram_tim_1_shdw_derated(timings, min_tck, addressing); regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings, min_tck, addressing, type, ip_rev, EMIF_DERATED_TIMINGS); } regs->freq = freq; return 0; } /* * get_regs() - gets the cached emif_regs structure for a given EMIF instance * given frequency(freq): * * As an optimisation, every EMIF instance other than EMIF1 shares the * register cache with EMIF1 if the devices connected on this instance * are same as that on EMIF1(indicated by the duplicate flag) * * If we do not have an entry corresponding to the frequency given, we * allocate a new entry and calculate the values * * Upon finding the right reg dump, save it in curr_regs. It can be * directly used for thermal de-rating and voltage ramping changes. */ static struct emif_regs *get_regs(struct emif_data *emif, u32 freq) { int i; struct emif_regs **regs_cache; struct emif_regs *regs = NULL; struct device *dev; dev = emif->dev; if (emif->curr_regs && emif->curr_regs->freq == freq) { dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq); return emif->curr_regs; } if (emif->duplicate) regs_cache = emif1->regs_cache; else regs_cache = emif->regs_cache; for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) { if (regs_cache[i]->freq == freq) { regs = regs_cache[i]; dev_dbg(dev, "%s: reg dump found in reg cache for %u Hz\n", __func__, freq); break; } } /* * If we don't have an entry for this frequency in the cache create one * and calculate the values */ if (!regs) { regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC); if (!regs) return NULL; if (get_emif_reg_values(emif, freq, regs)) { devm_kfree(emif->dev, regs); return NULL; } /* * Now look for an un-used entry in the cache and save the * newly created struct. If there are no free entries * over-write the last entry */ for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) ; if (i >= EMIF_MAX_NUM_FREQUENCIES) { dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n", __func__); i = EMIF_MAX_NUM_FREQUENCIES - 1; devm_kfree(emif->dev, regs_cache[i]); } regs_cache[i] = regs; } return regs; } static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state) { dev_dbg(emif->dev, "%s: voltage notification : %d", __func__, volt_state); if (!emif->curr_regs) { dev_err(emif->dev, "%s: volt-notify before registers are ready: %d\n", __func__, volt_state); return; } setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state); } /* * TODO: voltage notify handling should be hooked up to * regulator framework as soon as the necessary support * is available in mainline kernel. This function is un-used * right now. */ static void __attribute__((unused)) volt_notify_handling(u32 volt_state) { struct emif_data *emif; spin_lock_irqsave(&emif_lock, irq_state); list_for_each_entry(emif, &device_list, node) do_volt_notify_handling(emif, volt_state); do_freq_update(); spin_unlock_irqrestore(&emif_lock, irq_state); } static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq) { struct emif_regs *regs; regs = get_regs(emif, new_freq); if (!regs) return; emif->curr_regs = regs; /* * Update the shadow registers: * Temperature and voltage-ramp sensitive settings are also configured * in terms of DDR cycles. So, we need to update them too when there * is a freq change */ dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz", __func__, new_freq); setup_registers(emif, regs); setup_temperature_sensitive_regs(emif, regs); setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE); /* * Part of workaround for errata i728. See do_freq_update() * for more details */ if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) set_lpmode(emif, EMIF_LP_MODE_DISABLE); } /* * TODO: frequency notify handling should be hooked up to * clock framework as soon as the necessary support is * available in mainline kernel. This function is un-used * right now. */ static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq) { struct emif_data *emif; /* * NOTE: we are taking the spin-lock here and releases it * only in post-notifier. This doesn't look good and * Sparse complains about it, but this seems to be * un-avoidable. We need to lock a sequence of events * that is split between EMIF and clock framework. * * 1. EMIF driver updates EMIF timings in shadow registers in the * frequency pre-notify callback from clock framework * 2. clock framework sets up the registers for the new frequency * 3. clock framework initiates a hw-sequence that updates * the frequency EMIF timings synchronously. * * All these 3 steps should be performed as an atomic operation * vis-a-vis similar sequence in the EMIF interrupt handler * for temperature events. Otherwise, there could be race * conditions that could result in incorrect EMIF timings for * a given frequency */ spin_lock_irqsave(&emif_lock, irq_state); list_for_each_entry(emif, &device_list, node) do_freq_pre_notify_handling(emif, new_freq); } static void do_freq_post_notify_handling(struct emif_data *emif) { /* * Part of workaround for errata i728. See do_freq_update() * for more details */ if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH); } /* * TODO: frequency notify handling should be hooked up to * clock framework as soon as the necessary support is * available in mainline kernel. This function is un-used * right now. */ static void __attribute__((unused)) freq_post_notify_handling(void) { struct emif_data *emif; list_for_each_entry(emif, &device_list, node) do_freq_post_notify_handling(emif); /* * Lock is done in pre-notify handler. See freq_pre_notify_handling() * for more details */ spin_unlock_irqrestore(&emif_lock, irq_state); } #if defined(CONFIG_OF) static const struct of_device_id emif_of_match[] = { { .compatible = "ti,emif-4d" }, { .compatible = "ti,emif-4d5" }, {}, }; MODULE_DEVICE_TABLE(of, emif_of_match); #endif static struct platform_driver emif_driver = { .remove = __exit_p(emif_remove), .shutdown = emif_shutdown, .driver = { .name = "emif", .of_match_table = of_match_ptr(emif_of_match), }, }; module_platform_driver_probe(emif_driver, emif_probe); MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:emif"); MODULE_AUTHOR("Texas Instruments Inc");