/* * adv7842 - Analog Devices ADV7842 video decoder driver * * Copyright 2013 Cisco Systems, Inc. and/or its affiliates. All rights reserved. * * This program is free software; you may redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ /* * References (c = chapter, p = page): * REF_01 - Analog devices, ADV7842, * Register Settings Recommendations, Rev. 1.9, April 2011 * REF_02 - Analog devices, Software User Guide, UG-206, * ADV7842 I2C Register Maps, Rev. 0, November 2010 * REF_03 - Analog devices, Hardware User Guide, UG-214, * ADV7842 Fast Switching 2:1 HDMI 1.4 Receiver with 3D-Comb * Decoder and Digitizer , Rev. 0, January 2011 */ #include #include #include #include #include #include #include #include #include #include #include #include static int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "debug level (0-2)"); MODULE_DESCRIPTION("Analog Devices ADV7842 video decoder driver"); MODULE_AUTHOR("Hans Verkuil "); MODULE_AUTHOR("Martin Bugge "); MODULE_LICENSE("GPL"); /* ADV7842 system clock frequency */ #define ADV7842_fsc (28636360) /* ********************************************************************** * * Arrays with configuration parameters for the ADV7842 * ********************************************************************** */ struct adv7842_state { struct adv7842_platform_data pdata; struct v4l2_subdev sd; struct media_pad pad; struct v4l2_ctrl_handler hdl; enum adv7842_mode mode; struct v4l2_dv_timings timings; enum adv7842_vid_std_select vid_std_select; v4l2_std_id norm; struct { u8 edid[256]; u32 present; } hdmi_edid; struct { u8 edid[256]; u32 present; } vga_edid; struct v4l2_fract aspect_ratio; u32 rgb_quantization_range; bool is_cea_format; struct workqueue_struct *work_queues; struct delayed_work delayed_work_enable_hotplug; bool restart_stdi_once; bool hdmi_port_a; /* i2c clients */ struct i2c_client *i2c_sdp_io; struct i2c_client *i2c_sdp; struct i2c_client *i2c_cp; struct i2c_client *i2c_vdp; struct i2c_client *i2c_afe; struct i2c_client *i2c_hdmi; struct i2c_client *i2c_repeater; struct i2c_client *i2c_edid; struct i2c_client *i2c_infoframe; struct i2c_client *i2c_cec; struct i2c_client *i2c_avlink; /* controls */ struct v4l2_ctrl *detect_tx_5v_ctrl; struct v4l2_ctrl *analog_sampling_phase_ctrl; struct v4l2_ctrl *free_run_color_ctrl_manual; struct v4l2_ctrl *free_run_color_ctrl; struct v4l2_ctrl *rgb_quantization_range_ctrl; }; /* Unsupported timings. This device cannot support 720p30. */ static const struct v4l2_dv_timings adv7842_timings_exceptions[] = { V4L2_DV_BT_CEA_1280X720P30, { } }; static bool adv7842_check_dv_timings(const struct v4l2_dv_timings *t, void *hdl) { int i; for (i = 0; adv7842_timings_exceptions[i].bt.width; i++) if (v4l2_match_dv_timings(t, adv7842_timings_exceptions + i, 0)) return false; return true; } struct adv7842_video_standards { struct v4l2_dv_timings timings; u8 vid_std; u8 v_freq; }; /* sorted by number of lines */ static const struct adv7842_video_standards adv7842_prim_mode_comp[] = { /* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */ { V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 }, { V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 }, { V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 }, { V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 }, { V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 }, { V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 }, { V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 }, { V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 }, /* TODO add 1920x1080P60_RB (CVT timing) */ { }, }; /* sorted by number of lines */ static const struct adv7842_video_standards adv7842_prim_mode_gr[] = { { V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 }, { V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 }, { V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 }, { V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 }, { V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 }, { V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 }, { V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 }, { V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 }, { V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 }, { V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 }, { V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 }, { V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 }, { V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 }, { V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 }, { V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 }, { V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 }, { V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 }, { V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 }, { V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 }, { V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */ /* TODO add 1600X1200P60_RB (not a DMT timing) */ { V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 }, { V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */ { }, }; /* sorted by number of lines */ static const struct adv7842_video_standards adv7842_prim_mode_hdmi_comp[] = { { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, { V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 }, { V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 }, { V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 }, { V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 }, { V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 }, { V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 }, { V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 }, { V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 }, { }, }; /* sorted by number of lines */ static const struct adv7842_video_standards adv7842_prim_mode_hdmi_gr[] = { { V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 }, { V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 }, { V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 }, { V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 }, { V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 }, { V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 }, { V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 }, { V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 }, { V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 }, { V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 }, { V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 }, { V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 }, { V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 }, { V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 }, { V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 }, { }, }; /* ----------------------------------------------------------------------- */ static inline struct adv7842_state *to_state(struct v4l2_subdev *sd) { return container_of(sd, struct adv7842_state, sd); } static inline struct v4l2_subdev *to_sd(struct v4l2_ctrl *ctrl) { return &container_of(ctrl->handler, struct adv7842_state, hdl)->sd; } static inline unsigned hblanking(const struct v4l2_bt_timings *t) { return V4L2_DV_BT_BLANKING_WIDTH(t); } static inline unsigned htotal(const struct v4l2_bt_timings *t) { return V4L2_DV_BT_FRAME_WIDTH(t); } static inline unsigned vblanking(const struct v4l2_bt_timings *t) { return V4L2_DV_BT_BLANKING_HEIGHT(t); } static inline unsigned vtotal(const struct v4l2_bt_timings *t) { return V4L2_DV_BT_FRAME_HEIGHT(t); } /* ----------------------------------------------------------------------- */ static s32 adv_smbus_read_byte_data_check(struct i2c_client *client, u8 command, bool check) { union i2c_smbus_data data; if (!i2c_smbus_xfer(client->adapter, client->addr, client->flags, I2C_SMBUS_READ, command, I2C_SMBUS_BYTE_DATA, &data)) return data.byte; if (check) v4l_err(client, "error reading %02x, %02x\n", client->addr, command); return -EIO; } static s32 adv_smbus_read_byte_data(struct i2c_client *client, u8 command) { int i; for (i = 0; i < 3; i++) { int ret = adv_smbus_read_byte_data_check(client, command, true); if (ret >= 0) { if (i) v4l_err(client, "read ok after %d retries\n", i); return ret; } } v4l_err(client, "read failed\n"); return -EIO; } static s32 adv_smbus_write_byte_data(struct i2c_client *client, u8 command, u8 value) { union i2c_smbus_data data; int err; int i; data.byte = value; for (i = 0; i < 3; i++) { err = i2c_smbus_xfer(client->adapter, client->addr, client->flags, I2C_SMBUS_WRITE, command, I2C_SMBUS_BYTE_DATA, &data); if (!err) break; } if (err < 0) v4l_err(client, "error writing %02x, %02x, %02x\n", client->addr, command, value); return err; } static void adv_smbus_write_byte_no_check(struct i2c_client *client, u8 command, u8 value) { union i2c_smbus_data data; data.byte = value; i2c_smbus_xfer(client->adapter, client->addr, client->flags, I2C_SMBUS_WRITE, command, I2C_SMBUS_BYTE_DATA, &data); } static s32 adv_smbus_write_i2c_block_data(struct i2c_client *client, u8 command, unsigned length, const u8 *values) { union i2c_smbus_data data; if (length > I2C_SMBUS_BLOCK_MAX) length = I2C_SMBUS_BLOCK_MAX; data.block[0] = length; memcpy(data.block + 1, values, length); return i2c_smbus_xfer(client->adapter, client->addr, client->flags, I2C_SMBUS_WRITE, command, I2C_SMBUS_I2C_BLOCK_DATA, &data); } /* ----------------------------------------------------------------------- */ static inline int io_read(struct v4l2_subdev *sd, u8 reg) { struct i2c_client *client = v4l2_get_subdevdata(sd); return adv_smbus_read_byte_data(client, reg); } static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val) { struct i2c_client *client = v4l2_get_subdevdata(sd); return adv_smbus_write_byte_data(client, reg, val); } static inline int io_write_and_or(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) { return io_write(sd, reg, (io_read(sd, reg) & mask) | val); } static inline int avlink_read(struct v4l2_subdev *sd, u8 reg) { struct adv7842_state *state = to_state(sd); return adv_smbus_read_byte_data(state->i2c_avlink, reg); } static inline int avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val) { struct adv7842_state *state = to_state(sd); return adv_smbus_write_byte_data(state->i2c_avlink, reg, val); } static inline int cec_read(struct v4l2_subdev *sd, u8 reg) { struct adv7842_state *state = to_state(sd); return adv_smbus_read_byte_data(state->i2c_cec, reg); } static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val) { struct adv7842_state *state = to_state(sd); return adv_smbus_write_byte_data(state->i2c_cec, reg, val); } static inline int cec_write_and_or(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) { return cec_write(sd, reg, (cec_read(sd, reg) & mask) | val); } static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg) { struct adv7842_state *state = to_state(sd); return adv_smbus_read_byte_data(state->i2c_infoframe, reg); } static inline int infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val) { struct adv7842_state *state = to_state(sd); return adv_smbus_write_byte_data(state->i2c_infoframe, reg, val); } static inline int sdp_io_read(struct v4l2_subdev *sd, u8 reg) { struct adv7842_state *state = to_state(sd); return adv_smbus_read_byte_data(state->i2c_sdp_io, reg); } static inline int sdp_io_write(struct v4l2_subdev *sd, u8 reg, u8 val) { struct adv7842_state *state = to_state(sd); return adv_smbus_write_byte_data(state->i2c_sdp_io, reg, val); } static inline int sdp_io_write_and_or(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) { return sdp_io_write(sd, reg, (sdp_io_read(sd, reg) & mask) | val); } static inline int sdp_read(struct v4l2_subdev *sd, u8 reg) { struct adv7842_state *state = to_state(sd); return adv_smbus_read_byte_data(state->i2c_sdp, reg); } static inline int sdp_write(struct v4l2_subdev *sd, u8 reg, u8 val) { struct adv7842_state *state = to_state(sd); return adv_smbus_write_byte_data(state->i2c_sdp, reg, val); } static inline int sdp_write_and_or(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) { return sdp_write(sd, reg, (sdp_read(sd, reg) & mask) | val); } static inline int afe_read(struct v4l2_subdev *sd, u8 reg) { struct adv7842_state *state = to_state(sd); return adv_smbus_read_byte_data(state->i2c_afe, reg); } static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val) { struct adv7842_state *state = to_state(sd); return adv_smbus_write_byte_data(state->i2c_afe, reg, val); } static inline int afe_write_and_or(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) { return afe_write(sd, reg, (afe_read(sd, reg) & mask) | val); } static inline int rep_read(struct v4l2_subdev *sd, u8 reg) { struct adv7842_state *state = to_state(sd); return adv_smbus_read_byte_data(state->i2c_repeater, reg); } static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val) { struct adv7842_state *state = to_state(sd); return adv_smbus_write_byte_data(state->i2c_repeater, reg, val); } static inline int rep_write_and_or(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) { return rep_write(sd, reg, (rep_read(sd, reg) & mask) | val); } static inline int edid_read(struct v4l2_subdev *sd, u8 reg) { struct adv7842_state *state = to_state(sd); return adv_smbus_read_byte_data(state->i2c_edid, reg); } static inline int edid_write(struct v4l2_subdev *sd, u8 reg, u8 val) { struct adv7842_state *state = to_state(sd); return adv_smbus_write_byte_data(state->i2c_edid, reg, val); } static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg) { struct adv7842_state *state = to_state(sd); return adv_smbus_read_byte_data(state->i2c_hdmi, reg); } static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val) { struct adv7842_state *state = to_state(sd); return adv_smbus_write_byte_data(state->i2c_hdmi, reg, val); } static inline int hdmi_write_and_or(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) { return hdmi_write(sd, reg, (hdmi_read(sd, reg) & mask) | val); } static inline int cp_read(struct v4l2_subdev *sd, u8 reg) { struct adv7842_state *state = to_state(sd); return adv_smbus_read_byte_data(state->i2c_cp, reg); } static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val) { struct adv7842_state *state = to_state(sd); return adv_smbus_write_byte_data(state->i2c_cp, reg, val); } static inline int cp_write_and_or(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) { return cp_write(sd, reg, (cp_read(sd, reg) & mask) | val); } static inline int vdp_read(struct v4l2_subdev *sd, u8 reg) { struct adv7842_state *state = to_state(sd); return adv_smbus_read_byte_data(state->i2c_vdp, reg); } static inline int vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val) { struct adv7842_state *state = to_state(sd); return adv_smbus_write_byte_data(state->i2c_vdp, reg, val); } static void main_reset(struct v4l2_subdev *sd) { struct i2c_client *client = v4l2_get_subdevdata(sd); v4l2_dbg(1, debug, sd, "%s:\n", __func__); adv_smbus_write_byte_no_check(client, 0xff, 0x80); mdelay(5); } /* ----------------------------------------------------------------------- */ static inline bool is_analog_input(struct v4l2_subdev *sd) { struct adv7842_state *state = to_state(sd); return ((state->mode == ADV7842_MODE_RGB) || (state->mode == ADV7842_MODE_COMP)); } static inline bool is_digital_input(struct v4l2_subdev *sd) { struct adv7842_state *state = to_state(sd); return state->mode == ADV7842_MODE_HDMI; } static const struct v4l2_dv_timings_cap adv7842_timings_cap_analog = { .type = V4L2_DV_BT_656_1120, /* keep this initialization for compatibility with GCC < 4.4.6 */ .reserved = { 0 }, V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 170000000, V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT | V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT, V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING | V4L2_DV_BT_CAP_CUSTOM) }; static const struct v4l2_dv_timings_cap adv7842_timings_cap_digital = { .type = V4L2_DV_BT_656_1120, /* keep this initialization for compatibility with GCC < 4.4.6 */ .reserved = { 0 }, V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 225000000, V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT | V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT, V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING | V4L2_DV_BT_CAP_CUSTOM) }; static inline const struct v4l2_dv_timings_cap * adv7842_get_dv_timings_cap(struct v4l2_subdev *sd) { return is_digital_input(sd) ? &adv7842_timings_cap_digital : &adv7842_timings_cap_analog; } /* ----------------------------------------------------------------------- */ static void adv7842_delayed_work_enable_hotplug(struct work_struct *work) { struct delayed_work *dwork = to_delayed_work(work); struct adv7842_state *state = container_of(dwork, struct adv7842_state, delayed_work_enable_hotplug); struct v4l2_subdev *sd = &state->sd; int present = state->hdmi_edid.present; u8 mask = 0; v4l2_dbg(2, debug, sd, "%s: enable hotplug on ports: 0x%x\n", __func__, present); if (present & (0x04 << ADV7842_EDID_PORT_A)) mask |= 0x20; if (present & (0x04 << ADV7842_EDID_PORT_B)) mask |= 0x10; io_write_and_or(sd, 0x20, 0xcf, mask); } static int edid_write_vga_segment(struct v4l2_subdev *sd) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct adv7842_state *state = to_state(sd); const u8 *val = state->vga_edid.edid; int err = 0; int i; v4l2_dbg(2, debug, sd, "%s: write EDID on VGA port\n", __func__); /* HPA disable on port A and B */ io_write_and_or(sd, 0x20, 0xcf, 0x00); /* Disable I2C access to internal EDID ram from VGA DDC port */ rep_write_and_or(sd, 0x7f, 0x7f, 0x00); /* edid segment pointer '1' for VGA port */ rep_write_and_or(sd, 0x77, 0xef, 0x10); for (i = 0; !err && i < 256; i += I2C_SMBUS_BLOCK_MAX) err = adv_smbus_write_i2c_block_data(state->i2c_edid, i, I2C_SMBUS_BLOCK_MAX, val + i); if (err) return err; /* Calculates the checksums and enables I2C access * to internal EDID ram from VGA DDC port. */ rep_write_and_or(sd, 0x7f, 0x7f, 0x80); for (i = 0; i < 1000; i++) { if (rep_read(sd, 0x79) & 0x20) break; mdelay(1); } if (i == 1000) { v4l_err(client, "error enabling edid on VGA port\n"); return -EIO; } /* enable hotplug after 200 ms */ queue_delayed_work(state->work_queues, &state->delayed_work_enable_hotplug, HZ / 5); return 0; } static int edid_spa_location(const u8 *edid) { u8 d; /* * TODO, improve and update for other CEA extensions * currently only for 1 segment (256 bytes), * i.e. 1 extension block and CEA revision 3. */ if ((edid[0x7e] != 1) || (edid[0x80] != 0x02) || (edid[0x81] != 0x03)) { return -EINVAL; } /* * search Vendor Specific Data Block (tag 3) */ d = edid[0x82] & 0x7f; if (d > 4) { int i = 0x84; int end = 0x80 + d; do { u8 tag = edid[i]>>5; u8 len = edid[i] & 0x1f; if ((tag == 3) && (len >= 5)) return i + 4; i += len + 1; } while (i < end); } return -EINVAL; } static int edid_write_hdmi_segment(struct v4l2_subdev *sd, u8 port) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct adv7842_state *state = to_state(sd); const u8 *val = state->hdmi_edid.edid; int spa_loc = edid_spa_location(val); int err = 0; int i; v4l2_dbg(2, debug, sd, "%s: write EDID on port %c (spa at 0x%x)\n", __func__, (port == ADV7842_EDID_PORT_A) ? 'A' : 'B', spa_loc); /* HPA disable on port A and B */ io_write_and_or(sd, 0x20, 0xcf, 0x00); /* Disable I2C access to internal EDID ram from HDMI DDC ports */ rep_write_and_or(sd, 0x77, 0xf3, 0x00); if (!state->hdmi_edid.present) return 0; /* edid segment pointer '0' for HDMI ports */ rep_write_and_or(sd, 0x77, 0xef, 0x00); for (i = 0; !err && i < 256; i += I2C_SMBUS_BLOCK_MAX) err = adv_smbus_write_i2c_block_data(state->i2c_edid, i, I2C_SMBUS_BLOCK_MAX, val + i); if (err) return err; if (spa_loc < 0) spa_loc = 0xc0; /* Default value [REF_02, p. 199] */ if (port == ADV7842_EDID_PORT_A) { rep_write(sd, 0x72, val[spa_loc]); rep_write(sd, 0x73, val[spa_loc + 1]); } else { rep_write(sd, 0x74, val[spa_loc]); rep_write(sd, 0x75, val[spa_loc + 1]); } rep_write(sd, 0x76, spa_loc & 0xff); rep_write_and_or(sd, 0x77, 0xbf, (spa_loc >> 2) & 0x40); /* Calculates the checksums and enables I2C access to internal * EDID ram from HDMI DDC ports */ rep_write_and_or(sd, 0x77, 0xf3, state->hdmi_edid.present); for (i = 0; i < 1000; i++) { if (rep_read(sd, 0x7d) & state->hdmi_edid.present) break; mdelay(1); } if (i == 1000) { v4l_err(client, "error enabling edid on port %c\n", (port == ADV7842_EDID_PORT_A) ? 'A' : 'B'); return -EIO; } /* enable hotplug after 200 ms */ queue_delayed_work(state->work_queues, &state->delayed_work_enable_hotplug, HZ / 5); return 0; } /* ----------------------------------------------------------------------- */ #ifdef CONFIG_VIDEO_ADV_DEBUG static void adv7842_inv_register(struct v4l2_subdev *sd) { v4l2_info(sd, "0x000-0x0ff: IO Map\n"); v4l2_info(sd, "0x100-0x1ff: AVLink Map\n"); v4l2_info(sd, "0x200-0x2ff: CEC Map\n"); v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n"); v4l2_info(sd, "0x400-0x4ff: SDP_IO Map\n"); v4l2_info(sd, "0x500-0x5ff: SDP Map\n"); v4l2_info(sd, "0x600-0x6ff: AFE Map\n"); v4l2_info(sd, "0x700-0x7ff: Repeater Map\n"); v4l2_info(sd, "0x800-0x8ff: EDID Map\n"); v4l2_info(sd, "0x900-0x9ff: HDMI Map\n"); v4l2_info(sd, "0xa00-0xaff: CP Map\n"); v4l2_info(sd, "0xb00-0xbff: VDP Map\n"); } static int adv7842_g_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg) { reg->size = 1; switch (reg->reg >> 8) { case 0: reg->val = io_read(sd, reg->reg & 0xff); break; case 1: reg->val = avlink_read(sd, reg->reg & 0xff); break; case 2: reg->val = cec_read(sd, reg->reg & 0xff); break; case 3: reg->val = infoframe_read(sd, reg->reg & 0xff); break; case 4: reg->val = sdp_io_read(sd, reg->reg & 0xff); break; case 5: reg->val = sdp_read(sd, reg->reg & 0xff); break; case 6: reg->val = afe_read(sd, reg->reg & 0xff); break; case 7: reg->val = rep_read(sd, reg->reg & 0xff); break; case 8: reg->val = edid_read(sd, reg->reg & 0xff); break; case 9: reg->val = hdmi_read(sd, reg->reg & 0xff); break; case 0xa: reg->val = cp_read(sd, reg->reg & 0xff); break; case 0xb: reg->val = vdp_read(sd, reg->reg & 0xff); break; default: v4l2_info(sd, "Register %03llx not supported\n", reg->reg); adv7842_inv_register(sd); break; } return 0; } static int adv7842_s_register(struct v4l2_subdev *sd, const struct v4l2_dbg_register *reg) { u8 val = reg->val & 0xff; switch (reg->reg >> 8) { case 0: io_write(sd, reg->reg & 0xff, val); break; case 1: avlink_write(sd, reg->reg & 0xff, val); break; case 2: cec_write(sd, reg->reg & 0xff, val); break; case 3: infoframe_write(sd, reg->reg & 0xff, val); break; case 4: sdp_io_write(sd, reg->reg & 0xff, val); break; case 5: sdp_write(sd, reg->reg & 0xff, val); break; case 6: afe_write(sd, reg->reg & 0xff, val); break; case 7: rep_write(sd, reg->reg & 0xff, val); break; case 8: edid_write(sd, reg->reg & 0xff, val); break; case 9: hdmi_write(sd, reg->reg & 0xff, val); break; case 0xa: cp_write(sd, reg->reg & 0xff, val); break; case 0xb: vdp_write(sd, reg->reg & 0xff, val); break; default: v4l2_info(sd, "Register %03llx not supported\n", reg->reg); adv7842_inv_register(sd); break; } return 0; } #endif static int adv7842_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd) { struct adv7842_state *state = to_state(sd); int prev = v4l2_ctrl_g_ctrl(state->detect_tx_5v_ctrl); u8 reg_io_6f = io_read(sd, 0x6f); int val = 0; if (reg_io_6f & 0x02) val |= 1; /* port A */ if (reg_io_6f & 0x01) val |= 2; /* port B */ v4l2_dbg(1, debug, sd, "%s: 0x%x -> 0x%x\n", __func__, prev, val); if (val != prev) return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl, val); return 0; } static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd, u8 prim_mode, const struct adv7842_video_standards *predef_vid_timings, const struct v4l2_dv_timings *timings) { int i; for (i = 0; predef_vid_timings[i].timings.bt.width; i++) { if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings, is_digital_input(sd) ? 250000 : 1000000)) continue; /* video std */ io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* v_freq and prim mode */ io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) + prim_mode); return 0; } return -1; } static int configure_predefined_video_timings(struct v4l2_subdev *sd, struct v4l2_dv_timings *timings) { struct adv7842_state *state = to_state(sd); int err; v4l2_dbg(1, debug, sd, "%s\n", __func__); /* reset to default values */ io_write(sd, 0x16, 0x43); io_write(sd, 0x17, 0x5a); /* disable embedded syncs for auto graphics mode */ cp_write_and_or(sd, 0x81, 0xef, 0x00); cp_write(sd, 0x26, 0x00); cp_write(sd, 0x27, 0x00); cp_write(sd, 0x28, 0x00); cp_write(sd, 0x29, 0x00); cp_write(sd, 0x8f, 0x40); cp_write(sd, 0x90, 0x00); cp_write(sd, 0xa5, 0x00); cp_write(sd, 0xa6, 0x00); cp_write(sd, 0xa7, 0x00); cp_write(sd, 0xab, 0x00); cp_write(sd, 0xac, 0x00); switch (state->mode) { case ADV7842_MODE_COMP: case ADV7842_MODE_RGB: err = find_and_set_predefined_video_timings(sd, 0x01, adv7842_prim_mode_comp, timings); if (err) err = find_and_set_predefined_video_timings(sd, 0x02, adv7842_prim_mode_gr, timings); break; case ADV7842_MODE_HDMI: err = find_and_set_predefined_video_timings(sd, 0x05, adv7842_prim_mode_hdmi_comp, timings); if (err) err = find_and_set_predefined_video_timings(sd, 0x06, adv7842_prim_mode_hdmi_gr, timings); break; default: v4l2_dbg(2, debug, sd, "%s: Unknown mode %d\n", __func__, state->mode); err = -1; break; } return err; } static void configure_custom_video_timings(struct v4l2_subdev *sd, const struct v4l2_bt_timings *bt) { struct adv7842_state *state = to_state(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); u32 width = htotal(bt); u32 height = vtotal(bt); u16 cp_start_sav = bt->hsync + bt->hbackporch - 4; u16 cp_start_eav = width - bt->hfrontporch; u16 cp_start_vbi = height - bt->vfrontporch + 1; u16 cp_end_vbi = bt->vsync + bt->vbackporch + 1; u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ? ((width * (ADV7842_fsc / 100)) / ((u32)bt->pixelclock / 100)) : 0; const u8 pll[2] = { 0xc0 | ((width >> 8) & 0x1f), width & 0xff }; v4l2_dbg(2, debug, sd, "%s\n", __func__); switch (state->mode) { case ADV7842_MODE_COMP: case ADV7842_MODE_RGB: /* auto graphics */ io_write(sd, 0x00, 0x07); /* video std */ io_write(sd, 0x01, 0x02); /* prim mode */ /* enable embedded syncs for auto graphics mode */ cp_write_and_or(sd, 0x81, 0xef, 0x10); /* Should only be set in auto-graphics mode [REF_02, p. 91-92] */ /* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */ /* IO-map reg. 0x16 and 0x17 should be written in sequence */ if (adv_smbus_write_i2c_block_data(client, 0x16, 2, pll)) { v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n"); break; } /* active video - horizontal timing */ cp_write(sd, 0x26, (cp_start_sav >> 8) & 0xf); cp_write(sd, 0x27, (cp_start_sav & 0xff)); cp_write(sd, 0x28, (cp_start_eav >> 8) & 0xf); cp_write(sd, 0x29, (cp_start_eav & 0xff)); /* active video - vertical timing */ cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff); cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) | ((cp_end_vbi >> 8) & 0xf)); cp_write(sd, 0xa7, cp_end_vbi & 0xff); break; case ADV7842_MODE_HDMI: /* set default prim_mode/vid_std for HDMI according to [REF_03, c. 4.2] */ io_write(sd, 0x00, 0x02); /* video std */ io_write(sd, 0x01, 0x06); /* prim mode */ break; default: v4l2_dbg(2, debug, sd, "%s: Unknown mode %d\n", __func__, state->mode); break; } cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7); cp_write(sd, 0x90, ch1_fr_ll & 0xff); cp_write(sd, 0xab, (height >> 4) & 0xff); cp_write(sd, 0xac, (height & 0x0f) << 4); } static void adv7842_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c) { struct adv7842_state *state = to_state(sd); u8 offset_buf[4]; if (auto_offset) { offset_a = 0x3ff; offset_b = 0x3ff; offset_c = 0x3ff; } v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n", __func__, auto_offset ? "Auto" : "Manual", offset_a, offset_b, offset_c); offset_buf[0]= (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4); offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6); offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8); offset_buf[3] = offset_c & 0x0ff; /* Registers must be written in this order with no i2c access in between */ if (adv_smbus_write_i2c_block_data(state->i2c_cp, 0x77, 4, offset_buf)) v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__); } static void adv7842_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c) { struct adv7842_state *state = to_state(sd); u8 gain_buf[4]; u8 gain_man = 1; u8 agc_mode_man = 1; if (auto_gain) { gain_man = 0; agc_mode_man = 0; gain_a = 0x100; gain_b = 0x100; gain_c = 0x100; } v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n", __func__, auto_gain ? "Auto" : "Manual", gain_a, gain_b, gain_c); gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4)); gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6)); gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8)); gain_buf[3] = ((gain_c & 0x0ff)); /* Registers must be written in this order with no i2c access in between */ if (adv_smbus_write_i2c_block_data(state->i2c_cp, 0x73, 4, gain_buf)) v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__); } static void set_rgb_quantization_range(struct v4l2_subdev *sd) { struct adv7842_state *state = to_state(sd); bool rgb_output = io_read(sd, 0x02) & 0x02; bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80; v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n", __func__, state->rgb_quantization_range, rgb_output, hdmi_signal); adv7842_set_gain(sd, true, 0x0, 0x0, 0x0); adv7842_set_offset(sd, true, 0x0, 0x0, 0x0); switch (state->rgb_quantization_range) { case V4L2_DV_RGB_RANGE_AUTO: if (state->mode == ADV7842_MODE_RGB) { /* Receiving analog RGB signal * Set RGB full range (0-255) */ io_write_and_or(sd, 0x02, 0x0f, 0x10); break; } if (state->mode == ADV7842_MODE_COMP) { /* Receiving analog YPbPr signal * Set automode */ io_write_and_or(sd, 0x02, 0x0f, 0xf0); break; } if (hdmi_signal) { /* Receiving HDMI signal * Set automode */ io_write_and_or(sd, 0x02, 0x0f, 0xf0); break; } /* Receiving DVI-D signal * ADV7842 selects RGB limited range regardless of * input format (CE/IT) in automatic mode */ if (state->timings.bt.standards & V4L2_DV_BT_STD_CEA861) { /* RGB limited range (16-235) */ io_write_and_or(sd, 0x02, 0x0f, 0x00); } else { /* RGB full range (0-255) */ io_write_and_or(sd, 0x02, 0x0f, 0x10); if (is_digital_input(sd) && rgb_output) { adv7842_set_offset(sd, false, 0x40, 0x40, 0x40); } else { adv7842_set_gain(sd, false, 0xe0, 0xe0, 0xe0); adv7842_set_offset(sd, false, 0x70, 0x70, 0x70); } } break; case V4L2_DV_RGB_RANGE_LIMITED: if (state->mode == ADV7842_MODE_COMP) { /* YCrCb limited range (16-235) */ io_write_and_or(sd, 0x02, 0x0f, 0x20); break; } /* RGB limited range (16-235) */ io_write_and_or(sd, 0x02, 0x0f, 0x00); break; case V4L2_DV_RGB_RANGE_FULL: if (state->mode == ADV7842_MODE_COMP) { /* YCrCb full range (0-255) */ io_write_and_or(sd, 0x02, 0x0f, 0x60); break; } /* RGB full range (0-255) */ io_write_and_or(sd, 0x02, 0x0f, 0x10); if (is_analog_input(sd) || hdmi_signal) break; /* Adjust gain/offset for DVI-D signals only */ if (rgb_output) { adv7842_set_offset(sd, false, 0x40, 0x40, 0x40); } else { adv7842_set_gain(sd, false, 0xe0, 0xe0, 0xe0); adv7842_set_offset(sd, false, 0x70, 0x70, 0x70); } break; } } static int adv7842_s_ctrl(struct v4l2_ctrl *ctrl) { struct v4l2_subdev *sd = to_sd(ctrl); struct adv7842_state *state = to_state(sd); /* TODO SDP ctrls contrast/brightness/hue/free run is acting a bit strange, not sure if sdp csc is correct. */ switch (ctrl->id) { /* standard ctrls */ case V4L2_CID_BRIGHTNESS: cp_write(sd, 0x3c, ctrl->val); sdp_write(sd, 0x14, ctrl->val); /* ignore lsb sdp 0x17[3:2] */ return 0; case V4L2_CID_CONTRAST: cp_write(sd, 0x3a, ctrl->val); sdp_write(sd, 0x13, ctrl->val); /* ignore lsb sdp 0x17[1:0] */ return 0; case V4L2_CID_SATURATION: cp_write(sd, 0x3b, ctrl->val); sdp_write(sd, 0x15, ctrl->val); /* ignore lsb sdp 0x17[5:4] */ return 0; case V4L2_CID_HUE: cp_write(sd, 0x3d, ctrl->val); sdp_write(sd, 0x16, ctrl->val); /* ignore lsb sdp 0x17[7:6] */ return 0; /* custom ctrls */ case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE: afe_write(sd, 0xc8, ctrl->val); return 0; case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL: cp_write_and_or(sd, 0xbf, ~0x04, (ctrl->val << 2)); sdp_write_and_or(sd, 0xdd, ~0x04, (ctrl->val << 2)); return 0; case V4L2_CID_ADV_RX_FREE_RUN_COLOR: { u8 R = (ctrl->val & 0xff0000) >> 16; u8 G = (ctrl->val & 0x00ff00) >> 8; u8 B = (ctrl->val & 0x0000ff); /* RGB -> YUV, numerical approximation */ int Y = 66 * R + 129 * G + 25 * B; int U = -38 * R - 74 * G + 112 * B; int V = 112 * R - 94 * G - 18 * B; /* Scale down to 8 bits with rounding */ Y = (Y + 128) >> 8; U = (U + 128) >> 8; V = (V + 128) >> 8; /* make U,V positive */ Y += 16; U += 128; V += 128; v4l2_dbg(1, debug, sd, "R %x, G %x, B %x\n", R, G, B); v4l2_dbg(1, debug, sd, "Y %x, U %x, V %x\n", Y, U, V); /* CP */ cp_write(sd, 0xc1, R); cp_write(sd, 0xc0, G); cp_write(sd, 0xc2, B); /* SDP */ sdp_write(sd, 0xde, Y); sdp_write(sd, 0xdf, (V & 0xf0) | ((U >> 4) & 0x0f)); return 0; } case V4L2_CID_DV_RX_RGB_RANGE: state->rgb_quantization_range = ctrl->val; set_rgb_quantization_range(sd); return 0; } return -EINVAL; } static inline bool no_power(struct v4l2_subdev *sd) { return io_read(sd, 0x0c) & 0x24; } static inline bool no_cp_signal(struct v4l2_subdev *sd) { return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0) || !(cp_read(sd, 0xb1) & 0x80); } static inline bool is_hdmi(struct v4l2_subdev *sd) { return hdmi_read(sd, 0x05) & 0x80; } static int adv7842_g_input_status(struct v4l2_subdev *sd, u32 *status) { struct adv7842_state *state = to_state(sd); *status = 0; if (io_read(sd, 0x0c) & 0x24) *status |= V4L2_IN_ST_NO_POWER; if (state->mode == ADV7842_MODE_SDP) { /* status from SDP block */ if (!(sdp_read(sd, 0x5A) & 0x01)) *status |= V4L2_IN_ST_NO_SIGNAL; v4l2_dbg(1, debug, sd, "%s: SDP status = 0x%x\n", __func__, *status); return 0; } /* status from CP block */ if ((cp_read(sd, 0xb5) & 0xd0) != 0xd0 || !(cp_read(sd, 0xb1) & 0x80)) /* TODO channel 2 */ *status |= V4L2_IN_ST_NO_SIGNAL; if (is_digital_input(sd) && ((io_read(sd, 0x74) & 0x03) != 0x03)) *status |= V4L2_IN_ST_NO_SIGNAL; v4l2_dbg(1, debug, sd, "%s: CP status = 0x%x\n", __func__, *status); return 0; } struct stdi_readback { u16 bl, lcf, lcvs; u8 hs_pol, vs_pol; bool interlaced; }; static int stdi2dv_timings(struct v4l2_subdev *sd, struct stdi_readback *stdi, struct v4l2_dv_timings *timings) { struct adv7842_state *state = to_state(sd); u32 hfreq = (ADV7842_fsc * 8) / stdi->bl; u32 pix_clk; int i; for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) { const struct v4l2_bt_timings *bt = &v4l2_dv_timings_presets[i].bt; if (!v4l2_valid_dv_timings(&v4l2_dv_timings_presets[i], adv7842_get_dv_timings_cap(sd), adv7842_check_dv_timings, NULL)) continue; if (vtotal(bt) != stdi->lcf + 1) continue; if (bt->vsync != stdi->lcvs) continue; pix_clk = hfreq * htotal(bt); if ((pix_clk < bt->pixelclock + 1000000) && (pix_clk > bt->pixelclock - 1000000)) { *timings = v4l2_dv_timings_presets[i]; return 0; } } if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, (stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) | (stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0), timings)) return 0; if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs, (stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) | (stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0), state->aspect_ratio, timings)) return 0; v4l2_dbg(2, debug, sd, "%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n", __func__, stdi->lcvs, stdi->lcf, stdi->bl, stdi->hs_pol, stdi->vs_pol); return -1; } static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi) { u32 status; adv7842_g_input_status(sd, &status); if (status & V4L2_IN_ST_NO_SIGNAL) { v4l2_dbg(2, debug, sd, "%s: no signal\n", __func__); return -ENOLINK; } stdi->bl = ((cp_read(sd, 0xb1) & 0x3f) << 8) | cp_read(sd, 0xb2); stdi->lcf = ((cp_read(sd, 0xb3) & 0x7) << 8) | cp_read(sd, 0xb4); stdi->lcvs = cp_read(sd, 0xb3) >> 3; if ((cp_read(sd, 0xb5) & 0x80) && ((cp_read(sd, 0xb5) & 0x03) == 0x01)) { stdi->hs_pol = ((cp_read(sd, 0xb5) & 0x10) ? ((cp_read(sd, 0xb5) & 0x08) ? '+' : '-') : 'x'); stdi->vs_pol = ((cp_read(sd, 0xb5) & 0x40) ? ((cp_read(sd, 0xb5) & 0x20) ? '+' : '-') : 'x'); } else { stdi->hs_pol = 'x'; stdi->vs_pol = 'x'; } stdi->interlaced = (cp_read(sd, 0xb1) & 0x40) ? true : false; if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) { v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__); return -ENOLINK; } v4l2_dbg(2, debug, sd, "%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n", __func__, stdi->lcf, stdi->bl, stdi->lcvs, stdi->hs_pol, stdi->vs_pol, stdi->interlaced ? "interlaced" : "progressive"); return 0; } static int adv7842_enum_dv_timings(struct v4l2_subdev *sd, struct v4l2_enum_dv_timings *timings) { if (timings->pad != 0) return -EINVAL; return v4l2_enum_dv_timings_cap(timings, adv7842_get_dv_timings_cap(sd), adv7842_check_dv_timings, NULL); } static int adv7842_dv_timings_cap(struct v4l2_subdev *sd, struct v4l2_dv_timings_cap *cap) { if (cap->pad != 0) return -EINVAL; *cap = *adv7842_get_dv_timings_cap(sd); return 0; } /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings if the format is listed in adv7842_timings[] */ static void adv7842_fill_optional_dv_timings_fields(struct v4l2_subdev *sd, struct v4l2_dv_timings *timings) { v4l2_find_dv_timings_cap(timings, adv7842_get_dv_timings_cap(sd), is_digital_input(sd) ? 250000 : 1000000, adv7842_check_dv_timings, NULL); } static int adv7842_query_dv_timings(struct v4l2_subdev *sd, struct v4l2_dv_timings *timings) { struct adv7842_state *state = to_state(sd); struct v4l2_bt_timings *bt = &timings->bt; struct stdi_readback stdi = { 0 }; v4l2_dbg(1, debug, sd, "%s:\n", __func__); /* SDP block */ if (state->mode == ADV7842_MODE_SDP) return -ENODATA; /* read STDI */ if (read_stdi(sd, &stdi)) { state->restart_stdi_once = true; v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__); return -ENOLINK; } bt->interlaced = stdi.interlaced ? V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE; if (is_digital_input(sd)) { uint32_t freq; timings->type = V4L2_DV_BT_656_1120; bt->width = (hdmi_read(sd, 0x07) & 0x0f) * 256 + hdmi_read(sd, 0x08); bt->height = (hdmi_read(sd, 0x09) & 0x0f) * 256 + hdmi_read(sd, 0x0a); freq = ((hdmi_read(sd, 0x51) << 1) + (hdmi_read(sd, 0x52) >> 7)) * 1000000; freq += ((hdmi_read(sd, 0x52) & 0x7f) * 7813); if (is_hdmi(sd)) { /* adjust for deep color mode */ freq = freq * 8 / (((hdmi_read(sd, 0x0b) & 0xc0) >> 6) * 2 + 8); } bt->pixelclock = freq; bt->hfrontporch = (hdmi_read(sd, 0x20) & 0x03) * 256 + hdmi_read(sd, 0x21); bt->hsync = (hdmi_read(sd, 0x22) & 0x03) * 256 + hdmi_read(sd, 0x23); bt->hbackporch = (hdmi_read(sd, 0x24) & 0x03) * 256 + hdmi_read(sd, 0x25); bt->vfrontporch = ((hdmi_read(sd, 0x2a) & 0x1f) * 256 + hdmi_read(sd, 0x2b)) / 2; bt->vsync = ((hdmi_read(sd, 0x2e) & 0x1f) * 256 + hdmi_read(sd, 0x2f)) / 2; bt->vbackporch = ((hdmi_read(sd, 0x32) & 0x1f) * 256 + hdmi_read(sd, 0x33)) / 2; bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) | ((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0); if (bt->interlaced == V4L2_DV_INTERLACED) { bt->height += (hdmi_read(sd, 0x0b) & 0x0f) * 256 + hdmi_read(sd, 0x0c); bt->il_vfrontporch = ((hdmi_read(sd, 0x2c) & 0x1f) * 256 + hdmi_read(sd, 0x2d)) / 2; bt->il_vsync = ((hdmi_read(sd, 0x30) & 0x1f) * 256 + hdmi_read(sd, 0x31)) / 2; bt->vbackporch = ((hdmi_read(sd, 0x34) & 0x1f) * 256 + hdmi_read(sd, 0x35)) / 2; } adv7842_fill_optional_dv_timings_fields(sd, timings); } else { /* find format * Since LCVS values are inaccurate [REF_03, p. 339-340], * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails. */ if (!stdi2dv_timings(sd, &stdi, timings)) goto found; stdi.lcvs += 1; v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs); if (!stdi2dv_timings(sd, &stdi, timings)) goto found; stdi.lcvs -= 2; v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs); if (stdi2dv_timings(sd, &stdi, timings)) { /* * The STDI block may measure wrong values, especially * for lcvs and lcf. If the driver can not find any * valid timing, the STDI block is restarted to measure * the video timings again. The function will return an * error, but the restart of STDI will generate a new * STDI interrupt and the format detection process will * restart. */ if (state->restart_stdi_once) { v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__); /* TODO restart STDI for Sync Channel 2 */ /* enter one-shot mode */ cp_write_and_or(sd, 0x86, 0xf9, 0x00); /* trigger STDI restart */ cp_write_and_or(sd, 0x86, 0xf9, 0x04); /* reset to continuous mode */ cp_write_and_or(sd, 0x86, 0xf9, 0x02); state->restart_stdi_once = false; return -ENOLINK; } v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__); return -ERANGE; } state->restart_stdi_once = true; } found: if (debug > 1) v4l2_print_dv_timings(sd->name, "adv7842_query_dv_timings:", timings, true); return 0; } static int adv7842_s_dv_timings(struct v4l2_subdev *sd, struct v4l2_dv_timings *timings) { struct adv7842_state *state = to_state(sd); struct v4l2_bt_timings *bt; int err; v4l2_dbg(1, debug, sd, "%s:\n", __func__); if (state->mode == ADV7842_MODE_SDP) return -ENODATA; if (v4l2_match_dv_timings(&state->timings, timings, 0)) { v4l2_dbg(1, debug, sd, "%s: no change\n", __func__); return 0; } bt = &timings->bt; if (!v4l2_valid_dv_timings(timings, adv7842_get_dv_timings_cap(sd), adv7842_check_dv_timings, NULL)) return -ERANGE; adv7842_fill_optional_dv_timings_fields(sd, timings); state->timings = *timings; cp_write(sd, 0x91, bt->interlaced ? 0x40 : 0x00); /* Use prim_mode and vid_std when available */ err = configure_predefined_video_timings(sd, timings); if (err) { /* custom settings when the video format does not have prim_mode/vid_std */ configure_custom_video_timings(sd, bt); } set_rgb_quantization_range(sd); if (debug > 1) v4l2_print_dv_timings(sd->name, "adv7842_s_dv_timings: ", timings, true); return 0; } static int adv7842_g_dv_timings(struct v4l2_subdev *sd, struct v4l2_dv_timings *timings) { struct adv7842_state *state = to_state(sd); if (state->mode == ADV7842_MODE_SDP) return -ENODATA; *timings = state->timings; return 0; } static void enable_input(struct v4l2_subdev *sd) { struct adv7842_state *state = to_state(sd); set_rgb_quantization_range(sd); switch (state->mode) { case ADV7842_MODE_SDP: case ADV7842_MODE_COMP: case ADV7842_MODE_RGB: io_write(sd, 0x15, 0xb0); /* Disable Tristate of Pins (no audio) */ break; case ADV7842_MODE_HDMI: hdmi_write(sd, 0x01, 0x00); /* Enable HDMI clock terminators */ io_write(sd, 0x15, 0xa0); /* Disable Tristate of Pins */ hdmi_write_and_or(sd, 0x1a, 0xef, 0x00); /* Unmute audio */ break; default: v4l2_dbg(2, debug, sd, "%s: Unknown mode %d\n", __func__, state->mode); break; } } static void disable_input(struct v4l2_subdev *sd) { hdmi_write_and_or(sd, 0x1a, 0xef, 0x10); /* Mute audio [REF_01, c. 2.2.2] */ msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 8.29] */ io_write(sd, 0x15, 0xbe); /* Tristate all outputs from video core */ hdmi_write(sd, 0x01, 0x78); /* Disable HDMI clock terminators */ } static void sdp_csc_coeff(struct v4l2_subdev *sd, const struct adv7842_sdp_csc_coeff *c) { /* csc auto/manual */ sdp_io_write_and_or(sd, 0xe0, 0xbf, c->manual ? 0x00 : 0x40); if (!c->manual) return; /* csc scaling */ sdp_io_write_and_or(sd, 0xe0, 0x7f, c->scaling == 2 ? 0x80 : 0x00); /* A coeff */ sdp_io_write_and_or(sd, 0xe0, 0xe0, c->A1 >> 8); sdp_io_write(sd, 0xe1, c->A1); sdp_io_write_and_or(sd, 0xe2, 0xe0, c->A2 >> 8); sdp_io_write(sd, 0xe3, c->A2); sdp_io_write_and_or(sd, 0xe4, 0xe0, c->A3 >> 8); sdp_io_write(sd, 0xe5, c->A3); /* A scale */ sdp_io_write_and_or(sd, 0xe6, 0x80, c->A4 >> 8); sdp_io_write(sd, 0xe7, c->A4); /* B coeff */ sdp_io_write_and_or(sd, 0xe8, 0xe0, c->B1 >> 8); sdp_io_write(sd, 0xe9, c->B1); sdp_io_write_and_or(sd, 0xea, 0xe0, c->B2 >> 8); sdp_io_write(sd, 0xeb, c->B2); sdp_io_write_and_or(sd, 0xec, 0xe0, c->B3 >> 8); sdp_io_write(sd, 0xed, c->B3); /* B scale */ sdp_io_write_and_or(sd, 0xee, 0x80, c->B4 >> 8); sdp_io_write(sd, 0xef, c->B4); /* C coeff */ sdp_io_write_and_or(sd, 0xf0, 0xe0, c->C1 >> 8); sdp_io_write(sd, 0xf1, c->C1); sdp_io_write_and_or(sd, 0xf2, 0xe0, c->C2 >> 8); sdp_io_write(sd, 0xf3, c->C2); sdp_io_write_and_or(sd, 0xf4, 0xe0, c->C3 >> 8); sdp_io_write(sd, 0xf5, c->C3); /* C scale */ sdp_io_write_and_or(sd, 0xf6, 0x80, c->C4 >> 8); sdp_io_write(sd, 0xf7, c->C4); } static void select_input(struct v4l2_subdev *sd, enum adv7842_vid_std_select vid_std_select) { struct adv7842_state *state = to_state(sd); switch (state->mode) { case ADV7842_MODE_SDP: io_write(sd, 0x00, vid_std_select); /* video std: CVBS or YC mode */ io_write(sd, 0x01, 0); /* prim mode */ /* enable embedded syncs for auto graphics mode */ cp_write_and_or(sd, 0x81, 0xef, 0x10); afe_write(sd, 0x00, 0x00); /* power up ADC */ afe_write(sd, 0xc8, 0x00); /* phase control */ io_write(sd, 0xdd, 0x90); /* Manual 2x output clock */ /* script says register 0xde, which don't exist in manual */ /* Manual analog input muxing mode, CVBS (6.4)*/ afe_write_and_or(sd, 0x02, 0x7f, 0x80); if (vid_std_select == ADV7842_SDP_VID_STD_CVBS_SD_4x1) { afe_write(sd, 0x03, 0xa0); /* ADC0 to AIN10 (CVBS), ADC1 N/C*/ afe_write(sd, 0x04, 0x00); /* ADC2 N/C,ADC3 N/C*/ } else { afe_write(sd, 0x03, 0xa0); /* ADC0 to AIN10 (CVBS), ADC1 N/C*/ afe_write(sd, 0x04, 0xc0); /* ADC2 to AIN12, ADC3 N/C*/ } afe_write(sd, 0x0c, 0x1f); /* ADI recommend write */ afe_write(sd, 0x12, 0x63); /* ADI recommend write */ sdp_io_write(sd, 0xb2, 0x60); /* Disable AV codes */ sdp_io_write(sd, 0xc8, 0xe3); /* Disable Ancillary data */ /* SDP recommended settings */ sdp_write(sd, 0x00, 0x3F); /* Autodetect PAL NTSC (not SECAM) */ sdp_write(sd, 0x01, 0x00); /* Pedestal Off */ sdp_write(sd, 0x03, 0xE4); /* Manual VCR Gain Luma 0x40B */ sdp_write(sd, 0x04, 0x0B); /* Manual Luma setting */ sdp_write(sd, 0x05, 0xC3); /* Manual Chroma setting 0x3FE */ sdp_write(sd, 0x06, 0xFE); /* Manual Chroma setting */ sdp_write(sd, 0x12, 0x0D); /* Frame TBC,I_P, 3D comb enabled */ sdp_write(sd, 0xA7, 0x00); /* ADI Recommended Write */ sdp_io_write(sd, 0xB0, 0x00); /* Disable H and v blanking */ /* deinterlacer enabled and 3D comb */ sdp_write_and_or(sd, 0x12, 0xf6, 0x09); break; case ADV7842_MODE_COMP: case ADV7842_MODE_RGB: /* Automatic analog input muxing mode */ afe_write_and_or(sd, 0x02, 0x7f, 0x00); /* set mode and select free run resolution */ io_write(sd, 0x00, vid_std_select); /* video std */ io_write(sd, 0x01, 0x02); /* prim mode */ cp_write_and_or(sd, 0x81, 0xef, 0x10); /* enable embedded syncs for auto graphics mode */ afe_write(sd, 0x00, 0x00); /* power up ADC */ afe_write(sd, 0xc8, 0x00); /* phase control */ if (state->mode == ADV7842_MODE_COMP) { /* force to YCrCb */ io_write_and_or(sd, 0x02, 0x0f, 0x60); } else { /* force to RGB */ io_write_and_or(sd, 0x02, 0x0f, 0x10); } /* set ADI recommended settings for digitizer */ /* "ADV7842 Register Settings Recommendations * (rev. 1.8, November 2010)" p. 9. */ afe_write(sd, 0x0c, 0x1f); /* ADC Range improvement */ afe_write(sd, 0x12, 0x63); /* ADC Range improvement */ /* set to default gain for RGB */ cp_write(sd, 0x73, 0x10); cp_write(sd, 0x74, 0x04); cp_write(sd, 0x75, 0x01); cp_write(sd, 0x76, 0x00); cp_write(sd, 0x3e, 0x04); /* CP core pre-gain control */ cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */ cp_write(sd, 0x40, 0x5c); /* CP core pre-gain control. Graphics mode */ break; case ADV7842_MODE_HDMI: /* Automatic analog input muxing mode */ afe_write_and_or(sd, 0x02, 0x7f, 0x00); /* set mode and select free run resolution */ if (state->hdmi_port_a) hdmi_write(sd, 0x00, 0x02); /* select port A */ else hdmi_write(sd, 0x00, 0x03); /* select port B */ io_write(sd, 0x00, vid_std_select); /* video std */ io_write(sd, 0x01, 5); /* prim mode */ cp_write_and_or(sd, 0x81, 0xef, 0x00); /* disable embedded syncs for auto graphics mode */ /* set ADI recommended settings for HDMI: */ /* "ADV7842 Register Settings Recommendations * (rev. 1.8, November 2010)" p. 3. */ hdmi_write(sd, 0xc0, 0x00); hdmi_write(sd, 0x0d, 0x34); /* ADI recommended write */ hdmi_write(sd, 0x3d, 0x10); /* ADI recommended write */ hdmi_write(sd, 0x44, 0x85); /* TMDS PLL optimization */ hdmi_write(sd, 0x46, 0x1f); /* ADI recommended write */ hdmi_write(sd, 0x57, 0xb6); /* TMDS PLL optimization */ hdmi_write(sd, 0x58, 0x03); /* TMDS PLL optimization */ hdmi_write(sd, 0x60, 0x88); /* TMDS PLL optimization */ hdmi_write(sd, 0x61, 0x88); /* TMDS PLL optimization */ hdmi_write(sd, 0x6c, 0x18); /* Disable ISRC clearing bit, Improve robustness */ hdmi_write(sd, 0x75, 0x10); /* DDC drive strength */ hdmi_write(sd, 0x85, 0x1f); /* equaliser */ hdmi_write(sd, 0x87, 0x70); /* ADI recommended write */ hdmi_write(sd, 0x89, 0x04); /* equaliser */ hdmi_write(sd, 0x8a, 0x1e); /* equaliser */ hdmi_write(sd, 0x93, 0x04); /* equaliser */ hdmi_write(sd, 0x94, 0x1e); /* equaliser */ hdmi_write(sd, 0x99, 0xa1); /* ADI recommended write */ hdmi_write(sd, 0x9b, 0x09); /* ADI recommended write */ hdmi_write(sd, 0x9d, 0x02); /* equaliser */ afe_write(sd, 0x00, 0xff); /* power down ADC */ afe_write(sd, 0xc8, 0x40); /* phase control */ /* set to default gain for HDMI */ cp_write(sd, 0x73, 0x10); cp_write(sd, 0x74, 0x04); cp_write(sd, 0x75, 0x01); cp_write(sd, 0x76, 0x00); /* reset ADI recommended settings for digitizer */ /* "ADV7842 Register Settings Recommendations * (rev. 2.5, June 2010)" p. 17. */ afe_write(sd, 0x12, 0xfb); /* ADC noise shaping filter controls */ afe_write(sd, 0x0c, 0x0d); /* CP core gain controls */ cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */ /* CP coast control */ cp_write(sd, 0xc3, 0x33); /* Component mode */ /* color space conversion, autodetect color space */ io_write_and_or(sd, 0x02, 0x0f, 0xf0); break; default: v4l2_dbg(2, debug, sd, "%s: Unknown mode %d\n", __func__, state->mode); break; } } static int adv7842_s_routing(struct v4l2_subdev *sd, u32 input, u32 output, u32 config) { struct adv7842_state *state = to_state(sd); v4l2_dbg(2, debug, sd, "%s: input %d\n", __func__, input); switch (input) { case ADV7842_SELECT_HDMI_PORT_A: state->mode = ADV7842_MODE_HDMI; state->vid_std_select = ADV7842_HDMI_COMP_VID_STD_HD_1250P; state->hdmi_port_a = true; break; case ADV7842_SELECT_HDMI_PORT_B: state->mode = ADV7842_MODE_HDMI; state->vid_std_select = ADV7842_HDMI_COMP_VID_STD_HD_1250P; state->hdmi_port_a = false; break; case ADV7842_SELECT_VGA_COMP: state->mode = ADV7842_MODE_COMP; state->vid_std_select = ADV7842_RGB_VID_STD_AUTO_GRAPH_MODE; break; case ADV7842_SELECT_VGA_RGB: state->mode = ADV7842_MODE_RGB; state->vid_std_select = ADV7842_RGB_VID_STD_AUTO_GRAPH_MODE; break; case ADV7842_SELECT_SDP_CVBS: state->mode = ADV7842_MODE_SDP; state->vid_std_select = ADV7842_SDP_VID_STD_CVBS_SD_4x1; break; case ADV7842_SELECT_SDP_YC: state->mode = ADV7842_MODE_SDP; state->vid_std_select = ADV7842_SDP_VID_STD_YC_SD4_x1; break; default: return -EINVAL; } disable_input(sd); select_input(sd, state->vid_std_select); enable_input(sd); v4l2_subdev_notify(sd, ADV7842_FMT_CHANGE, NULL); return 0; } static int adv7842_enum_mbus_fmt(struct v4l2_subdev *sd, unsigned int index, enum v4l2_mbus_pixelcode *code) { if (index) return -EINVAL; /* Good enough for now */ *code = V4L2_MBUS_FMT_FIXED; return 0; } static int adv7842_g_mbus_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt) { struct adv7842_state *state = to_state(sd); fmt->width = state->timings.bt.width; fmt->height = state->timings.bt.height; fmt->code = V4L2_MBUS_FMT_FIXED; fmt->field = V4L2_FIELD_NONE; if (state->mode == ADV7842_MODE_SDP) { /* SPD block */ if (!(sdp_read(sd, 0x5A) & 0x01)) return -EINVAL; fmt->width = 720; /* valid signal */ if (state->norm & V4L2_STD_525_60) fmt->height = 480; else fmt->height = 576; fmt->colorspace = V4L2_COLORSPACE_SMPTE170M; return 0; } if (state->timings.bt.standards & V4L2_DV_BT_STD_CEA861) { fmt->colorspace = (state->timings.bt.height <= 576) ? V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709; } return 0; } static void adv7842_irq_enable(struct v4l2_subdev *sd, bool enable) { if (enable) { /* Enable SSPD, STDI and CP locked/unlocked interrupts */ io_write(sd, 0x46, 0x9c); /* ESDP_50HZ_DET interrupt */ io_write(sd, 0x5a, 0x10); /* Enable CABLE_DET_A/B_ST (+5v) interrupt */ io_write(sd, 0x73, 0x03); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */ io_write(sd, 0x78, 0x03); /* Enable SDP Standard Detection Change and SDP Video Detected */ io_write(sd, 0xa0, 0x09); /* Enable HDMI_MODE interrupt */ io_write(sd, 0x69, 0x08); } else { io_write(sd, 0x46, 0x0); io_write(sd, 0x5a, 0x0); io_write(sd, 0x73, 0x0); io_write(sd, 0x78, 0x0); io_write(sd, 0xa0, 0x0); io_write(sd, 0x69, 0x0); } } static int adv7842_isr(struct v4l2_subdev *sd, u32 status, bool *handled) { struct adv7842_state *state = to_state(sd); u8 fmt_change_cp, fmt_change_digital, fmt_change_sdp; u8 irq_status[6]; adv7842_irq_enable(sd, false); /* read status */ irq_status[0] = io_read(sd, 0x43); irq_status[1] = io_read(sd, 0x57); irq_status[2] = io_read(sd, 0x70); irq_status[3] = io_read(sd, 0x75); irq_status[4] = io_read(sd, 0x9d); irq_status[5] = io_read(sd, 0x66); /* and clear */ if (irq_status[0]) io_write(sd, 0x44, irq_status[0]); if (irq_status[1]) io_write(sd, 0x58, irq_status[1]); if (irq_status[2]) io_write(sd, 0x71, irq_status[2]); if (irq_status[3]) io_write(sd, 0x76, irq_status[3]); if (irq_status[4]) io_write(sd, 0x9e, irq_status[4]); if (irq_status[5]) io_write(sd, 0x67, irq_status[5]); adv7842_irq_enable(sd, true); v4l2_dbg(1, debug, sd, "%s: irq %x, %x, %x, %x, %x, %x\n", __func__, irq_status[0], irq_status[1], irq_status[2], irq_status[3], irq_status[4], irq_status[5]); /* format change CP */ fmt_change_cp = irq_status[0] & 0x9c; /* format change SDP */ if (state->mode == ADV7842_MODE_SDP) fmt_change_sdp = (irq_status[1] & 0x30) | (irq_status[4] & 0x09); else fmt_change_sdp = 0; /* digital format CP */ if (is_digital_input(sd)) fmt_change_digital = irq_status[3] & 0x03; else fmt_change_digital = 0; /* format change */ if (fmt_change_cp || fmt_change_digital || fmt_change_sdp) { v4l2_dbg(1, debug, sd, "%s: fmt_change_cp = 0x%x, fmt_change_digital = 0x%x, fmt_change_sdp = 0x%x\n", __func__, fmt_change_cp, fmt_change_digital, fmt_change_sdp); v4l2_subdev_notify(sd, ADV7842_FMT_CHANGE, NULL); if (handled) *handled = true; } /* HDMI/DVI mode */ if (irq_status[5] & 0x08) { v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__, (io_read(sd, 0x65) & 0x08) ? "HDMI" : "DVI"); set_rgb_quantization_range(sd); if (handled) *handled = true; } /* tx 5v detect */ if (irq_status[2] & 0x3) { v4l2_dbg(1, debug, sd, "%s: irq tx_5v\n", __func__); adv7842_s_detect_tx_5v_ctrl(sd); if (handled) *handled = true; } return 0; } static int adv7842_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid) { struct adv7842_state *state = to_state(sd); u8 *data = NULL; if (edid->pad > ADV7842_EDID_PORT_VGA) return -EINVAL; if (edid->blocks == 0) return -EINVAL; if (edid->blocks > 2) return -EINVAL; if (edid->start_block > 1) return -EINVAL; if (edid->start_block == 1) edid->blocks = 1; if (!edid->edid) return -EINVAL; switch (edid->pad) { case ADV7842_EDID_PORT_A: case ADV7842_EDID_PORT_B: if (state->hdmi_edid.present & (0x04 << edid->pad)) data = state->hdmi_edid.edid; break; case ADV7842_EDID_PORT_VGA: if (state->vga_edid.present) data = state->vga_edid.edid; break; default: return -EINVAL; } if (!data) return -ENODATA; memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128); return 0; } static int adv7842_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *e) { struct adv7842_state *state = to_state(sd); int err = 0; if (e->pad > ADV7842_EDID_PORT_VGA) return -EINVAL; if (e->start_block != 0) return -EINVAL; if (e->blocks > 2) return -E2BIG; if (!e->edid) return -EINVAL; /* todo, per edid */ state->aspect_ratio = v4l2_calc_aspect_ratio(e->edid[0x15], e->edid[0x16]); switch (e->pad) { case ADV7842_EDID_PORT_VGA: memset(&state->vga_edid.edid, 0, 256); state->vga_edid.present = e->blocks ? 0x1 : 0x0; memcpy(&state->vga_edid.edid, e->edid, 128 * e->blocks); err = edid_write_vga_segment(sd); break; case ADV7842_EDID_PORT_A: case ADV7842_EDID_PORT_B: memset(&state->hdmi_edid.edid, 0, 256); if (e->blocks) state->hdmi_edid.present |= 0x04 << e->pad; else state->hdmi_edid.present &= ~(0x04 << e->pad); memcpy(&state->hdmi_edid.edid, e->edid, 128 * e->blocks); err = edid_write_hdmi_segment(sd, e->pad); break; default: return -EINVAL; } if (err < 0) v4l2_err(sd, "error %d writing edid on port %d\n", err, e->pad); return err; } /*********** avi info frame CEA-861-E **************/ /* TODO move to common library */ struct avi_info_frame { uint8_t f17; uint8_t y10; uint8_t a0; uint8_t b10; uint8_t s10; uint8_t c10; uint8_t m10; uint8_t r3210; uint8_t itc; uint8_t ec210; uint8_t q10; uint8_t sc10; uint8_t f47; uint8_t vic; uint8_t yq10; uint8_t cn10; uint8_t pr3210; uint16_t etb; uint16_t sbb; uint16_t elb; uint16_t srb; }; static const char *y10_txt[4] = { "RGB", "YCbCr 4:2:2", "YCbCr 4:4:4", "Future", }; static const char *c10_txt[4] = { "No Data", "SMPTE 170M", "ITU-R 709", "Extended Colorimetry information valied", }; static const char *itc_txt[2] = { "No Data", "IT content", }; static const char *ec210_txt[8] = { "xvYCC601", "xvYCC709", "sYCC601", "AdobeYCC601", "AdobeRGB", "5 reserved", "6 reserved", "7 reserved", }; static const char *q10_txt[4] = { "Default", "Limited Range", "Full Range", "Reserved", }; static void parse_avi_infoframe(struct v4l2_subdev *sd, uint8_t *buf, struct avi_info_frame *avi) { avi->f17 = (buf[1] >> 7) & 0x1; avi->y10 = (buf[1] >> 5) & 0x3; avi->a0 = (buf[1] >> 4) & 0x1; avi->b10 = (buf[1] >> 2) & 0x3; avi->s10 = buf[1] & 0x3; avi->c10 = (buf[2] >> 6) & 0x3; avi->m10 = (buf[2] >> 4) & 0x3; avi->r3210 = buf[2] & 0xf; avi->itc = (buf[3] >> 7) & 0x1; avi->ec210 = (buf[3] >> 4) & 0x7; avi->q10 = (buf[3] >> 2) & 0x3; avi->sc10 = buf[3] & 0x3; avi->f47 = (buf[4] >> 7) & 0x1; avi->vic = buf[4] & 0x7f; avi->yq10 = (buf[5] >> 6) & 0x3; avi->cn10 = (buf[5] >> 4) & 0x3; avi->pr3210 = buf[5] & 0xf; avi->etb = buf[6] + 256*buf[7]; avi->sbb = buf[8] + 256*buf[9]; avi->elb = buf[10] + 256*buf[11]; avi->srb = buf[12] + 256*buf[13]; } static void print_avi_infoframe(struct v4l2_subdev *sd) { int i; uint8_t buf[14]; u8 avi_len; u8 avi_ver; struct avi_info_frame avi; if (!(hdmi_read(sd, 0x05) & 0x80)) { v4l2_info(sd, "receive DVI-D signal (AVI infoframe not supported)\n"); return; } if (!(io_read(sd, 0x60) & 0x01)) { v4l2_info(sd, "AVI infoframe not received\n"); return; } if (io_read(sd, 0x88) & 0x10) { v4l2_info(sd, "AVI infoframe checksum error has occurred earlier\n"); io_write(sd, 0x8a, 0x10); /* clear AVI_INF_CKS_ERR_RAW */ if (io_read(sd, 0x88) & 0x10) { v4l2_info(sd, "AVI infoframe checksum error still present\n"); io_write(sd, 0x8a, 0x10); /* clear AVI_INF_CKS_ERR_RAW */ } } avi_len = infoframe_read(sd, 0xe2); avi_ver = infoframe_read(sd, 0xe1); v4l2_info(sd, "AVI infoframe version %d (%d byte)\n", avi_ver, avi_len); if (avi_ver != 0x02) return; for (i = 0; i < 14; i++) buf[i] = infoframe_read(sd, i); v4l2_info(sd, "\t%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n", buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7], buf[8], buf[9], buf[10], buf[11], buf[12], buf[13]); parse_avi_infoframe(sd, buf, &avi); if (avi.vic) v4l2_info(sd, "\tVIC: %d\n", avi.vic); if (avi.itc) v4l2_info(sd, "\t%s\n", itc_txt[avi.itc]); if (avi.y10) v4l2_info(sd, "\t%s %s\n", y10_txt[avi.y10], !avi.c10 ? "" : (avi.c10 == 0x3 ? ec210_txt[avi.ec210] : c10_txt[avi.c10])); else v4l2_info(sd, "\t%s %s\n", y10_txt[avi.y10], q10_txt[avi.q10]); } static const char * const prim_mode_txt[] = { "SDP", "Component", "Graphics", "Reserved", "CVBS & HDMI AUDIO", "HDMI-Comp", "HDMI-GR", "Reserved", "Reserved", "Reserved", "Reserved", "Reserved", "Reserved", "Reserved", "Reserved", "Reserved", }; static int adv7842_sdp_log_status(struct v4l2_subdev *sd) { /* SDP (Standard definition processor) block */ uint8_t sdp_signal_detected = sdp_read(sd, 0x5A) & 0x01; v4l2_info(sd, "Chip powered %s\n", no_power(sd) ? "off" : "on"); v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x\n", io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f); v4l2_info(sd, "SDP: free run: %s\n", (sdp_read(sd, 0x56) & 0x01) ? "on" : "off"); v4l2_info(sd, "SDP: %s\n", sdp_signal_detected ? "valid SD/PR signal detected" : "invalid/no signal"); if (sdp_signal_detected) { static const char * const sdp_std_txt[] = { "NTSC-M/J", "1?", "NTSC-443", "60HzSECAM", "PAL-M", "5?", "PAL-60", "7?", "8?", "9?", "a?", "b?", "PAL-CombN", "d?", "PAL-BGHID", "SECAM" }; v4l2_info(sd, "SDP: standard %s\n", sdp_std_txt[sdp_read(sd, 0x52) & 0x0f]); v4l2_info(sd, "SDP: %s\n", (sdp_read(sd, 0x59) & 0x08) ? "50Hz" : "60Hz"); v4l2_info(sd, "SDP: %s\n", (sdp_read(sd, 0x57) & 0x08) ? "Interlaced" : "Progressive"); v4l2_info(sd, "SDP: deinterlacer %s\n", (sdp_read(sd, 0x12) & 0x08) ? "enabled" : "disabled"); v4l2_info(sd, "SDP: csc %s mode\n", (sdp_io_read(sd, 0xe0) & 0x40) ? "auto" : "manual"); } return 0; } static int adv7842_cp_log_status(struct v4l2_subdev *sd) { /* CP block */ struct adv7842_state *state = to_state(sd); struct v4l2_dv_timings timings; uint8_t reg_io_0x02 = io_read(sd, 0x02); uint8_t reg_io_0x21 = io_read(sd, 0x21); uint8_t reg_rep_0x77 = rep_read(sd, 0x77); uint8_t reg_rep_0x7d = rep_read(sd, 0x7d); bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01; bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01; bool audio_mute = io_read(sd, 0x65) & 0x40; static const char * const csc_coeff_sel_rb[16] = { "bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB", "reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709", "reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709", "reserved", "reserved", "reserved", "reserved", "manual" }; static const char * const input_color_space_txt[16] = { "RGB limited range (16-235)", "RGB full range (0-255)", "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)", "xvYCC Bt.601", "xvYCC Bt.709", "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)", "invalid", "invalid", "invalid", "invalid", "invalid", "invalid", "invalid", "automatic" }; static const char * const rgb_quantization_range_txt[] = { "Automatic", "RGB limited range (16-235)", "RGB full range (0-255)", }; static const char * const deep_color_mode_txt[4] = { "8-bits per channel", "10-bits per channel", "12-bits per channel", "16-bits per channel (not supported)" }; v4l2_info(sd, "-----Chip status-----\n"); v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on"); v4l2_info(sd, "HDMI/DVI-D port selected: %s\n", state->hdmi_port_a ? "A" : "B"); v4l2_info(sd, "EDID A %s, B %s\n", ((reg_rep_0x7d & 0x04) && (reg_rep_0x77 & 0x04)) ? "enabled" : "disabled", ((reg_rep_0x7d & 0x08) && (reg_rep_0x77 & 0x08)) ? "enabled" : "disabled"); v4l2_info(sd, "HPD A %s, B %s\n", reg_io_0x21 & 0x02 ? "enabled" : "disabled", reg_io_0x21 & 0x01 ? "enabled" : "disabled"); v4l2_info(sd, "CEC %s\n", !!(cec_read(sd, 0x2a) & 0x01) ? "enabled" : "disabled"); v4l2_info(sd, "-----Signal status-----\n"); if (state->hdmi_port_a) { v4l2_info(sd, "Cable detected (+5V power): %s\n", io_read(sd, 0x6f) & 0x02 ? "true" : "false"); v4l2_info(sd, "TMDS signal detected: %s\n", (io_read(sd, 0x6a) & 0x02) ? "true" : "false"); v4l2_info(sd, "TMDS signal locked: %s\n", (io_read(sd, 0x6a) & 0x20) ? "true" : "false"); } else { v4l2_info(sd, "Cable detected (+5V power):%s\n", io_read(sd, 0x6f) & 0x01 ? "true" : "false"); v4l2_info(sd, "TMDS signal detected: %s\n", (io_read(sd, 0x6a) & 0x01) ? "true" : "false"); v4l2_info(sd, "TMDS signal locked: %s\n", (io_read(sd, 0x6a) & 0x10) ? "true" : "false"); } v4l2_info(sd, "CP free run: %s\n", (!!(cp_read(sd, 0xff) & 0x10) ? "on" : "off")); v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n", io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f, (io_read(sd, 0x01) & 0x70) >> 4); v4l2_info(sd, "-----Video Timings-----\n"); if (no_cp_signal(sd)) { v4l2_info(sd, "STDI: not locked\n"); } else { uint32_t bl = ((cp_read(sd, 0xb1) & 0x3f) << 8) | cp_read(sd, 0xb2); uint32_t lcf = ((cp_read(sd, 0xb3) & 0x7) << 8) | cp_read(sd, 0xb4); uint32_t lcvs = cp_read(sd, 0xb3) >> 3; uint32_t fcl = ((cp_read(sd, 0xb8) & 0x1f) << 8) | cp_read(sd, 0xb9); char hs_pol = ((cp_read(sd, 0xb5) & 0x10) ? ((cp_read(sd, 0xb5) & 0x08) ? '+' : '-') : 'x'); char vs_pol = ((cp_read(sd, 0xb5) & 0x40) ? ((cp_read(sd, 0xb5) & 0x20) ? '+' : '-') : 'x'); v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, fcl = %d, %s, %chsync, %cvsync\n", lcf, bl, lcvs, fcl, (cp_read(sd, 0xb1) & 0x40) ? "interlaced" : "progressive", hs_pol, vs_pol); } if (adv7842_query_dv_timings(sd, &timings)) v4l2_info(sd, "No video detected\n"); else v4l2_print_dv_timings(sd->name, "Detected format: ", &timings, true); v4l2_print_dv_timings(sd->name, "Configured format: ", &state->timings, true); if (no_cp_signal(sd)) return 0; v4l2_info(sd, "-----Color space-----\n"); v4l2_info(sd, "RGB quantization range ctrl: %s\n", rgb_quantization_range_txt[state->rgb_quantization_range]); v4l2_info(sd, "Input color space: %s\n", input_color_space_txt[reg_io_0x02 >> 4]); v4l2_info(sd, "Output color space: %s %s, saturator %s\n", (reg_io_0x02 & 0x02) ? "RGB" : "YCbCr", (reg_io_0x02 & 0x04) ? "(16-235)" : "(0-255)", ((reg_io_0x02 & 0x04) ^ (reg_io_0x02 & 0x01)) ? "enabled" : "disabled"); v4l2_info(sd, "Color space conversion: %s\n", csc_coeff_sel_rb[cp_read(sd, 0xf4) >> 4]); if (!is_digital_input(sd)) return 0; v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D"); v4l2_info(sd, "HDCP encrypted content: %s\n", (hdmi_read(sd, 0x05) & 0x40) ? "true" : "false"); v4l2_info(sd, "HDCP keys read: %s%s\n", (hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no", (hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : ""); if (!is_hdmi(sd)) return 0; v4l2_info(sd, "Audio: pll %s, samples %s, %s\n", audio_pll_locked ? "locked" : "not locked", audio_sample_packet_detect ? "detected" : "not detected", audio_mute ? "muted" : "enabled"); if (audio_pll_locked && audio_sample_packet_detect) { v4l2_info(sd, "Audio format: %s\n", (hdmi_read(sd, 0x07) & 0x40) ? "multi-channel" : "stereo"); } v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) + (hdmi_read(sd, 0x5c) << 8) + (hdmi_read(sd, 0x5d) & 0xf0)); v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) + (hdmi_read(sd, 0x5e) << 8) + hdmi_read(sd, 0x5f)); v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off"); v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[hdmi_read(sd, 0x0b) >> 6]); print_avi_infoframe(sd); return 0; } static int adv7842_log_status(struct v4l2_subdev *sd) { struct adv7842_state *state = to_state(sd); if (state->mode == ADV7842_MODE_SDP) return adv7842_sdp_log_status(sd); return adv7842_cp_log_status(sd); } static int adv7842_querystd(struct v4l2_subdev *sd, v4l2_std_id *std) { struct adv7842_state *state = to_state(sd); v4l2_dbg(1, debug, sd, "%s:\n", __func__); if (state->mode != ADV7842_MODE_SDP) return -ENODATA; if (!(sdp_read(sd, 0x5A) & 0x01)) { *std = 0; v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__); return 0; } switch (sdp_read(sd, 0x52) & 0x0f) { case 0: /* NTSC-M/J */ *std &= V4L2_STD_NTSC; break; case 2: /* NTSC-443 */ *std &= V4L2_STD_NTSC_443; break; case 3: /* 60HzSECAM */ *std &= V4L2_STD_SECAM; break; case 4: /* PAL-M */ *std &= V4L2_STD_PAL_M; break; case 6: /* PAL-60 */ *std &= V4L2_STD_PAL_60; break; case 0xc: /* PAL-CombN */ *std &= V4L2_STD_PAL_Nc; break; case 0xe: /* PAL-BGHID */ *std &= V4L2_STD_PAL; break; case 0xf: /* SECAM */ *std &= V4L2_STD_SECAM; break; default: *std &= V4L2_STD_ALL; break; } return 0; } static void adv7842_s_sdp_io(struct v4l2_subdev *sd, struct adv7842_sdp_io_sync_adjustment *s) { if (s && s->adjust) { sdp_io_write(sd, 0x94, (s->hs_beg >> 8) & 0xf); sdp_io_write(sd, 0x95, s->hs_beg & 0xff); sdp_io_write(sd, 0x96, (s->hs_width >> 8) & 0xf); sdp_io_write(sd, 0x97, s->hs_width & 0xff); sdp_io_write(sd, 0x98, (s->de_beg >> 8) & 0xf); sdp_io_write(sd, 0x99, s->de_beg & 0xff); sdp_io_write(sd, 0x9a, (s->de_end >> 8) & 0xf); sdp_io_write(sd, 0x9b, s->de_end & 0xff); sdp_io_write(sd, 0xa8, s->vs_beg_o); sdp_io_write(sd, 0xa9, s->vs_beg_e); sdp_io_write(sd, 0xaa, s->vs_end_o); sdp_io_write(sd, 0xab, s->vs_end_e); sdp_io_write(sd, 0xac, s->de_v_beg_o); sdp_io_write(sd, 0xad, s->de_v_beg_e); sdp_io_write(sd, 0xae, s->de_v_end_o); sdp_io_write(sd, 0xaf, s->de_v_end_e); } else { /* set to default */ sdp_io_write(sd, 0x94, 0x00); sdp_io_write(sd, 0x95, 0x00); sdp_io_write(sd, 0x96, 0x00); sdp_io_write(sd, 0x97, 0x20); sdp_io_write(sd, 0x98, 0x00); sdp_io_write(sd, 0x99, 0x00); sdp_io_write(sd, 0x9a, 0x00); sdp_io_write(sd, 0x9b, 0x00); sdp_io_write(sd, 0xa8, 0x04); sdp_io_write(sd, 0xa9, 0x04); sdp_io_write(sd, 0xaa, 0x04); sdp_io_write(sd, 0xab, 0x04); sdp_io_write(sd, 0xac, 0x04); sdp_io_write(sd, 0xad, 0x04); sdp_io_write(sd, 0xae, 0x04); sdp_io_write(sd, 0xaf, 0x04); } } static int adv7842_s_std(struct v4l2_subdev *sd, v4l2_std_id norm) { struct adv7842_state *state = to_state(sd); struct adv7842_platform_data *pdata = &state->pdata; v4l2_dbg(1, debug, sd, "%s:\n", __func__); if (state->mode != ADV7842_MODE_SDP) return -ENODATA; if (norm & V4L2_STD_625_50) adv7842_s_sdp_io(sd, &pdata->sdp_io_sync_625); else if (norm & V4L2_STD_525_60) adv7842_s_sdp_io(sd, &pdata->sdp_io_sync_525); else adv7842_s_sdp_io(sd, NULL); if (norm & V4L2_STD_ALL) { state->norm = norm; return 0; } return -EINVAL; } static int adv7842_g_std(struct v4l2_subdev *sd, v4l2_std_id *norm) { struct adv7842_state *state = to_state(sd); v4l2_dbg(1, debug, sd, "%s:\n", __func__); if (state->mode != ADV7842_MODE_SDP) return -ENODATA; *norm = state->norm; return 0; } /* ----------------------------------------------------------------------- */ static int adv7842_core_init(struct v4l2_subdev *sd) { struct adv7842_state *state = to_state(sd); struct adv7842_platform_data *pdata = &state->pdata; hdmi_write(sd, 0x48, (pdata->disable_pwrdnb ? 0x80 : 0) | (pdata->disable_cable_det_rst ? 0x40 : 0)); disable_input(sd); /* * Disable I2C access to internal EDID ram from HDMI DDC ports * Disable auto edid enable when leaving powerdown mode */ rep_write_and_or(sd, 0x77, 0xd3, 0x20); /* power */ io_write(sd, 0x0c, 0x42); /* Power up part and power down VDP */ io_write(sd, 0x15, 0x80); /* Power up pads */ /* video format */ io_write(sd, 0x02, 0xf0 | pdata->alt_gamma << 3 | pdata->op_656_range << 2 | pdata->rgb_out << 1 | pdata->alt_data_sat << 0); io_write(sd, 0x03, pdata->op_format_sel); io_write_and_or(sd, 0x04, 0x1f, pdata->op_ch_sel << 5); io_write_and_or(sd, 0x05, 0xf0, pdata->blank_data << 3 | pdata->insert_av_codes << 2 | pdata->replicate_av_codes << 1 | pdata->invert_cbcr << 0); /* HDMI audio */ hdmi_write_and_or(sd, 0x1a, 0xf1, 0x08); /* Wait 1 s before unmute */ /* Drive strength */ io_write_and_or(sd, 0x14, 0xc0, pdata->dr_str_data << 4 | pdata->dr_str_clk << 2 | pdata->dr_str_sync); /* HDMI free run */ cp_write_and_or(sd, 0xba, 0xfc, pdata->hdmi_free_run_enable | (pdata->hdmi_free_run_mode << 1)); /* SPD free run */ sdp_write_and_or(sd, 0xdd, 0xf0, pdata->sdp_free_run_force | (pdata->sdp_free_run_cbar_en << 1) | (pdata->sdp_free_run_man_col_en << 2) | (pdata->sdp_free_run_auto << 3)); /* TODO from platform data */ cp_write(sd, 0x69, 0x14); /* Enable CP CSC */ io_write(sd, 0x06, 0xa6); /* positive VS and HS and DE */ cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */ afe_write(sd, 0xb5, 0x01); /* Setting MCLK to 256Fs */ afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */ io_write_and_or(sd, 0x30, ~(1 << 4), pdata->output_bus_lsb_to_msb << 4); sdp_csc_coeff(sd, &pdata->sdp_csc_coeff); /* todo, improve settings for sdram */ if (pdata->sd_ram_size >= 128) { sdp_write(sd, 0x12, 0x0d); /* Frame TBC,3D comb enabled */ if (pdata->sd_ram_ddr) { /* SDP setup for the AD eval board */ sdp_io_write(sd, 0x6f, 0x00); /* DDR mode */ sdp_io_write(sd, 0x75, 0x0a); /* 128 MB memory size */ sdp_io_write(sd, 0x7a, 0xa5); /* Timing Adjustment */ sdp_io_write(sd, 0x7b, 0x8f); /* Timing Adjustment */ sdp_io_write(sd, 0x60, 0x01); /* SDRAM reset */ } else { sdp_io_write(sd, 0x75, 0x0a); /* 64 MB memory size ?*/ sdp_io_write(sd, 0x74, 0x00); /* must be zero for sdr sdram */ sdp_io_write(sd, 0x79, 0x33); /* CAS latency to 3, depends on memory */ sdp_io_write(sd, 0x6f, 0x01); /* SDR mode */ sdp_io_write(sd, 0x7a, 0xa5); /* Timing Adjustment */ sdp_io_write(sd, 0x7b, 0x8f); /* Timing Adjustment */ sdp_io_write(sd, 0x60, 0x01); /* SDRAM reset */ } } else { /* * Manual UG-214, rev 0 is bit confusing on this bit * but a '1' disables any signal if the Ram is active. */ sdp_io_write(sd, 0x29, 0x10); /* Tristate memory interface */ } select_input(sd, pdata->vid_std_select); enable_input(sd); if (pdata->hpa_auto) { /* HPA auto, HPA 0.5s after Edid set and Cable detect */ hdmi_write(sd, 0x69, 0x5c); } else { /* HPA manual */ hdmi_write(sd, 0x69, 0xa3); /* HPA disable on port A and B */ io_write_and_or(sd, 0x20, 0xcf, 0x00); } /* LLC */ io_write(sd, 0x19, 0x80 | pdata->llc_dll_phase); io_write(sd, 0x33, 0x40); /* interrupts */ io_write(sd, 0x40, 0xf2); /* Configure INT1 */ adv7842_irq_enable(sd, true); return v4l2_ctrl_handler_setup(sd->ctrl_handler); } /* ----------------------------------------------------------------------- */ static int adv7842_ddr_ram_test(struct v4l2_subdev *sd) { /* * From ADV784x external Memory test.pdf * * Reset must just been performed before running test. * Recommended to reset after test. */ int i; int pass = 0; int fail = 0; int complete = 0; io_write(sd, 0x00, 0x01); /* Program SDP 4x1 */ io_write(sd, 0x01, 0x00); /* Program SDP mode */ afe_write(sd, 0x80, 0x92); /* SDP Recommeneded Write */ afe_write(sd, 0x9B, 0x01); /* SDP Recommeneded Write ADV7844ES1 */ afe_write(sd, 0x9C, 0x60); /* SDP Recommeneded Write ADV7844ES1 */ afe_write(sd, 0x9E, 0x02); /* SDP Recommeneded Write ADV7844ES1 */ afe_write(sd, 0xA0, 0x0B); /* SDP Recommeneded Write ADV7844ES1 */ afe_write(sd, 0xC3, 0x02); /* Memory BIST Initialisation */ io_write(sd, 0x0C, 0x40); /* Power up ADV7844 */ io_write(sd, 0x15, 0xBA); /* Enable outputs */ sdp_write(sd, 0x12, 0x00); /* Disable 3D comb, Frame TBC & 3DNR */ io_write(sd, 0xFF, 0x04); /* Reset memory controller */ mdelay(5); sdp_write(sd, 0x12, 0x00); /* Disable 3D Comb, Frame TBC & 3DNR */ sdp_io_write(sd, 0x2A, 0x01); /* Memory BIST Initialisation */ sdp_io_write(sd, 0x7c, 0x19); /* Memory BIST Initialisation */ sdp_io_write(sd, 0x80, 0x87); /* Memory BIST Initialisation */ sdp_io_write(sd, 0x81, 0x4a); /* Memory BIST Initialisation */ sdp_io_write(sd, 0x82, 0x2c); /* Memory BIST Initialisation */ sdp_io_write(sd, 0x83, 0x0e); /* Memory BIST Initialisation */ sdp_io_write(sd, 0x84, 0x94); /* Memory BIST Initialisation */ sdp_io_write(sd, 0x85, 0x62); /* Memory BIST Initialisation */ sdp_io_write(sd, 0x7d, 0x00); /* Memory BIST Initialisation */ sdp_io_write(sd, 0x7e, 0x1a); /* Memory BIST Initialisation */ mdelay(5); sdp_io_write(sd, 0xd9, 0xd5); /* Enable BIST Test */ sdp_write(sd, 0x12, 0x05); /* Enable FRAME TBC & 3D COMB */ mdelay(20); for (i = 0; i < 10; i++) { u8 result = sdp_io_read(sd, 0xdb); if (result & 0x10) { complete++; if (result & 0x20) fail++; else pass++; } mdelay(20); } v4l2_dbg(1, debug, sd, "Ram Test: completed %d of %d: pass %d, fail %d\n", complete, i, pass, fail); if (!complete || fail) return -EIO; return 0; } static void adv7842_rewrite_i2c_addresses(struct v4l2_subdev *sd, struct adv7842_platform_data *pdata) { io_write(sd, 0xf1, pdata->i2c_sdp << 1); io_write(sd, 0xf2, pdata->i2c_sdp_io << 1); io_write(sd, 0xf3, pdata->i2c_avlink << 1); io_write(sd, 0xf4, pdata->i2c_cec << 1); io_write(sd, 0xf5, pdata->i2c_infoframe << 1); io_write(sd, 0xf8, pdata->i2c_afe << 1); io_write(sd, 0xf9, pdata->i2c_repeater << 1); io_write(sd, 0xfa, pdata->i2c_edid << 1); io_write(sd, 0xfb, pdata->i2c_hdmi << 1); io_write(sd, 0xfd, pdata->i2c_cp << 1); io_write(sd, 0xfe, pdata->i2c_vdp << 1); } static int adv7842_command_ram_test(struct v4l2_subdev *sd) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct adv7842_state *state = to_state(sd); struct adv7842_platform_data *pdata = client->dev.platform_data; struct v4l2_dv_timings timings; int ret = 0; if (!pdata) return -ENODEV; if (!pdata->sd_ram_size || !pdata->sd_ram_ddr) { v4l2_info(sd, "no sdram or no ddr sdram\n"); return -EINVAL; } main_reset(sd); adv7842_rewrite_i2c_addresses(sd, pdata); /* run ram test */ ret = adv7842_ddr_ram_test(sd); main_reset(sd); adv7842_rewrite_i2c_addresses(sd, pdata); /* and re-init chip and state */ adv7842_core_init(sd); disable_input(sd); select_input(sd, state->vid_std_select); enable_input(sd); edid_write_vga_segment(sd); edid_write_hdmi_segment(sd, ADV7842_EDID_PORT_A); edid_write_hdmi_segment(sd, ADV7842_EDID_PORT_B); timings = state->timings; memset(&state->timings, 0, sizeof(struct v4l2_dv_timings)); adv7842_s_dv_timings(sd, &timings); return ret; } static long adv7842_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg) { switch (cmd) { case ADV7842_CMD_RAM_TEST: return adv7842_command_ram_test(sd); } return -ENOTTY; } /* ----------------------------------------------------------------------- */ static const struct v4l2_ctrl_ops adv7842_ctrl_ops = { .s_ctrl = adv7842_s_ctrl, }; static const struct v4l2_subdev_core_ops adv7842_core_ops = { .log_status = adv7842_log_status, .ioctl = adv7842_ioctl, .interrupt_service_routine = adv7842_isr, #ifdef CONFIG_VIDEO_ADV_DEBUG .g_register = adv7842_g_register, .s_register = adv7842_s_register, #endif }; static const struct v4l2_subdev_video_ops adv7842_video_ops = { .g_std = adv7842_g_std, .s_std = adv7842_s_std, .s_routing = adv7842_s_routing, .querystd = adv7842_querystd, .g_input_status = adv7842_g_input_status, .s_dv_timings = adv7842_s_dv_timings, .g_dv_timings = adv7842_g_dv_timings, .query_dv_timings = adv7842_query_dv_timings, .enum_mbus_fmt = adv7842_enum_mbus_fmt, .g_mbus_fmt = adv7842_g_mbus_fmt, .try_mbus_fmt = adv7842_g_mbus_fmt, .s_mbus_fmt = adv7842_g_mbus_fmt, }; static const struct v4l2_subdev_pad_ops adv7842_pad_ops = { .get_edid = adv7842_get_edid, .set_edid = adv7842_set_edid, .enum_dv_timings = adv7842_enum_dv_timings, .dv_timings_cap = adv7842_dv_timings_cap, }; static const struct v4l2_subdev_ops adv7842_ops = { .core = &adv7842_core_ops, .video = &adv7842_video_ops, .pad = &adv7842_pad_ops, }; /* -------------------------- custom ctrls ---------------------------------- */ static const struct v4l2_ctrl_config adv7842_ctrl_analog_sampling_phase = { .ops = &adv7842_ctrl_ops, .id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE, .name = "Analog Sampling Phase", .type = V4L2_CTRL_TYPE_INTEGER, .min = 0, .max = 0x1f, .step = 1, .def = 0, }; static const struct v4l2_ctrl_config adv7842_ctrl_free_run_color_manual = { .ops = &adv7842_ctrl_ops, .id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL, .name = "Free Running Color, Manual", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .step = 1, .def = 1, }; static const struct v4l2_ctrl_config adv7842_ctrl_free_run_color = { .ops = &adv7842_ctrl_ops, .id = V4L2_CID_ADV_RX_FREE_RUN_COLOR, .name = "Free Running Color", .type = V4L2_CTRL_TYPE_INTEGER, .max = 0xffffff, .step = 0x1, }; static void adv7842_unregister_clients(struct v4l2_subdev *sd) { struct adv7842_state *state = to_state(sd); if (state->i2c_avlink) i2c_unregister_device(state->i2c_avlink); if (state->i2c_cec) i2c_unregister_device(state->i2c_cec); if (state->i2c_infoframe) i2c_unregister_device(state->i2c_infoframe); if (state->i2c_sdp_io) i2c_unregister_device(state->i2c_sdp_io); if (state->i2c_sdp) i2c_unregister_device(state->i2c_sdp); if (state->i2c_afe) i2c_unregister_device(state->i2c_afe); if (state->i2c_repeater) i2c_unregister_device(state->i2c_repeater); if (state->i2c_edid) i2c_unregister_device(state->i2c_edid); if (state->i2c_hdmi) i2c_unregister_device(state->i2c_hdmi); if (state->i2c_cp) i2c_unregister_device(state->i2c_cp); if (state->i2c_vdp) i2c_unregister_device(state->i2c_vdp); state->i2c_avlink = NULL; state->i2c_cec = NULL; state->i2c_infoframe = NULL; state->i2c_sdp_io = NULL; state->i2c_sdp = NULL; state->i2c_afe = NULL; state->i2c_repeater = NULL; state->i2c_edid = NULL; state->i2c_hdmi = NULL; state->i2c_cp = NULL; state->i2c_vdp = NULL; } static struct i2c_client *adv7842_dummy_client(struct v4l2_subdev *sd, const char *desc, u8 addr, u8 io_reg) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct i2c_client *cp; io_write(sd, io_reg, addr << 1); if (addr == 0) { v4l2_err(sd, "no %s i2c addr configured\n", desc); return NULL; } cp = i2c_new_dummy(client->adapter, io_read(sd, io_reg) >> 1); if (!cp) v4l2_err(sd, "register %s on i2c addr 0x%x failed\n", desc, addr); return cp; } static int adv7842_register_clients(struct v4l2_subdev *sd) { struct adv7842_state *state = to_state(sd); struct adv7842_platform_data *pdata = &state->pdata; state->i2c_avlink = adv7842_dummy_client(sd, "avlink", pdata->i2c_avlink, 0xf3); state->i2c_cec = adv7842_dummy_client(sd, "cec", pdata->i2c_cec, 0xf4); state->i2c_infoframe = adv7842_dummy_client(sd, "infoframe", pdata->i2c_infoframe, 0xf5); state->i2c_sdp_io = adv7842_dummy_client(sd, "sdp_io", pdata->i2c_sdp_io, 0xf2); state->i2c_sdp = adv7842_dummy_client(sd, "sdp", pdata->i2c_sdp, 0xf1); state->i2c_afe = adv7842_dummy_client(sd, "afe", pdata->i2c_afe, 0xf8); state->i2c_repeater = adv7842_dummy_client(sd, "repeater", pdata->i2c_repeater, 0xf9); state->i2c_edid = adv7842_dummy_client(sd, "edid", pdata->i2c_edid, 0xfa); state->i2c_hdmi = adv7842_dummy_client(sd, "hdmi", pdata->i2c_hdmi, 0xfb); state->i2c_cp = adv7842_dummy_client(sd, "cp", pdata->i2c_cp, 0xfd); state->i2c_vdp = adv7842_dummy_client(sd, "vdp", pdata->i2c_vdp, 0xfe); if (!state->i2c_avlink || !state->i2c_cec || !state->i2c_infoframe || !state->i2c_sdp_io || !state->i2c_sdp || !state->i2c_afe || !state->i2c_repeater || !state->i2c_edid || !state->i2c_hdmi || !state->i2c_cp || !state->i2c_vdp) return -1; return 0; } static int adv7842_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct adv7842_state *state; static const struct v4l2_dv_timings cea640x480 = V4L2_DV_BT_CEA_640X480P59_94; struct adv7842_platform_data *pdata = client->dev.platform_data; struct v4l2_ctrl_handler *hdl; struct v4l2_subdev *sd; u16 rev; int err; /* Check if the adapter supports the needed features */ if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA)) return -EIO; v4l_dbg(1, debug, client, "detecting adv7842 client on address 0x%x\n", client->addr << 1); if (!pdata) { v4l_err(client, "No platform data!\n"); return -ENODEV; } state = devm_kzalloc(&client->dev, sizeof(struct adv7842_state), GFP_KERNEL); if (!state) { v4l_err(client, "Could not allocate adv7842_state memory!\n"); return -ENOMEM; } /* platform data */ state->pdata = *pdata; state->timings = cea640x480; sd = &state->sd; v4l2_i2c_subdev_init(sd, client, &adv7842_ops); sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; state->mode = pdata->mode; state->hdmi_port_a = pdata->input == ADV7842_SELECT_HDMI_PORT_A; state->restart_stdi_once = true; /* i2c access to adv7842? */ rev = adv_smbus_read_byte_data_check(client, 0xea, false) << 8 | adv_smbus_read_byte_data_check(client, 0xeb, false); if (rev != 0x2012) { v4l2_info(sd, "got rev=0x%04x on first read attempt\n", rev); rev = adv_smbus_read_byte_data_check(client, 0xea, false) << 8 | adv_smbus_read_byte_data_check(client, 0xeb, false); } if (rev != 0x2012) { v4l2_info(sd, "not an adv7842 on address 0x%x (rev=0x%04x)\n", client->addr << 1, rev); return -ENODEV; } if (pdata->chip_reset) main_reset(sd); /* control handlers */ hdl = &state->hdl; v4l2_ctrl_handler_init(hdl, 6); /* add in ascending ID order */ v4l2_ctrl_new_std(hdl, &adv7842_ctrl_ops, V4L2_CID_BRIGHTNESS, -128, 127, 1, 0); v4l2_ctrl_new_std(hdl, &adv7842_ctrl_ops, V4L2_CID_CONTRAST, 0, 255, 1, 128); v4l2_ctrl_new_std(hdl, &adv7842_ctrl_ops, V4L2_CID_SATURATION, 0, 255, 1, 128); v4l2_ctrl_new_std(hdl, &adv7842_ctrl_ops, V4L2_CID_HUE, 0, 128, 1, 0); /* custom controls */ state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL, V4L2_CID_DV_RX_POWER_PRESENT, 0, 3, 0, 0); state->analog_sampling_phase_ctrl = v4l2_ctrl_new_custom(hdl, &adv7842_ctrl_analog_sampling_phase, NULL); state->free_run_color_ctrl_manual = v4l2_ctrl_new_custom(hdl, &adv7842_ctrl_free_run_color_manual, NULL); state->free_run_color_ctrl = v4l2_ctrl_new_custom(hdl, &adv7842_ctrl_free_run_color, NULL); state->rgb_quantization_range_ctrl = v4l2_ctrl_new_std_menu(hdl, &adv7842_ctrl_ops, V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL, 0, V4L2_DV_RGB_RANGE_AUTO); sd->ctrl_handler = hdl; if (hdl->error) { err = hdl->error; goto err_hdl; } state->detect_tx_5v_ctrl->is_private = true; state->rgb_quantization_range_ctrl->is_private = true; state->analog_sampling_phase_ctrl->is_private = true; state->free_run_color_ctrl_manual->is_private = true; state->free_run_color_ctrl->is_private = true; if (adv7842_s_detect_tx_5v_ctrl(sd)) { err = -ENODEV; goto err_hdl; } if (adv7842_register_clients(sd) < 0) { err = -ENOMEM; v4l2_err(sd, "failed to create all i2c clients\n"); goto err_i2c; } /* work queues */ state->work_queues = create_singlethread_workqueue(client->name); if (!state->work_queues) { v4l2_err(sd, "Could not create work queue\n"); err = -ENOMEM; goto err_i2c; } INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug, adv7842_delayed_work_enable_hotplug); state->pad.flags = MEDIA_PAD_FL_SOURCE; err = media_entity_init(&sd->entity, 1, &state->pad, 0); if (err) goto err_work_queues; err = adv7842_core_init(sd); if (err) goto err_entity; v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name, client->addr << 1, client->adapter->name); return 0; err_entity: media_entity_cleanup(&sd->entity); err_work_queues: cancel_delayed_work(&state->delayed_work_enable_hotplug); destroy_workqueue(state->work_queues); err_i2c: adv7842_unregister_clients(sd); err_hdl: v4l2_ctrl_handler_free(hdl); return err; } /* ----------------------------------------------------------------------- */ static int adv7842_remove(struct i2c_client *client) { struct v4l2_subdev *sd = i2c_get_clientdata(client); struct adv7842_state *state = to_state(sd); adv7842_irq_enable(sd, false); cancel_delayed_work(&state->delayed_work_enable_hotplug); destroy_workqueue(state->work_queues); v4l2_device_unregister_subdev(sd); media_entity_cleanup(&sd->entity); adv7842_unregister_clients(sd); v4l2_ctrl_handler_free(sd->ctrl_handler); return 0; } /* ----------------------------------------------------------------------- */ static struct i2c_device_id adv7842_id[] = { { "adv7842", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, adv7842_id); /* ----------------------------------------------------------------------- */ static struct i2c_driver adv7842_driver = { .driver = { .owner = THIS_MODULE, .name = "adv7842", }, .probe = adv7842_probe, .remove = adv7842_remove, .id_table = adv7842_id, }; module_i2c_driver(adv7842_driver);