/* * Driver for MT9V022 CMOS Image Sensor from Micron * * Copyright (C) 2008, Guennadi Liakhovetski * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include /* * mt9v022 i2c address 0x48, 0x4c, 0x58, 0x5c * The platform has to define ctruct i2c_board_info objects and link to them * from struct soc_camera_link */ static char *sensor_type; module_param(sensor_type, charp, S_IRUGO); MODULE_PARM_DESC(sensor_type, "Sensor type: \"colour\" or \"monochrome\""); /* mt9v022 selected register addresses */ #define MT9V022_CHIP_VERSION 0x00 #define MT9V022_COLUMN_START 0x01 #define MT9V022_ROW_START 0x02 #define MT9V022_WINDOW_HEIGHT 0x03 #define MT9V022_WINDOW_WIDTH 0x04 #define MT9V022_HORIZONTAL_BLANKING 0x05 #define MT9V022_VERTICAL_BLANKING 0x06 #define MT9V022_CHIP_CONTROL 0x07 #define MT9V022_SHUTTER_WIDTH1 0x08 #define MT9V022_SHUTTER_WIDTH2 0x09 #define MT9V022_SHUTTER_WIDTH_CTRL 0x0a #define MT9V022_TOTAL_SHUTTER_WIDTH 0x0b #define MT9V022_RESET 0x0c #define MT9V022_READ_MODE 0x0d #define MT9V022_MONITOR_MODE 0x0e #define MT9V022_PIXEL_OPERATION_MODE 0x0f #define MT9V022_LED_OUT_CONTROL 0x1b #define MT9V022_ADC_MODE_CONTROL 0x1c #define MT9V022_ANALOG_GAIN 0x35 #define MT9V022_BLACK_LEVEL_CALIB_CTRL 0x47 #define MT9V022_PIXCLK_FV_LV 0x74 #define MT9V022_DIGITAL_TEST_PATTERN 0x7f #define MT9V022_AEC_AGC_ENABLE 0xAF #define MT9V022_MAX_TOTAL_SHUTTER_WIDTH 0xBD /* Progressive scan, master, defaults */ #define MT9V022_CHIP_CONTROL_DEFAULT 0x188 #define MT9V022_MAX_WIDTH 752 #define MT9V022_MAX_HEIGHT 480 #define MT9V022_MIN_WIDTH 48 #define MT9V022_MIN_HEIGHT 32 #define MT9V022_COLUMN_SKIP 1 #define MT9V022_ROW_SKIP 4 /* MT9V022 has only one fixed colorspace per pixelcode */ struct mt9v022_datafmt { enum v4l2_mbus_pixelcode code; enum v4l2_colorspace colorspace; }; /* Find a data format by a pixel code in an array */ static const struct mt9v022_datafmt *mt9v022_find_datafmt( enum v4l2_mbus_pixelcode code, const struct mt9v022_datafmt *fmt, int n) { int i; for (i = 0; i < n; i++) if (fmt[i].code == code) return fmt + i; return NULL; } static const struct mt9v022_datafmt mt9v022_colour_fmts[] = { /* * Order important: first natively supported, * second supported with a GPIO extender */ {V4L2_MBUS_FMT_SBGGR10_1X10, V4L2_COLORSPACE_SRGB}, {V4L2_MBUS_FMT_SBGGR8_1X8, V4L2_COLORSPACE_SRGB}, }; static const struct mt9v022_datafmt mt9v022_monochrome_fmts[] = { /* Order important - see above */ {V4L2_MBUS_FMT_Y10_1X10, V4L2_COLORSPACE_JPEG}, {V4L2_MBUS_FMT_Y8_1X8, V4L2_COLORSPACE_JPEG}, }; struct mt9v022 { struct v4l2_subdev subdev; struct v4l2_ctrl_handler hdl; struct { /* exposure/auto-exposure cluster */ struct v4l2_ctrl *autoexposure; struct v4l2_ctrl *exposure; }; struct { /* gain/auto-gain cluster */ struct v4l2_ctrl *autogain; struct v4l2_ctrl *gain; }; struct v4l2_rect rect; /* Sensor window */ const struct mt9v022_datafmt *fmt; const struct mt9v022_datafmt *fmts; int num_fmts; int model; /* V4L2_IDENT_MT9V022* codes from v4l2-chip-ident.h */ u16 chip_control; unsigned short y_skip_top; /* Lines to skip at the top */ }; static struct mt9v022 *to_mt9v022(const struct i2c_client *client) { return container_of(i2c_get_clientdata(client), struct mt9v022, subdev); } static int reg_read(struct i2c_client *client, const u8 reg) { return i2c_smbus_read_word_swapped(client, reg); } static int reg_write(struct i2c_client *client, const u8 reg, const u16 data) { return i2c_smbus_write_word_swapped(client, reg, data); } static int reg_set(struct i2c_client *client, const u8 reg, const u16 data) { int ret; ret = reg_read(client, reg); if (ret < 0) return ret; return reg_write(client, reg, ret | data); } static int reg_clear(struct i2c_client *client, const u8 reg, const u16 data) { int ret; ret = reg_read(client, reg); if (ret < 0) return ret; return reg_write(client, reg, ret & ~data); } static int mt9v022_init(struct i2c_client *client) { struct mt9v022 *mt9v022 = to_mt9v022(client); int ret; /* * Almost the default mode: master, parallel, simultaneous, and an * undocumented bit 0x200, which is present in table 7, but not in 8, * plus snapshot mode to disable scan for now */ mt9v022->chip_control |= 0x10; ret = reg_write(client, MT9V022_CHIP_CONTROL, mt9v022->chip_control); if (!ret) ret = reg_write(client, MT9V022_READ_MODE, 0x300); /* All defaults */ if (!ret) /* AEC, AGC on */ ret = reg_set(client, MT9V022_AEC_AGC_ENABLE, 0x3); if (!ret) ret = reg_write(client, MT9V022_ANALOG_GAIN, 16); if (!ret) ret = reg_write(client, MT9V022_TOTAL_SHUTTER_WIDTH, 480); if (!ret) ret = reg_write(client, MT9V022_MAX_TOTAL_SHUTTER_WIDTH, 480); if (!ret) /* default - auto */ ret = reg_clear(client, MT9V022_BLACK_LEVEL_CALIB_CTRL, 1); if (!ret) ret = reg_write(client, MT9V022_DIGITAL_TEST_PATTERN, 0); if (!ret) return v4l2_ctrl_handler_setup(&mt9v022->hdl); return ret; } static int mt9v022_s_stream(struct v4l2_subdev *sd, int enable) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct mt9v022 *mt9v022 = to_mt9v022(client); if (enable) /* Switch to master "normal" mode */ mt9v022->chip_control &= ~0x10; else /* Switch to snapshot mode */ mt9v022->chip_control |= 0x10; if (reg_write(client, MT9V022_CHIP_CONTROL, mt9v022->chip_control) < 0) return -EIO; return 0; } static int mt9v022_s_crop(struct v4l2_subdev *sd, struct v4l2_crop *a) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct mt9v022 *mt9v022 = to_mt9v022(client); struct v4l2_rect rect = a->c; int ret; /* Bayer format - even size lengths */ if (mt9v022->fmts == mt9v022_colour_fmts) { rect.width = ALIGN(rect.width, 2); rect.height = ALIGN(rect.height, 2); /* Let the user play with the starting pixel */ } soc_camera_limit_side(&rect.left, &rect.width, MT9V022_COLUMN_SKIP, MT9V022_MIN_WIDTH, MT9V022_MAX_WIDTH); soc_camera_limit_side(&rect.top, &rect.height, MT9V022_ROW_SKIP, MT9V022_MIN_HEIGHT, MT9V022_MAX_HEIGHT); /* Like in example app. Contradicts the datasheet though */ ret = reg_read(client, MT9V022_AEC_AGC_ENABLE); if (ret >= 0) { if (ret & 1) /* Autoexposure */ ret = reg_write(client, MT9V022_MAX_TOTAL_SHUTTER_WIDTH, rect.height + mt9v022->y_skip_top + 43); else ret = reg_write(client, MT9V022_TOTAL_SHUTTER_WIDTH, rect.height + mt9v022->y_skip_top + 43); } /* Setup frame format: defaults apart from width and height */ if (!ret) ret = reg_write(client, MT9V022_COLUMN_START, rect.left); if (!ret) ret = reg_write(client, MT9V022_ROW_START, rect.top); if (!ret) /* * Default 94, Phytec driver says: * "width + horizontal blank >= 660" */ ret = reg_write(client, MT9V022_HORIZONTAL_BLANKING, rect.width > 660 - 43 ? 43 : 660 - rect.width); if (!ret) ret = reg_write(client, MT9V022_VERTICAL_BLANKING, 45); if (!ret) ret = reg_write(client, MT9V022_WINDOW_WIDTH, rect.width); if (!ret) ret = reg_write(client, MT9V022_WINDOW_HEIGHT, rect.height + mt9v022->y_skip_top); if (ret < 0) return ret; dev_dbg(&client->dev, "Frame %dx%d pixel\n", rect.width, rect.height); mt9v022->rect = rect; return 0; } static int mt9v022_g_crop(struct v4l2_subdev *sd, struct v4l2_crop *a) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct mt9v022 *mt9v022 = to_mt9v022(client); a->c = mt9v022->rect; a->type = V4L2_BUF_TYPE_VIDEO_CAPTURE; return 0; } static int mt9v022_cropcap(struct v4l2_subdev *sd, struct v4l2_cropcap *a) { a->bounds.left = MT9V022_COLUMN_SKIP; a->bounds.top = MT9V022_ROW_SKIP; a->bounds.width = MT9V022_MAX_WIDTH; a->bounds.height = MT9V022_MAX_HEIGHT; a->defrect = a->bounds; a->type = V4L2_BUF_TYPE_VIDEO_CAPTURE; a->pixelaspect.numerator = 1; a->pixelaspect.denominator = 1; return 0; } static int mt9v022_g_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *mf) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct mt9v022 *mt9v022 = to_mt9v022(client); mf->width = mt9v022->rect.width; mf->height = mt9v022->rect.height; mf->code = mt9v022->fmt->code; mf->colorspace = mt9v022->fmt->colorspace; mf->field = V4L2_FIELD_NONE; return 0; } static int mt9v022_s_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *mf) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct mt9v022 *mt9v022 = to_mt9v022(client); struct v4l2_crop a = { .c = { .left = mt9v022->rect.left, .top = mt9v022->rect.top, .width = mf->width, .height = mf->height, }, }; int ret; /* * The caller provides a supported format, as verified per call to * .try_mbus_fmt(), datawidth is from our supported format list */ switch (mf->code) { case V4L2_MBUS_FMT_Y8_1X8: case V4L2_MBUS_FMT_Y10_1X10: if (mt9v022->model != V4L2_IDENT_MT9V022IX7ATM) return -EINVAL; break; case V4L2_MBUS_FMT_SBGGR8_1X8: case V4L2_MBUS_FMT_SBGGR10_1X10: if (mt9v022->model != V4L2_IDENT_MT9V022IX7ATC) return -EINVAL; break; default: return -EINVAL; } /* No support for scaling on this camera, just crop. */ ret = mt9v022_s_crop(sd, &a); if (!ret) { mf->width = mt9v022->rect.width; mf->height = mt9v022->rect.height; mt9v022->fmt = mt9v022_find_datafmt(mf->code, mt9v022->fmts, mt9v022->num_fmts); mf->colorspace = mt9v022->fmt->colorspace; } return ret; } static int mt9v022_try_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *mf) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct mt9v022 *mt9v022 = to_mt9v022(client); const struct mt9v022_datafmt *fmt; int align = mf->code == V4L2_MBUS_FMT_SBGGR8_1X8 || mf->code == V4L2_MBUS_FMT_SBGGR10_1X10; v4l_bound_align_image(&mf->width, MT9V022_MIN_WIDTH, MT9V022_MAX_WIDTH, align, &mf->height, MT9V022_MIN_HEIGHT + mt9v022->y_skip_top, MT9V022_MAX_HEIGHT + mt9v022->y_skip_top, align, 0); fmt = mt9v022_find_datafmt(mf->code, mt9v022->fmts, mt9v022->num_fmts); if (!fmt) { fmt = mt9v022->fmt; mf->code = fmt->code; } mf->colorspace = fmt->colorspace; return 0; } static int mt9v022_g_chip_ident(struct v4l2_subdev *sd, struct v4l2_dbg_chip_ident *id) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct mt9v022 *mt9v022 = to_mt9v022(client); if (id->match.type != V4L2_CHIP_MATCH_I2C_ADDR) return -EINVAL; if (id->match.addr != client->addr) return -ENODEV; id->ident = mt9v022->model; id->revision = 0; return 0; } #ifdef CONFIG_VIDEO_ADV_DEBUG static int mt9v022_g_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg) { struct i2c_client *client = v4l2_get_subdevdata(sd); if (reg->match.type != V4L2_CHIP_MATCH_I2C_ADDR || reg->reg > 0xff) return -EINVAL; if (reg->match.addr != client->addr) return -ENODEV; reg->size = 2; reg->val = reg_read(client, reg->reg); if (reg->val > 0xffff) return -EIO; return 0; } static int mt9v022_s_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg) { struct i2c_client *client = v4l2_get_subdevdata(sd); if (reg->match.type != V4L2_CHIP_MATCH_I2C_ADDR || reg->reg > 0xff) return -EINVAL; if (reg->match.addr != client->addr) return -ENODEV; if (reg_write(client, reg->reg, reg->val) < 0) return -EIO; return 0; } #endif static int mt9v022_g_volatile_ctrl(struct v4l2_ctrl *ctrl) { struct mt9v022 *mt9v022 = container_of(ctrl->handler, struct mt9v022, hdl); struct v4l2_subdev *sd = &mt9v022->subdev; struct i2c_client *client = v4l2_get_subdevdata(sd); struct v4l2_ctrl *gain = mt9v022->gain; struct v4l2_ctrl *exp = mt9v022->exposure; unsigned long range; int data; switch (ctrl->id) { case V4L2_CID_AUTOGAIN: data = reg_read(client, MT9V022_ANALOG_GAIN); if (data < 0) return -EIO; range = gain->maximum - gain->minimum; gain->val = ((data - 16) * range + 24) / 48 + gain->minimum; return 0; case V4L2_CID_EXPOSURE_AUTO: data = reg_read(client, MT9V022_TOTAL_SHUTTER_WIDTH); if (data < 0) return -EIO; range = exp->maximum - exp->minimum; exp->val = ((data - 1) * range + 239) / 479 + exp->minimum; return 0; } return -EINVAL; } static int mt9v022_s_ctrl(struct v4l2_ctrl *ctrl) { struct mt9v022 *mt9v022 = container_of(ctrl->handler, struct mt9v022, hdl); struct v4l2_subdev *sd = &mt9v022->subdev; struct i2c_client *client = v4l2_get_subdevdata(sd); int data; switch (ctrl->id) { case V4L2_CID_VFLIP: if (ctrl->val) data = reg_set(client, MT9V022_READ_MODE, 0x10); else data = reg_clear(client, MT9V022_READ_MODE, 0x10); if (data < 0) return -EIO; return 0; case V4L2_CID_HFLIP: if (ctrl->val) data = reg_set(client, MT9V022_READ_MODE, 0x20); else data = reg_clear(client, MT9V022_READ_MODE, 0x20); if (data < 0) return -EIO; return 0; case V4L2_CID_AUTOGAIN: if (ctrl->val) { if (reg_set(client, MT9V022_AEC_AGC_ENABLE, 0x2) < 0) return -EIO; } else { struct v4l2_ctrl *gain = mt9v022->gain; /* mt9v022 has minimum == default */ unsigned long range = gain->maximum - gain->minimum; /* Valid values 16 to 64, 32 to 64 must be even. */ unsigned long gain_val = ((gain->val - gain->minimum) * 48 + range / 2) / range + 16; if (gain_val >= 32) gain_val &= ~1; /* * The user wants to set gain manually, hope, she * knows, what she's doing... Switch AGC off. */ if (reg_clear(client, MT9V022_AEC_AGC_ENABLE, 0x2) < 0) return -EIO; dev_dbg(&client->dev, "Setting gain from %d to %lu\n", reg_read(client, MT9V022_ANALOG_GAIN), gain_val); if (reg_write(client, MT9V022_ANALOG_GAIN, gain_val) < 0) return -EIO; } return 0; case V4L2_CID_EXPOSURE_AUTO: if (ctrl->val == V4L2_EXPOSURE_AUTO) { data = reg_set(client, MT9V022_AEC_AGC_ENABLE, 0x1); } else { struct v4l2_ctrl *exp = mt9v022->exposure; unsigned long range = exp->maximum - exp->minimum; unsigned long shutter = ((exp->val - exp->minimum) * 479 + range / 2) / range + 1; /* * The user wants to set shutter width manually, hope, * she knows, what she's doing... Switch AEC off. */ data = reg_clear(client, MT9V022_AEC_AGC_ENABLE, 0x1); if (data < 0) return -EIO; dev_dbg(&client->dev, "Shutter width from %d to %lu\n", reg_read(client, MT9V022_TOTAL_SHUTTER_WIDTH), shutter); if (reg_write(client, MT9V022_TOTAL_SHUTTER_WIDTH, shutter) < 0) return -EIO; } return 0; } return -EINVAL; } /* * Interface active, can use i2c. If it fails, it can indeed mean, that * this wasn't our capture interface, so, we wait for the right one */ static int mt9v022_video_probe(struct i2c_client *client) { struct mt9v022 *mt9v022 = to_mt9v022(client); struct soc_camera_link *icl = soc_camera_i2c_to_link(client); s32 data; int ret; unsigned long flags; /* Read out the chip version register */ data = reg_read(client, MT9V022_CHIP_VERSION); /* must be 0x1311 or 0x1313 */ if (data != 0x1311 && data != 0x1313) { ret = -ENODEV; dev_info(&client->dev, "No MT9V022 found, ID register 0x%x\n", data); goto ei2c; } /* Soft reset */ ret = reg_write(client, MT9V022_RESET, 1); if (ret < 0) goto ei2c; /* 15 clock cycles */ udelay(200); if (reg_read(client, MT9V022_RESET)) { dev_err(&client->dev, "Resetting MT9V022 failed!\n"); if (ret > 0) ret = -EIO; goto ei2c; } /* Set monochrome or colour sensor type */ if (sensor_type && (!strcmp("colour", sensor_type) || !strcmp("color", sensor_type))) { ret = reg_write(client, MT9V022_PIXEL_OPERATION_MODE, 4 | 0x11); mt9v022->model = V4L2_IDENT_MT9V022IX7ATC; mt9v022->fmts = mt9v022_colour_fmts; } else { ret = reg_write(client, MT9V022_PIXEL_OPERATION_MODE, 0x11); mt9v022->model = V4L2_IDENT_MT9V022IX7ATM; mt9v022->fmts = mt9v022_monochrome_fmts; } if (ret < 0) goto ei2c; mt9v022->num_fmts = 0; /* * This is a 10bit sensor, so by default we only allow 10bit. * The platform may support different bus widths due to * different routing of the data lines. */ if (icl->query_bus_param) flags = icl->query_bus_param(icl); else flags = SOCAM_DATAWIDTH_10; if (flags & SOCAM_DATAWIDTH_10) mt9v022->num_fmts++; else mt9v022->fmts++; if (flags & SOCAM_DATAWIDTH_8) mt9v022->num_fmts++; mt9v022->fmt = &mt9v022->fmts[0]; dev_info(&client->dev, "Detected a MT9V022 chip ID %x, %s sensor\n", data, mt9v022->model == V4L2_IDENT_MT9V022IX7ATM ? "monochrome" : "colour"); ret = mt9v022_init(client); if (ret < 0) dev_err(&client->dev, "Failed to initialise the camera\n"); ei2c: return ret; } static int mt9v022_g_skip_top_lines(struct v4l2_subdev *sd, u32 *lines) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct mt9v022 *mt9v022 = to_mt9v022(client); *lines = mt9v022->y_skip_top; return 0; } static const struct v4l2_ctrl_ops mt9v022_ctrl_ops = { .g_volatile_ctrl = mt9v022_g_volatile_ctrl, .s_ctrl = mt9v022_s_ctrl, }; static struct v4l2_subdev_core_ops mt9v022_subdev_core_ops = { .g_chip_ident = mt9v022_g_chip_ident, #ifdef CONFIG_VIDEO_ADV_DEBUG .g_register = mt9v022_g_register, .s_register = mt9v022_s_register, #endif }; static int mt9v022_enum_fmt(struct v4l2_subdev *sd, unsigned int index, enum v4l2_mbus_pixelcode *code) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct mt9v022 *mt9v022 = to_mt9v022(client); if (index >= mt9v022->num_fmts) return -EINVAL; *code = mt9v022->fmts[index].code; return 0; } static int mt9v022_g_mbus_config(struct v4l2_subdev *sd, struct v4l2_mbus_config *cfg) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct soc_camera_link *icl = soc_camera_i2c_to_link(client); cfg->flags = V4L2_MBUS_MASTER | V4L2_MBUS_SLAVE | V4L2_MBUS_PCLK_SAMPLE_RISING | V4L2_MBUS_PCLK_SAMPLE_FALLING | V4L2_MBUS_HSYNC_ACTIVE_HIGH | V4L2_MBUS_HSYNC_ACTIVE_LOW | V4L2_MBUS_VSYNC_ACTIVE_HIGH | V4L2_MBUS_VSYNC_ACTIVE_LOW | V4L2_MBUS_DATA_ACTIVE_HIGH; cfg->type = V4L2_MBUS_PARALLEL; cfg->flags = soc_camera_apply_board_flags(icl, cfg); return 0; } static int mt9v022_s_mbus_config(struct v4l2_subdev *sd, const struct v4l2_mbus_config *cfg) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct soc_camera_link *icl = soc_camera_i2c_to_link(client); struct mt9v022 *mt9v022 = to_mt9v022(client); unsigned long flags = soc_camera_apply_board_flags(icl, cfg); unsigned int bps = soc_mbus_get_fmtdesc(mt9v022->fmt->code)->bits_per_sample; int ret; u16 pixclk = 0; if (icl->set_bus_param) { ret = icl->set_bus_param(icl, 1 << (bps - 1)); if (ret) return ret; } else if (bps != 10) { /* * Without board specific bus width settings we only support the * sensors native bus width */ return -EINVAL; } if (flags & V4L2_MBUS_PCLK_SAMPLE_FALLING) pixclk |= 0x10; if (!(flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)) pixclk |= 0x1; if (!(flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)) pixclk |= 0x2; ret = reg_write(client, MT9V022_PIXCLK_FV_LV, pixclk); if (ret < 0) return ret; if (!(flags & V4L2_MBUS_MASTER)) mt9v022->chip_control &= ~0x8; ret = reg_write(client, MT9V022_CHIP_CONTROL, mt9v022->chip_control); if (ret < 0) return ret; dev_dbg(&client->dev, "Calculated pixclk 0x%x, chip control 0x%x\n", pixclk, mt9v022->chip_control); return 0; } static struct v4l2_subdev_video_ops mt9v022_subdev_video_ops = { .s_stream = mt9v022_s_stream, .s_mbus_fmt = mt9v022_s_fmt, .g_mbus_fmt = mt9v022_g_fmt, .try_mbus_fmt = mt9v022_try_fmt, .s_crop = mt9v022_s_crop, .g_crop = mt9v022_g_crop, .cropcap = mt9v022_cropcap, .enum_mbus_fmt = mt9v022_enum_fmt, .g_mbus_config = mt9v022_g_mbus_config, .s_mbus_config = mt9v022_s_mbus_config, }; static struct v4l2_subdev_sensor_ops mt9v022_subdev_sensor_ops = { .g_skip_top_lines = mt9v022_g_skip_top_lines, }; static struct v4l2_subdev_ops mt9v022_subdev_ops = { .core = &mt9v022_subdev_core_ops, .video = &mt9v022_subdev_video_ops, .sensor = &mt9v022_subdev_sensor_ops, }; static int mt9v022_probe(struct i2c_client *client, const struct i2c_device_id *did) { struct mt9v022 *mt9v022; struct soc_camera_link *icl = soc_camera_i2c_to_link(client); struct i2c_adapter *adapter = to_i2c_adapter(client->dev.parent); int ret; if (!icl) { dev_err(&client->dev, "MT9V022 driver needs platform data\n"); return -EINVAL; } if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_WORD_DATA)) { dev_warn(&adapter->dev, "I2C-Adapter doesn't support I2C_FUNC_SMBUS_WORD\n"); return -EIO; } mt9v022 = kzalloc(sizeof(struct mt9v022), GFP_KERNEL); if (!mt9v022) return -ENOMEM; v4l2_i2c_subdev_init(&mt9v022->subdev, client, &mt9v022_subdev_ops); v4l2_ctrl_handler_init(&mt9v022->hdl, 6); v4l2_ctrl_new_std(&mt9v022->hdl, &mt9v022_ctrl_ops, V4L2_CID_VFLIP, 0, 1, 1, 0); v4l2_ctrl_new_std(&mt9v022->hdl, &mt9v022_ctrl_ops, V4L2_CID_HFLIP, 0, 1, 1, 0); mt9v022->autogain = v4l2_ctrl_new_std(&mt9v022->hdl, &mt9v022_ctrl_ops, V4L2_CID_AUTOGAIN, 0, 1, 1, 1); mt9v022->gain = v4l2_ctrl_new_std(&mt9v022->hdl, &mt9v022_ctrl_ops, V4L2_CID_GAIN, 0, 127, 1, 64); /* * Simulated autoexposure. If enabled, we calculate shutter width * ourselves in the driver based on vertical blanking and frame width */ mt9v022->autoexposure = v4l2_ctrl_new_std_menu(&mt9v022->hdl, &mt9v022_ctrl_ops, V4L2_CID_EXPOSURE_AUTO, 1, 0, V4L2_EXPOSURE_AUTO); mt9v022->exposure = v4l2_ctrl_new_std(&mt9v022->hdl, &mt9v022_ctrl_ops, V4L2_CID_EXPOSURE, 1, 255, 1, 255); mt9v022->subdev.ctrl_handler = &mt9v022->hdl; if (mt9v022->hdl.error) { int err = mt9v022->hdl.error; kfree(mt9v022); return err; } v4l2_ctrl_auto_cluster(2, &mt9v022->autoexposure, V4L2_EXPOSURE_MANUAL, true); v4l2_ctrl_auto_cluster(2, &mt9v022->autogain, 0, true); mt9v022->chip_control = MT9V022_CHIP_CONTROL_DEFAULT; /* * MT9V022 _really_ corrupts the first read out line. * TODO: verify on i.MX31 */ mt9v022->y_skip_top = 1; mt9v022->rect.left = MT9V022_COLUMN_SKIP; mt9v022->rect.top = MT9V022_ROW_SKIP; mt9v022->rect.width = MT9V022_MAX_WIDTH; mt9v022->rect.height = MT9V022_MAX_HEIGHT; ret = mt9v022_video_probe(client); if (ret) { v4l2_ctrl_handler_free(&mt9v022->hdl); kfree(mt9v022); } return ret; } static int mt9v022_remove(struct i2c_client *client) { struct mt9v022 *mt9v022 = to_mt9v022(client); struct soc_camera_link *icl = soc_camera_i2c_to_link(client); v4l2_device_unregister_subdev(&mt9v022->subdev); if (icl->free_bus) icl->free_bus(icl); v4l2_ctrl_handler_free(&mt9v022->hdl); kfree(mt9v022); return 0; } static const struct i2c_device_id mt9v022_id[] = { { "mt9v022", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, mt9v022_id); static struct i2c_driver mt9v022_i2c_driver = { .driver = { .name = "mt9v022", }, .probe = mt9v022_probe, .remove = mt9v022_remove, .id_table = mt9v022_id, }; static int __init mt9v022_mod_init(void) { return i2c_add_driver(&mt9v022_i2c_driver); } static void __exit mt9v022_mod_exit(void) { i2c_del_driver(&mt9v022_i2c_driver); } module_init(mt9v022_mod_init); module_exit(mt9v022_mod_exit); MODULE_DESCRIPTION("Micron MT9V022 Camera driver"); MODULE_AUTHOR("Guennadi Liakhovetski "); MODULE_LICENSE("GPL");