/* * raid6main.c : Multiple Devices driver for Linux * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman * Copyright (C) 1999, 2000 Ingo Molnar * Copyright (C) 2002, 2003 H. Peter Anvin * * RAID-6 management functions. This code is derived from raid5.c. * Last merge from raid5.c bkcvs version 1.79 (kernel 2.6.1). * * Thanks to Penguin Computing for making the RAID-6 development possible * by donating a test server! * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * You should have received a copy of the GNU General Public License * (for example /usr/src/linux/COPYING); if not, write to the Free * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/config.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/highmem.h> #include <linux/bitops.h> #include <asm/atomic.h> #include "raid6.h" /* * Stripe cache */ #define NR_STRIPES 256 #define STRIPE_SIZE PAGE_SIZE #define STRIPE_SHIFT (PAGE_SHIFT - 9) #define STRIPE_SECTORS (STRIPE_SIZE>>9) #define IO_THRESHOLD 1 #define HASH_PAGES 1 #define HASH_PAGES_ORDER 0 #define NR_HASH (HASH_PAGES * PAGE_SIZE / sizeof(struct stripe_head *)) #define HASH_MASK (NR_HASH - 1) #define stripe_hash(conf, sect) ((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]) /* bio's attached to a stripe+device for I/O are linked together in bi_sector * order without overlap. There may be several bio's per stripe+device, and * a bio could span several devices. * When walking this list for a particular stripe+device, we must never proceed * beyond a bio that extends past this device, as the next bio might no longer * be valid. * This macro is used to determine the 'next' bio in the list, given the sector * of the current stripe+device */ #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL) /* * The following can be used to debug the driver */ #define RAID6_DEBUG 0 /* Extremely verbose printk */ #define RAID6_PARANOIA 1 /* Check spinlocks */ #define RAID6_DUMPSTATE 0 /* Include stripe cache state in /proc/mdstat */ #if RAID6_PARANOIA && defined(CONFIG_SMP) # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock) #else # define CHECK_DEVLOCK() #endif #define PRINTK(x...) ((void)(RAID6_DEBUG && printk(KERN_DEBUG x))) #if RAID6_DEBUG #undef inline #undef __inline__ #define inline #define __inline__ #endif #if !RAID6_USE_EMPTY_ZERO_PAGE /* In .bss so it's zeroed */ const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256))); #endif static inline int raid6_next_disk(int disk, int raid_disks) { disk++; return (disk < raid_disks) ? disk : 0; } static void print_raid6_conf (raid6_conf_t *conf); static inline void __release_stripe(raid6_conf_t *conf, struct stripe_head *sh) { if (atomic_dec_and_test(&sh->count)) { if (!list_empty(&sh->lru)) BUG(); if (atomic_read(&conf->active_stripes)==0) BUG(); if (test_bit(STRIPE_HANDLE, &sh->state)) { if (test_bit(STRIPE_DELAYED, &sh->state)) list_add_tail(&sh->lru, &conf->delayed_list); else list_add_tail(&sh->lru, &conf->handle_list); md_wakeup_thread(conf->mddev->thread); } else { if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { atomic_dec(&conf->preread_active_stripes); if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) md_wakeup_thread(conf->mddev->thread); } list_add_tail(&sh->lru, &conf->inactive_list); atomic_dec(&conf->active_stripes); if (!conf->inactive_blocked || atomic_read(&conf->active_stripes) < (NR_STRIPES*3/4)) wake_up(&conf->wait_for_stripe); } } } static void release_stripe(struct stripe_head *sh) { raid6_conf_t *conf = sh->raid_conf; unsigned long flags; spin_lock_irqsave(&conf->device_lock, flags); __release_stripe(conf, sh); spin_unlock_irqrestore(&conf->device_lock, flags); } static void remove_hash(struct stripe_head *sh) { PRINTK("remove_hash(), stripe %llu\n", (unsigned long long)sh->sector); if (sh->hash_pprev) { if (sh->hash_next) sh->hash_next->hash_pprev = sh->hash_pprev; *sh->hash_pprev = sh->hash_next; sh->hash_pprev = NULL; } } static __inline__ void insert_hash(raid6_conf_t *conf, struct stripe_head *sh) { struct stripe_head **shp = &stripe_hash(conf, sh->sector); PRINTK("insert_hash(), stripe %llu\n", (unsigned long long)sh->sector); CHECK_DEVLOCK(); if ((sh->hash_next = *shp) != NULL) (*shp)->hash_pprev = &sh->hash_next; *shp = sh; sh->hash_pprev = shp; } /* find an idle stripe, make sure it is unhashed, and return it. */ static struct stripe_head *get_free_stripe(raid6_conf_t *conf) { struct stripe_head *sh = NULL; struct list_head *first; CHECK_DEVLOCK(); if (list_empty(&conf->inactive_list)) goto out; first = conf->inactive_list.next; sh = list_entry(first, struct stripe_head, lru); list_del_init(first); remove_hash(sh); atomic_inc(&conf->active_stripes); out: return sh; } static void shrink_buffers(struct stripe_head *sh, int num) { struct page *p; int i; for (i=0; i<num ; i++) { p = sh->dev[i].page; if (!p) continue; sh->dev[i].page = NULL; page_cache_release(p); } } static int grow_buffers(struct stripe_head *sh, int num) { int i; for (i=0; i<num; i++) { struct page *page; if (!(page = alloc_page(GFP_KERNEL))) { return 1; } sh->dev[i].page = page; } return 0; } static void raid6_build_block (struct stripe_head *sh, int i); static inline void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx) { raid6_conf_t *conf = sh->raid_conf; int disks = conf->raid_disks, i; if (atomic_read(&sh->count) != 0) BUG(); if (test_bit(STRIPE_HANDLE, &sh->state)) BUG(); CHECK_DEVLOCK(); PRINTK("init_stripe called, stripe %llu\n", (unsigned long long)sh->sector); remove_hash(sh); sh->sector = sector; sh->pd_idx = pd_idx; sh->state = 0; for (i=disks; i--; ) { struct r5dev *dev = &sh->dev[i]; if (dev->toread || dev->towrite || dev->written || test_bit(R5_LOCKED, &dev->flags)) { PRINTK("sector=%llx i=%d %p %p %p %d\n", (unsigned long long)sh->sector, i, dev->toread, dev->towrite, dev->written, test_bit(R5_LOCKED, &dev->flags)); BUG(); } dev->flags = 0; raid6_build_block(sh, i); } insert_hash(conf, sh); } static struct stripe_head *__find_stripe(raid6_conf_t *conf, sector_t sector) { struct stripe_head *sh; CHECK_DEVLOCK(); PRINTK("__find_stripe, sector %llu\n", (unsigned long long)sector); for (sh = stripe_hash(conf, sector); sh; sh = sh->hash_next) if (sh->sector == sector) return sh; PRINTK("__stripe %llu not in cache\n", (unsigned long long)sector); return NULL; } static void unplug_slaves(mddev_t *mddev); static struct stripe_head *get_active_stripe(raid6_conf_t *conf, sector_t sector, int pd_idx, int noblock) { struct stripe_head *sh; PRINTK("get_stripe, sector %llu\n", (unsigned long long)sector); spin_lock_irq(&conf->device_lock); do { sh = __find_stripe(conf, sector); if (!sh) { if (!conf->inactive_blocked) sh = get_free_stripe(conf); if (noblock && sh == NULL) break; if (!sh) { conf->inactive_blocked = 1; wait_event_lock_irq(conf->wait_for_stripe, !list_empty(&conf->inactive_list) && (atomic_read(&conf->active_stripes) < (NR_STRIPES *3/4) || !conf->inactive_blocked), conf->device_lock, unplug_slaves(conf->mddev); ); conf->inactive_blocked = 0; } else init_stripe(sh, sector, pd_idx); } else { if (atomic_read(&sh->count)) { if (!list_empty(&sh->lru)) BUG(); } else { if (!test_bit(STRIPE_HANDLE, &sh->state)) atomic_inc(&conf->active_stripes); if (list_empty(&sh->lru)) BUG(); list_del_init(&sh->lru); } } } while (sh == NULL); if (sh) atomic_inc(&sh->count); spin_unlock_irq(&conf->device_lock); return sh; } static int grow_stripes(raid6_conf_t *conf, int num) { struct stripe_head *sh; kmem_cache_t *sc; int devs = conf->raid_disks; sprintf(conf->cache_name, "raid6/%s", mdname(conf->mddev)); sc = kmem_cache_create(conf->cache_name, sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 0, 0, NULL, NULL); if (!sc) return 1; conf->slab_cache = sc; while (num--) { sh = kmem_cache_alloc(sc, GFP_KERNEL); if (!sh) return 1; memset(sh, 0, sizeof(*sh) + (devs-1)*sizeof(struct r5dev)); sh->raid_conf = conf; spin_lock_init(&sh->lock); if (grow_buffers(sh, conf->raid_disks)) { shrink_buffers(sh, conf->raid_disks); kmem_cache_free(sc, sh); return 1; } /* we just created an active stripe so... */ atomic_set(&sh->count, 1); atomic_inc(&conf->active_stripes); INIT_LIST_HEAD(&sh->lru); release_stripe(sh); } return 0; } static void shrink_stripes(raid6_conf_t *conf) { struct stripe_head *sh; while (1) { spin_lock_irq(&conf->device_lock); sh = get_free_stripe(conf); spin_unlock_irq(&conf->device_lock); if (!sh) break; if (atomic_read(&sh->count)) BUG(); shrink_buffers(sh, conf->raid_disks); kmem_cache_free(conf->slab_cache, sh); atomic_dec(&conf->active_stripes); } kmem_cache_destroy(conf->slab_cache); conf->slab_cache = NULL; } static int raid6_end_read_request (struct bio * bi, unsigned int bytes_done, int error) { struct stripe_head *sh = bi->bi_private; raid6_conf_t *conf = sh->raid_conf; int disks = conf->raid_disks, i; int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); if (bi->bi_size) return 1; for (i=0 ; i<disks; i++) if (bi == &sh->dev[i].req) break; PRINTK("end_read_request %llu/%d, count: %d, uptodate %d.\n", (unsigned long long)sh->sector, i, atomic_read(&sh->count), uptodate); if (i == disks) { BUG(); return 0; } if (uptodate) { #if 0 struct bio *bio; unsigned long flags; spin_lock_irqsave(&conf->device_lock, flags); /* we can return a buffer if we bypassed the cache or * if the top buffer is not in highmem. If there are * multiple buffers, leave the extra work to * handle_stripe */ buffer = sh->bh_read[i]; if (buffer && (!PageHighMem(buffer->b_page) || buffer->b_page == bh->b_page ) ) { sh->bh_read[i] = buffer->b_reqnext; buffer->b_reqnext = NULL; } else buffer = NULL; spin_unlock_irqrestore(&conf->device_lock, flags); if (sh->bh_page[i]==bh->b_page) set_buffer_uptodate(bh); if (buffer) { if (buffer->b_page != bh->b_page) memcpy(buffer->b_data, bh->b_data, bh->b_size); buffer->b_end_io(buffer, 1); } #else set_bit(R5_UPTODATE, &sh->dev[i].flags); #endif } else { md_error(conf->mddev, conf->disks[i].rdev); clear_bit(R5_UPTODATE, &sh->dev[i].flags); } rdev_dec_pending(conf->disks[i].rdev, conf->mddev); #if 0 /* must restore b_page before unlocking buffer... */ if (sh->bh_page[i] != bh->b_page) { bh->b_page = sh->bh_page[i]; bh->b_data = page_address(bh->b_page); clear_buffer_uptodate(bh); } #endif clear_bit(R5_LOCKED, &sh->dev[i].flags); set_bit(STRIPE_HANDLE, &sh->state); release_stripe(sh); return 0; } static int raid6_end_write_request (struct bio *bi, unsigned int bytes_done, int error) { struct stripe_head *sh = bi->bi_private; raid6_conf_t *conf = sh->raid_conf; int disks = conf->raid_disks, i; unsigned long flags; int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); if (bi->bi_size) return 1; for (i=0 ; i<disks; i++) if (bi == &sh->dev[i].req) break; PRINTK("end_write_request %llu/%d, count %d, uptodate: %d.\n", (unsigned long long)sh->sector, i, atomic_read(&sh->count), uptodate); if (i == disks) { BUG(); return 0; } spin_lock_irqsave(&conf->device_lock, flags); if (!uptodate) md_error(conf->mddev, conf->disks[i].rdev); rdev_dec_pending(conf->disks[i].rdev, conf->mddev); clear_bit(R5_LOCKED, &sh->dev[i].flags); set_bit(STRIPE_HANDLE, &sh->state); __release_stripe(conf, sh); spin_unlock_irqrestore(&conf->device_lock, flags); return 0; } static sector_t compute_blocknr(struct stripe_head *sh, int i); static void raid6_build_block (struct stripe_head *sh, int i) { struct r5dev *dev = &sh->dev[i]; int pd_idx = sh->pd_idx; int qd_idx = raid6_next_disk(pd_idx, sh->raid_conf->raid_disks); bio_init(&dev->req); dev->req.bi_io_vec = &dev->vec; dev->req.bi_vcnt++; dev->req.bi_max_vecs++; dev->vec.bv_page = dev->page; dev->vec.bv_len = STRIPE_SIZE; dev->vec.bv_offset = 0; dev->req.bi_sector = sh->sector; dev->req.bi_private = sh; dev->flags = 0; if (i != pd_idx && i != qd_idx) dev->sector = compute_blocknr(sh, i); } static void error(mddev_t *mddev, mdk_rdev_t *rdev) { char b[BDEVNAME_SIZE]; raid6_conf_t *conf = (raid6_conf_t *) mddev->private; PRINTK("raid6: error called\n"); if (!rdev->faulty) { mddev->sb_dirty = 1; if (rdev->in_sync) { conf->working_disks--; mddev->degraded++; conf->failed_disks++; rdev->in_sync = 0; /* * if recovery was running, make sure it aborts. */ set_bit(MD_RECOVERY_ERR, &mddev->recovery); } rdev->faulty = 1; printk (KERN_ALERT "raid6: Disk failure on %s, disabling device." " Operation continuing on %d devices\n", bdevname(rdev->bdev,b), conf->working_disks); } } /* * Input: a 'big' sector number, * Output: index of the data and parity disk, and the sector # in them. */ static sector_t raid6_compute_sector(sector_t r_sector, unsigned int raid_disks, unsigned int data_disks, unsigned int * dd_idx, unsigned int * pd_idx, raid6_conf_t *conf) { long stripe; unsigned long chunk_number; unsigned int chunk_offset; sector_t new_sector; int sectors_per_chunk = conf->chunk_size >> 9; /* First compute the information on this sector */ /* * Compute the chunk number and the sector offset inside the chunk */ chunk_offset = sector_div(r_sector, sectors_per_chunk); chunk_number = r_sector; if ( r_sector != chunk_number ) { printk(KERN_CRIT "raid6: ERROR: r_sector = %llu, chunk_number = %lu\n", (unsigned long long)r_sector, (unsigned long)chunk_number); BUG(); } /* * Compute the stripe number */ stripe = chunk_number / data_disks; /* * Compute the data disk and parity disk indexes inside the stripe */ *dd_idx = chunk_number % data_disks; /* * Select the parity disk based on the user selected algorithm. */ /**** FIX THIS ****/ switch (conf->algorithm) { case ALGORITHM_LEFT_ASYMMETRIC: *pd_idx = raid_disks - 1 - (stripe % raid_disks); if (*pd_idx == raid_disks-1) (*dd_idx)++; /* Q D D D P */ else if (*dd_idx >= *pd_idx) (*dd_idx) += 2; /* D D P Q D */ break; case ALGORITHM_RIGHT_ASYMMETRIC: *pd_idx = stripe % raid_disks; if (*pd_idx == raid_disks-1) (*dd_idx)++; /* Q D D D P */ else if (*dd_idx >= *pd_idx) (*dd_idx) += 2; /* D D P Q D */ break; case ALGORITHM_LEFT_SYMMETRIC: *pd_idx = raid_disks - 1 - (stripe % raid_disks); *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks; break; case ALGORITHM_RIGHT_SYMMETRIC: *pd_idx = stripe % raid_disks; *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks; break; default: printk (KERN_CRIT "raid6: unsupported algorithm %d\n", conf->algorithm); } PRINTK("raid6: chunk_number = %lu, pd_idx = %u, dd_idx = %u\n", chunk_number, *pd_idx, *dd_idx); /* * Finally, compute the new sector number */ new_sector = (sector_t) stripe * sectors_per_chunk + chunk_offset; return new_sector; } static sector_t compute_blocknr(struct stripe_head *sh, int i) { raid6_conf_t *conf = sh->raid_conf; int raid_disks = conf->raid_disks, data_disks = raid_disks - 2; sector_t new_sector = sh->sector, check; int sectors_per_chunk = conf->chunk_size >> 9; sector_t stripe; int chunk_offset; int chunk_number, dummy1, dummy2, dd_idx = i; sector_t r_sector; int i0 = i; chunk_offset = sector_div(new_sector, sectors_per_chunk); stripe = new_sector; if ( new_sector != stripe ) { printk(KERN_CRIT "raid6: ERROR: new_sector = %llu, stripe = %lu\n", (unsigned long long)new_sector, (unsigned long)stripe); BUG(); } switch (conf->algorithm) { case ALGORITHM_LEFT_ASYMMETRIC: case ALGORITHM_RIGHT_ASYMMETRIC: if (sh->pd_idx == raid_disks-1) i--; /* Q D D D P */ else if (i > sh->pd_idx) i -= 2; /* D D P Q D */ break; case ALGORITHM_LEFT_SYMMETRIC: case ALGORITHM_RIGHT_SYMMETRIC: if (sh->pd_idx == raid_disks-1) i--; /* Q D D D P */ else { /* D D P Q D */ if (i < sh->pd_idx) i += raid_disks; i -= (sh->pd_idx + 2); } break; default: printk (KERN_CRIT "raid6: unsupported algorithm %d\n", conf->algorithm); } PRINTK("raid6: compute_blocknr: pd_idx = %u, i0 = %u, i = %u\n", sh->pd_idx, i0, i); chunk_number = stripe * data_disks + i; r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset; check = raid6_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf); if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) { printk(KERN_CRIT "raid6: compute_blocknr: map not correct\n"); return 0; } return r_sector; } /* * Copy data between a page in the stripe cache, and one or more bion * The page could align with the middle of the bio, or there could be * several bion, each with several bio_vecs, which cover part of the page * Multiple bion are linked together on bi_next. There may be extras * at the end of this list. We ignore them. */ static void copy_data(int frombio, struct bio *bio, struct page *page, sector_t sector) { char *pa = page_address(page); struct bio_vec *bvl; int i; int page_offset; if (bio->bi_sector >= sector) page_offset = (signed)(bio->bi_sector - sector) * 512; else page_offset = (signed)(sector - bio->bi_sector) * -512; bio_for_each_segment(bvl, bio, i) { int len = bio_iovec_idx(bio,i)->bv_len; int clen; int b_offset = 0; if (page_offset < 0) { b_offset = -page_offset; page_offset += b_offset; len -= b_offset; } if (len > 0 && page_offset + len > STRIPE_SIZE) clen = STRIPE_SIZE - page_offset; else clen = len; if (clen > 0) { char *ba = __bio_kmap_atomic(bio, i, KM_USER0); if (frombio) memcpy(pa+page_offset, ba+b_offset, clen); else memcpy(ba+b_offset, pa+page_offset, clen); __bio_kunmap_atomic(ba, KM_USER0); } if (clen < len) /* hit end of page */ break; page_offset += len; } } #define check_xor() do { \ if (count == MAX_XOR_BLOCKS) { \ xor_block(count, STRIPE_SIZE, ptr); \ count = 1; \ } \ } while(0) /* Compute P and Q syndromes */ static void compute_parity(struct stripe_head *sh, int method) { raid6_conf_t *conf = sh->raid_conf; int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = conf->raid_disks, count; struct bio *chosen; /**** FIX THIS: This could be very bad if disks is close to 256 ****/ void *ptrs[disks]; qd_idx = raid6_next_disk(pd_idx, disks); d0_idx = raid6_next_disk(qd_idx, disks); PRINTK("compute_parity, stripe %llu, method %d\n", (unsigned long long)sh->sector, method); switch(method) { case READ_MODIFY_WRITE: BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */ case RECONSTRUCT_WRITE: for (i= disks; i-- ;) if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) { chosen = sh->dev[i].towrite; sh->dev[i].towrite = NULL; if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) wake_up(&conf->wait_for_overlap); if (sh->dev[i].written) BUG(); sh->dev[i].written = chosen; } break; case CHECK_PARITY: BUG(); /* Not implemented yet */ } for (i = disks; i--;) if (sh->dev[i].written) { sector_t sector = sh->dev[i].sector; struct bio *wbi = sh->dev[i].written; while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) { copy_data(1, wbi, sh->dev[i].page, sector); wbi = r5_next_bio(wbi, sector); } set_bit(R5_LOCKED, &sh->dev[i].flags); set_bit(R5_UPTODATE, &sh->dev[i].flags); } // switch(method) { // case RECONSTRUCT_WRITE: // case CHECK_PARITY: // case UPDATE_PARITY: /* Note that unlike RAID-5, the ordering of the disks matters greatly. */ /* FIX: Is this ordering of drives even remotely optimal? */ count = 0; i = d0_idx; do { ptrs[count++] = page_address(sh->dev[i].page); if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags)) printk("block %d/%d not uptodate on parity calc\n", i,count); i = raid6_next_disk(i, disks); } while ( i != d0_idx ); // break; // } raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs); switch(method) { case RECONSTRUCT_WRITE: set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags); set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); set_bit(R5_LOCKED, &sh->dev[qd_idx].flags); break; case UPDATE_PARITY: set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags); break; } } /* Compute one missing block */ static void compute_block_1(struct stripe_head *sh, int dd_idx) { raid6_conf_t *conf = sh->raid_conf; int i, count, disks = conf->raid_disks; void *ptr[MAX_XOR_BLOCKS], *p; int pd_idx = sh->pd_idx; int qd_idx = raid6_next_disk(pd_idx, disks); PRINTK("compute_block_1, stripe %llu, idx %d\n", (unsigned long long)sh->sector, dd_idx); if ( dd_idx == qd_idx ) { /* We're actually computing the Q drive */ compute_parity(sh, UPDATE_PARITY); } else { ptr[0] = page_address(sh->dev[dd_idx].page); memset(ptr[0], 0, STRIPE_SIZE); count = 1; for (i = disks ; i--; ) { if (i == dd_idx || i == qd_idx) continue; p = page_address(sh->dev[i].page); if (test_bit(R5_UPTODATE, &sh->dev[i].flags)) ptr[count++] = p; else printk("compute_block() %d, stripe %llu, %d" " not present\n", dd_idx, (unsigned long long)sh->sector, i); check_xor(); } if (count != 1) xor_block(count, STRIPE_SIZE, ptr); set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags); } } /* Compute two missing blocks */ static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2) { raid6_conf_t *conf = sh->raid_conf; int i, count, disks = conf->raid_disks; int pd_idx = sh->pd_idx; int qd_idx = raid6_next_disk(pd_idx, disks); int d0_idx = raid6_next_disk(qd_idx, disks); int faila, failb; /* faila and failb are disk numbers relative to d0_idx */ /* pd_idx become disks-2 and qd_idx become disks-1 */ faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx; failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx; BUG_ON(faila == failb); if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; } PRINTK("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n", (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb); if ( failb == disks-1 ) { /* Q disk is one of the missing disks */ if ( faila == disks-2 ) { /* Missing P+Q, just recompute */ compute_parity(sh, UPDATE_PARITY); return; } else { /* We're missing D+Q; recompute D from P */ compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1); compute_parity(sh, UPDATE_PARITY); /* Is this necessary? */ return; } } /* We're missing D+P or D+D; build pointer table */ { /**** FIX THIS: This could be very bad if disks is close to 256 ****/ void *ptrs[disks]; count = 0; i = d0_idx; do { ptrs[count++] = page_address(sh->dev[i].page); i = raid6_next_disk(i, disks); if (i != dd_idx1 && i != dd_idx2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags)) printk("compute_2 with missing block %d/%d\n", count, i); } while ( i != d0_idx ); if ( failb == disks-2 ) { /* We're missing D+P. */ raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs); } else { /* We're missing D+D. */ raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs); } /* Both the above update both missing blocks */ set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags); set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags); } } /* * Each stripe/dev can have one or more bion attached. * toread/towrite point to the first in a chain. * The bi_next chain must be in order. */ static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite) { struct bio **bip; raid6_conf_t *conf = sh->raid_conf; PRINTK("adding bh b#%llu to stripe s#%llu\n", (unsigned long long)bi->bi_sector, (unsigned long long)sh->sector); spin_lock(&sh->lock); spin_lock_irq(&conf->device_lock); if (forwrite) bip = &sh->dev[dd_idx].towrite; else bip = &sh->dev[dd_idx].toread; while (*bip && (*bip)->bi_sector < bi->bi_sector) { if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector) goto overlap; bip = &(*bip)->bi_next; } if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9)) goto overlap; if (*bip && bi->bi_next && (*bip) != bi->bi_next) BUG(); if (*bip) bi->bi_next = *bip; *bip = bi; bi->bi_phys_segments ++; spin_unlock_irq(&conf->device_lock); spin_unlock(&sh->lock); PRINTK("added bi b#%llu to stripe s#%llu, disk %d.\n", (unsigned long long)bi->bi_sector, (unsigned long long)sh->sector, dd_idx); if (forwrite) { /* check if page is covered */ sector_t sector = sh->dev[dd_idx].sector; for (bi=sh->dev[dd_idx].towrite; sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && bi && bi->bi_sector <= sector; bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { if (bi->bi_sector + (bi->bi_size>>9) >= sector) sector = bi->bi_sector + (bi->bi_size>>9); } if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags); } return 1; overlap: set_bit(R5_Overlap, &sh->dev[dd_idx].flags); spin_unlock_irq(&conf->device_lock); spin_unlock(&sh->lock); return 0; } /* * handle_stripe - do things to a stripe. * * We lock the stripe and then examine the state of various bits * to see what needs to be done. * Possible results: * return some read request which now have data * return some write requests which are safely on disc * schedule a read on some buffers * schedule a write of some buffers * return confirmation of parity correctness * * Parity calculations are done inside the stripe lock * buffers are taken off read_list or write_list, and bh_cache buffers * get BH_Lock set before the stripe lock is released. * */ static void handle_stripe(struct stripe_head *sh) { raid6_conf_t *conf = sh->raid_conf; int disks = conf->raid_disks; struct bio *return_bi= NULL; struct bio *bi; int i; int syncing; int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0; int non_overwrite = 0; int failed_num[2] = {0, 0}; struct r5dev *dev, *pdev, *qdev; int pd_idx = sh->pd_idx; int qd_idx = raid6_next_disk(pd_idx, disks); int p_failed, q_failed; PRINTK("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d, qd_idx=%d\n", (unsigned long long)sh->sector, sh->state, atomic_read(&sh->count), pd_idx, qd_idx); spin_lock(&sh->lock); clear_bit(STRIPE_HANDLE, &sh->state); clear_bit(STRIPE_DELAYED, &sh->state); syncing = test_bit(STRIPE_SYNCING, &sh->state); /* Now to look around and see what can be done */ for (i=disks; i--; ) { mdk_rdev_t *rdev; dev = &sh->dev[i]; clear_bit(R5_Insync, &dev->flags); clear_bit(R5_Syncio, &dev->flags); PRINTK("check %d: state 0x%lx read %p write %p written %p\n", i, dev->flags, dev->toread, dev->towrite, dev->written); /* maybe we can reply to a read */ if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) { struct bio *rbi, *rbi2; PRINTK("Return read for disc %d\n", i); spin_lock_irq(&conf->device_lock); rbi = dev->toread; dev->toread = NULL; if (test_and_clear_bit(R5_Overlap, &dev->flags)) wake_up(&conf->wait_for_overlap); spin_unlock_irq(&conf->device_lock); while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) { copy_data(0, rbi, dev->page, dev->sector); rbi2 = r5_next_bio(rbi, dev->sector); spin_lock_irq(&conf->device_lock); if (--rbi->bi_phys_segments == 0) { rbi->bi_next = return_bi; return_bi = rbi; } spin_unlock_irq(&conf->device_lock); rbi = rbi2; } } /* now count some things */ if (test_bit(R5_LOCKED, &dev->flags)) locked++; if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++; if (dev->toread) to_read++; if (dev->towrite) { to_write++; if (!test_bit(R5_OVERWRITE, &dev->flags)) non_overwrite++; } if (dev->written) written++; rdev = conf->disks[i].rdev; /* FIXME, should I be looking rdev */ if (!rdev || !rdev->in_sync) { if ( failed < 2 ) failed_num[failed] = i; failed++; } else set_bit(R5_Insync, &dev->flags); } PRINTK("locked=%d uptodate=%d to_read=%d" " to_write=%d failed=%d failed_num=%d,%d\n", locked, uptodate, to_read, to_write, failed, failed_num[0], failed_num[1]); /* check if the array has lost >2 devices and, if so, some requests might * need to be failed */ if (failed > 2 && to_read+to_write+written) { spin_lock_irq(&conf->device_lock); for (i=disks; i--; ) { /* fail all writes first */ bi = sh->dev[i].towrite; sh->dev[i].towrite = NULL; if (bi) to_write--; if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) wake_up(&conf->wait_for_overlap); while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){ struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); clear_bit(BIO_UPTODATE, &bi->bi_flags); if (--bi->bi_phys_segments == 0) { md_write_end(conf->mddev); bi->bi_next = return_bi; return_bi = bi; } bi = nextbi; } /* and fail all 'written' */ bi = sh->dev[i].written; sh->dev[i].written = NULL; while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) { struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); clear_bit(BIO_UPTODATE, &bi->bi_flags); if (--bi->bi_phys_segments == 0) { md_write_end(conf->mddev); bi->bi_next = return_bi; return_bi = bi; } bi = bi2; } /* fail any reads if this device is non-operational */ if (!test_bit(R5_Insync, &sh->dev[i].flags)) { bi = sh->dev[i].toread; sh->dev[i].toread = NULL; if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) wake_up(&conf->wait_for_overlap); if (bi) to_read--; while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){ struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); clear_bit(BIO_UPTODATE, &bi->bi_flags); if (--bi->bi_phys_segments == 0) { bi->bi_next = return_bi; return_bi = bi; } bi = nextbi; } } } spin_unlock_irq(&conf->device_lock); } if (failed > 2 && syncing) { md_done_sync(conf->mddev, STRIPE_SECTORS,0); clear_bit(STRIPE_SYNCING, &sh->state); syncing = 0; } /* * might be able to return some write requests if the parity blocks * are safe, or on a failed drive */ pdev = &sh->dev[pd_idx]; p_failed = (failed >= 1 && failed_num[0] == pd_idx) || (failed >= 2 && failed_num[1] == pd_idx); qdev = &sh->dev[qd_idx]; q_failed = (failed >= 1 && failed_num[0] == qd_idx) || (failed >= 2 && failed_num[1] == qd_idx); if ( written && ( p_failed || ((test_bit(R5_Insync, &pdev->flags) && !test_bit(R5_LOCKED, &pdev->flags) && test_bit(R5_UPTODATE, &pdev->flags))) ) && ( q_failed || ((test_bit(R5_Insync, &qdev->flags) && !test_bit(R5_LOCKED, &qdev->flags) && test_bit(R5_UPTODATE, &qdev->flags))) ) ) { /* any written block on an uptodate or failed drive can be * returned. Note that if we 'wrote' to a failed drive, * it will be UPTODATE, but never LOCKED, so we don't need * to test 'failed' directly. */ for (i=disks; i--; ) if (sh->dev[i].written) { dev = &sh->dev[i]; if (!test_bit(R5_LOCKED, &dev->flags) && test_bit(R5_UPTODATE, &dev->flags) ) { /* We can return any write requests */ struct bio *wbi, *wbi2; PRINTK("Return write for stripe %llu disc %d\n", (unsigned long long)sh->sector, i); spin_lock_irq(&conf->device_lock); wbi = dev->written; dev->written = NULL; while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) { wbi2 = r5_next_bio(wbi, dev->sector); if (--wbi->bi_phys_segments == 0) { md_write_end(conf->mddev); wbi->bi_next = return_bi; return_bi = wbi; } wbi = wbi2; } spin_unlock_irq(&conf->device_lock); } } } /* Now we might consider reading some blocks, either to check/generate * parity, or to satisfy requests * or to load a block that is being partially written. */ if (to_read || non_overwrite || (to_write && failed) || (syncing && (uptodate < disks))) { for (i=disks; i--;) { dev = &sh->dev[i]; if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread || (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) || syncing || (failed >= 1 && (sh->dev[failed_num[0]].toread || to_write)) || (failed >= 2 && (sh->dev[failed_num[1]].toread || to_write)) ) ) { /* we would like to get this block, possibly * by computing it, but we might not be able to */ if (uptodate == disks-1) { PRINTK("Computing stripe %llu block %d\n", (unsigned long long)sh->sector, i); compute_block_1(sh, i); uptodate++; } else if ( uptodate == disks-2 && failed >= 2 ) { /* Computing 2-failure is *very* expensive; only do it if failed >= 2 */ int other; for (other=disks; other--;) { if ( other == i ) continue; if ( !test_bit(R5_UPTODATE, &sh->dev[other].flags) ) break; } BUG_ON(other < 0); PRINTK("Computing stripe %llu blocks %d,%d\n", (unsigned long long)sh->sector, i, other); compute_block_2(sh, i, other); uptodate += 2; } else if (test_bit(R5_Insync, &dev->flags)) { set_bit(R5_LOCKED, &dev->flags); set_bit(R5_Wantread, &dev->flags); #if 0 /* if I am just reading this block and we don't have a failed drive, or any pending writes then sidestep the cache */ if (sh->bh_read[i] && !sh->bh_read[i]->b_reqnext && ! syncing && !failed && !to_write) { sh->bh_cache[i]->b_page = sh->bh_read[i]->b_page; sh->bh_cache[i]->b_data = sh->bh_read[i]->b_data; } #endif locked++; PRINTK("Reading block %d (sync=%d)\n", i, syncing); if (syncing) md_sync_acct(conf->disks[i].rdev->bdev, STRIPE_SECTORS); } } } set_bit(STRIPE_HANDLE, &sh->state); } /* now to consider writing and what else, if anything should be read */ if (to_write) { int rcw=0, must_compute=0; for (i=disks ; i--;) { dev = &sh->dev[i]; /* Would I have to read this buffer for reconstruct_write */ if (!test_bit(R5_OVERWRITE, &dev->flags) && i != pd_idx && i != qd_idx && (!test_bit(R5_LOCKED, &dev->flags) #if 0 || sh->bh_page[i] != bh->b_page #endif ) && !test_bit(R5_UPTODATE, &dev->flags)) { if (test_bit(R5_Insync, &dev->flags)) rcw++; else { PRINTK("raid6: must_compute: disk %d flags=%#lx\n", i, dev->flags); must_compute++; } } } PRINTK("for sector %llu, rcw=%d, must_compute=%d\n", (unsigned long long)sh->sector, rcw, must_compute); set_bit(STRIPE_HANDLE, &sh->state); if (rcw > 0) /* want reconstruct write, but need to get some data */ for (i=disks; i--;) { dev = &sh->dev[i]; if (!test_bit(R5_OVERWRITE, &dev->flags) && !(failed == 0 && (i == pd_idx || i == qd_idx)) && !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) && test_bit(R5_Insync, &dev->flags)) { if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { PRINTK("Read_old stripe %llu block %d for Reconstruct\n", (unsigned long long)sh->sector, i); set_bit(R5_LOCKED, &dev->flags); set_bit(R5_Wantread, &dev->flags); locked++; } else { PRINTK("Request delayed stripe %llu block %d for Reconstruct\n", (unsigned long long)sh->sector, i); set_bit(STRIPE_DELAYED, &sh->state); set_bit(STRIPE_HANDLE, &sh->state); } } } /* now if nothing is locked, and if we have enough data, we can start a write request */ if (locked == 0 && rcw == 0) { if ( must_compute > 0 ) { /* We have failed blocks and need to compute them */ switch ( failed ) { case 0: BUG(); case 1: compute_block_1(sh, failed_num[0]); break; case 2: compute_block_2(sh, failed_num[0], failed_num[1]); break; default: BUG(); /* This request should have been failed? */ } } PRINTK("Computing parity for stripe %llu\n", (unsigned long long)sh->sector); compute_parity(sh, RECONSTRUCT_WRITE); /* now every locked buffer is ready to be written */ for (i=disks; i--;) if (test_bit(R5_LOCKED, &sh->dev[i].flags)) { PRINTK("Writing stripe %llu block %d\n", (unsigned long long)sh->sector, i); locked++; set_bit(R5_Wantwrite, &sh->dev[i].flags); #if 0 /**** FIX: I don't understand the logic here... ****/ if (!test_bit(R5_Insync, &sh->dev[i].flags) || ((i==pd_idx || i==qd_idx) && failed == 0)) /* FIX? */ set_bit(STRIPE_INSYNC, &sh->state); #endif } if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { atomic_dec(&conf->preread_active_stripes); if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) md_wakeup_thread(conf->mddev->thread); } } } /* maybe we need to check and possibly fix the parity for this stripe * Any reads will already have been scheduled, so we just see if enough data * is available */ if (syncing && locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state) && failed <= 2) { set_bit(STRIPE_HANDLE, &sh->state); #if 0 /* RAID-6: Don't support CHECK PARITY yet */ if (failed == 0) { char *pagea; if (uptodate != disks) BUG(); compute_parity(sh, CHECK_PARITY); uptodate--; pagea = page_address(sh->dev[pd_idx].page); if ((*(u32*)pagea) == 0 && !memcmp(pagea, pagea+4, STRIPE_SIZE-4)) { /* parity is correct (on disc, not in buffer any more) */ set_bit(STRIPE_INSYNC, &sh->state); } } #endif if (!test_bit(STRIPE_INSYNC, &sh->state)) { int failed_needupdate[2]; struct r5dev *adev, *bdev; if ( failed < 1 ) failed_num[0] = pd_idx; if ( failed < 2 ) failed_num[1] = (failed_num[0] == qd_idx) ? pd_idx : qd_idx; failed_needupdate[0] = !test_bit(R5_UPTODATE, &sh->dev[failed_num[0]].flags); failed_needupdate[1] = !test_bit(R5_UPTODATE, &sh->dev[failed_num[1]].flags); PRINTK("sync: failed=%d num=%d,%d fnu=%u%u\n", failed, failed_num[0], failed_num[1], failed_needupdate[0], failed_needupdate[1]); #if 0 /* RAID-6: This code seems to require that CHECK_PARITY destroys the uptodateness of the parity */ /* should be able to compute the missing block(s) and write to spare */ if ( failed_needupdate[0] ^ failed_needupdate[1] ) { if (uptodate+1 != disks) BUG(); compute_block_1(sh, failed_needupdate[0] ? failed_num[0] : failed_num[1]); uptodate++; } else if ( failed_needupdate[0] & failed_needupdate[1] ) { if (uptodate+2 != disks) BUG(); compute_block_2(sh, failed_num[0], failed_num[1]); uptodate += 2; } #else compute_block_2(sh, failed_num[0], failed_num[1]); uptodate += failed_needupdate[0] + failed_needupdate[1]; #endif if (uptodate != disks) BUG(); PRINTK("Marking for sync stripe %llu blocks %d,%d\n", (unsigned long long)sh->sector, failed_num[0], failed_num[1]); /**** FIX: Should we really do both of these unconditionally? ****/ adev = &sh->dev[failed_num[0]]; locked += !test_bit(R5_LOCKED, &adev->flags); set_bit(R5_LOCKED, &adev->flags); set_bit(R5_Wantwrite, &adev->flags); bdev = &sh->dev[failed_num[1]]; locked += !test_bit(R5_LOCKED, &bdev->flags); set_bit(R5_LOCKED, &bdev->flags); set_bit(R5_Wantwrite, &bdev->flags); set_bit(STRIPE_INSYNC, &sh->state); set_bit(R5_Syncio, &adev->flags); set_bit(R5_Syncio, &bdev->flags); } } if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) { md_done_sync(conf->mddev, STRIPE_SECTORS,1); clear_bit(STRIPE_SYNCING, &sh->state); } spin_unlock(&sh->lock); while ((bi=return_bi)) { int bytes = bi->bi_size; return_bi = bi->bi_next; bi->bi_next = NULL; bi->bi_size = 0; bi->bi_end_io(bi, bytes, 0); } for (i=disks; i-- ;) { int rw; struct bio *bi; mdk_rdev_t *rdev; if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) rw = 1; else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) rw = 0; else continue; bi = &sh->dev[i].req; bi->bi_rw = rw; if (rw) bi->bi_end_io = raid6_end_write_request; else bi->bi_end_io = raid6_end_read_request; rcu_read_lock(); rdev = conf->disks[i].rdev; if (rdev && rdev->faulty) rdev = NULL; if (rdev) atomic_inc(&rdev->nr_pending); rcu_read_unlock(); if (rdev) { if (test_bit(R5_Syncio, &sh->dev[i].flags)) md_sync_acct(rdev->bdev, STRIPE_SECTORS); bi->bi_bdev = rdev->bdev; PRINTK("for %llu schedule op %ld on disc %d\n", (unsigned long long)sh->sector, bi->bi_rw, i); atomic_inc(&sh->count); bi->bi_sector = sh->sector + rdev->data_offset; bi->bi_flags = 1 << BIO_UPTODATE; bi->bi_vcnt = 1; bi->bi_max_vecs = 1; bi->bi_idx = 0; bi->bi_io_vec = &sh->dev[i].vec; bi->bi_io_vec[0].bv_len = STRIPE_SIZE; bi->bi_io_vec[0].bv_offset = 0; bi->bi_size = STRIPE_SIZE; bi->bi_next = NULL; generic_make_request(bi); } else { PRINTK("skip op %ld on disc %d for sector %llu\n", bi->bi_rw, i, (unsigned long long)sh->sector); clear_bit(R5_LOCKED, &sh->dev[i].flags); set_bit(STRIPE_HANDLE, &sh->state); } } } static inline void raid6_activate_delayed(raid6_conf_t *conf) { if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { while (!list_empty(&conf->delayed_list)) { struct list_head *l = conf->delayed_list.next; struct stripe_head *sh; sh = list_entry(l, struct stripe_head, lru); list_del_init(l); clear_bit(STRIPE_DELAYED, &sh->state); if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) atomic_inc(&conf->preread_active_stripes); list_add_tail(&sh->lru, &conf->handle_list); } } } static void unplug_slaves(mddev_t *mddev) { raid6_conf_t *conf = mddev_to_conf(mddev); int i; rcu_read_lock(); for (i=0; i<mddev->raid_disks; i++) { mdk_rdev_t *rdev = conf->disks[i].rdev; if (rdev && !rdev->faulty && atomic_read(&rdev->nr_pending)) { request_queue_t *r_queue = bdev_get_queue(rdev->bdev); atomic_inc(&rdev->nr_pending); rcu_read_unlock(); if (r_queue->unplug_fn) r_queue->unplug_fn(r_queue); rdev_dec_pending(rdev, mddev); rcu_read_lock(); } } rcu_read_unlock(); } static void raid6_unplug_device(request_queue_t *q) { mddev_t *mddev = q->queuedata; raid6_conf_t *conf = mddev_to_conf(mddev); unsigned long flags; spin_lock_irqsave(&conf->device_lock, flags); if (blk_remove_plug(q)) raid6_activate_delayed(conf); md_wakeup_thread(mddev->thread); spin_unlock_irqrestore(&conf->device_lock, flags); unplug_slaves(mddev); } static int raid6_issue_flush(request_queue_t *q, struct gendisk *disk, sector_t *error_sector) { mddev_t *mddev = q->queuedata; raid6_conf_t *conf = mddev_to_conf(mddev); int i, ret = 0; rcu_read_lock(); for (i=0; i<mddev->raid_disks && ret == 0; i++) { mdk_rdev_t *rdev = conf->disks[i].rdev; if (rdev && !rdev->faulty) { struct block_device *bdev = rdev->bdev; request_queue_t *r_queue = bdev_get_queue(bdev); if (!r_queue->issue_flush_fn) ret = -EOPNOTSUPP; else { atomic_inc(&rdev->nr_pending); rcu_read_unlock(); ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk, error_sector); rdev_dec_pending(rdev, mddev); rcu_read_lock(); } } } rcu_read_unlock(); return ret; } static inline void raid6_plug_device(raid6_conf_t *conf) { spin_lock_irq(&conf->device_lock); blk_plug_device(conf->mddev->queue); spin_unlock_irq(&conf->device_lock); } static int make_request (request_queue_t *q, struct bio * bi) { mddev_t *mddev = q->queuedata; raid6_conf_t *conf = mddev_to_conf(mddev); const unsigned int raid_disks = conf->raid_disks; const unsigned int data_disks = raid_disks - 2; unsigned int dd_idx, pd_idx; sector_t new_sector; sector_t logical_sector, last_sector; struct stripe_head *sh; md_write_start(mddev, bi); if (bio_data_dir(bi)==WRITE) { disk_stat_inc(mddev->gendisk, writes); disk_stat_add(mddev->gendisk, write_sectors, bio_sectors(bi)); } else { disk_stat_inc(mddev->gendisk, reads); disk_stat_add(mddev->gendisk, read_sectors, bio_sectors(bi)); } logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1); last_sector = bi->bi_sector + (bi->bi_size>>9); bi->bi_next = NULL; bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { DEFINE_WAIT(w); new_sector = raid6_compute_sector(logical_sector, raid_disks, data_disks, &dd_idx, &pd_idx, conf); PRINTK("raid6: make_request, sector %llu logical %llu\n", (unsigned long long)new_sector, (unsigned long long)logical_sector); retry: prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); sh = get_active_stripe(conf, new_sector, pd_idx, (bi->bi_rw&RWA_MASK)); if (sh) { if (!add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) { /* Add failed due to overlap. Flush everything * and wait a while */ raid6_unplug_device(mddev->queue); release_stripe(sh); schedule(); goto retry; } finish_wait(&conf->wait_for_overlap, &w); raid6_plug_device(conf); handle_stripe(sh); release_stripe(sh); } else { /* cannot get stripe for read-ahead, just give-up */ clear_bit(BIO_UPTODATE, &bi->bi_flags); finish_wait(&conf->wait_for_overlap, &w); break; } } spin_lock_irq(&conf->device_lock); if (--bi->bi_phys_segments == 0) { int bytes = bi->bi_size; if ( bio_data_dir(bi) == WRITE ) md_write_end(mddev); bi->bi_size = 0; bi->bi_end_io(bi, bytes, 0); } spin_unlock_irq(&conf->device_lock); return 0; } /* FIXME go_faster isn't used */ static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) { raid6_conf_t *conf = (raid6_conf_t *) mddev->private; struct stripe_head *sh; int sectors_per_chunk = conf->chunk_size >> 9; sector_t x; unsigned long stripe; int chunk_offset; int dd_idx, pd_idx; sector_t first_sector; int raid_disks = conf->raid_disks; int data_disks = raid_disks - 2; if (sector_nr >= mddev->size <<1) { /* just being told to finish up .. nothing much to do */ unplug_slaves(mddev); return 0; } /* if there are 2 or more failed drives and we are trying * to resync, then assert that we are finished, because there is * nothing we can do. */ if (mddev->degraded >= 2 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { sector_t rv = (mddev->size << 1) - sector_nr; *skipped = 1; return rv; } x = sector_nr; chunk_offset = sector_div(x, sectors_per_chunk); stripe = x; BUG_ON(x != stripe); first_sector = raid6_compute_sector((sector_t)stripe*data_disks*sectors_per_chunk + chunk_offset, raid_disks, data_disks, &dd_idx, &pd_idx, conf); sh = get_active_stripe(conf, sector_nr, pd_idx, 1); if (sh == NULL) { sh = get_active_stripe(conf, sector_nr, pd_idx, 0); /* make sure we don't swamp the stripe cache if someone else * is trying to get access */ set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(1); } spin_lock(&sh->lock); set_bit(STRIPE_SYNCING, &sh->state); clear_bit(STRIPE_INSYNC, &sh->state); spin_unlock(&sh->lock); handle_stripe(sh); release_stripe(sh); return STRIPE_SECTORS; } /* * This is our raid6 kernel thread. * * We scan the hash table for stripes which can be handled now. * During the scan, completed stripes are saved for us by the interrupt * handler, so that they will not have to wait for our next wakeup. */ static void raid6d (mddev_t *mddev) { struct stripe_head *sh; raid6_conf_t *conf = mddev_to_conf(mddev); int handled; PRINTK("+++ raid6d active\n"); md_check_recovery(mddev); handled = 0; spin_lock_irq(&conf->device_lock); while (1) { struct list_head *first; if (list_empty(&conf->handle_list) && atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD && !blk_queue_plugged(mddev->queue) && !list_empty(&conf->delayed_list)) raid6_activate_delayed(conf); if (list_empty(&conf->handle_list)) break; first = conf->handle_list.next; sh = list_entry(first, struct stripe_head, lru); list_del_init(first); atomic_inc(&sh->count); if (atomic_read(&sh->count)!= 1) BUG(); spin_unlock_irq(&conf->device_lock); handled++; handle_stripe(sh); release_stripe(sh); spin_lock_irq(&conf->device_lock); } PRINTK("%d stripes handled\n", handled); spin_unlock_irq(&conf->device_lock); unplug_slaves(mddev); PRINTK("--- raid6d inactive\n"); } static int run (mddev_t *mddev) { raid6_conf_t *conf; int raid_disk, memory; mdk_rdev_t *rdev; struct disk_info *disk; struct list_head *tmp; if (mddev->level != 6) { PRINTK("raid6: %s: raid level not set to 6 (%d)\n", mdname(mddev), mddev->level); return -EIO; } mddev->private = kmalloc (sizeof (raid6_conf_t) + mddev->raid_disks * sizeof(struct disk_info), GFP_KERNEL); if ((conf = mddev->private) == NULL) goto abort; memset (conf, 0, sizeof (*conf) + mddev->raid_disks * sizeof(struct disk_info) ); conf->mddev = mddev; if ((conf->stripe_hashtbl = (struct stripe_head **) __get_free_pages(GFP_ATOMIC, HASH_PAGES_ORDER)) == NULL) goto abort; memset(conf->stripe_hashtbl, 0, HASH_PAGES * PAGE_SIZE); spin_lock_init(&conf->device_lock); init_waitqueue_head(&conf->wait_for_stripe); init_waitqueue_head(&conf->wait_for_overlap); INIT_LIST_HEAD(&conf->handle_list); INIT_LIST_HEAD(&conf->delayed_list); INIT_LIST_HEAD(&conf->inactive_list); atomic_set(&conf->active_stripes, 0); atomic_set(&conf->preread_active_stripes, 0); PRINTK("raid6: run(%s) called.\n", mdname(mddev)); ITERATE_RDEV(mddev,rdev,tmp) { raid_disk = rdev->raid_disk; if (raid_disk >= mddev->raid_disks || raid_disk < 0) continue; disk = conf->disks + raid_disk; disk->rdev = rdev; if (rdev->in_sync) { char b[BDEVNAME_SIZE]; printk(KERN_INFO "raid6: device %s operational as raid" " disk %d\n", bdevname(rdev->bdev,b), raid_disk); conf->working_disks++; } } conf->raid_disks = mddev->raid_disks; /* * 0 for a fully functional array, 1 or 2 for a degraded array. */ mddev->degraded = conf->failed_disks = conf->raid_disks - conf->working_disks; conf->mddev = mddev; conf->chunk_size = mddev->chunk_size; conf->level = mddev->level; conf->algorithm = mddev->layout; conf->max_nr_stripes = NR_STRIPES; /* device size must be a multiple of chunk size */ mddev->size &= ~(mddev->chunk_size/1024 -1); mddev->resync_max_sectors = mddev->size << 1; if (conf->raid_disks < 4) { printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n", mdname(mddev), conf->raid_disks); goto abort; } if (!conf->chunk_size || conf->chunk_size % 4) { printk(KERN_ERR "raid6: invalid chunk size %d for %s\n", conf->chunk_size, mdname(mddev)); goto abort; } if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) { printk(KERN_ERR "raid6: unsupported parity algorithm %d for %s\n", conf->algorithm, mdname(mddev)); goto abort; } if (mddev->degraded > 2) { printk(KERN_ERR "raid6: not enough operational devices for %s" " (%d/%d failed)\n", mdname(mddev), conf->failed_disks, conf->raid_disks); goto abort; } #if 0 /* FIX: For now */ if (mddev->degraded > 0 && mddev->recovery_cp != MaxSector) { printk(KERN_ERR "raid6: cannot start dirty degraded array for %s\n", mdname(mddev)); goto abort; } #endif { mddev->thread = md_register_thread(raid6d, mddev, "%s_raid6"); if (!mddev->thread) { printk(KERN_ERR "raid6: couldn't allocate thread for %s\n", mdname(mddev)); goto abort; } } memory = conf->max_nr_stripes * (sizeof(struct stripe_head) + conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; if (grow_stripes(conf, conf->max_nr_stripes)) { printk(KERN_ERR "raid6: couldn't allocate %dkB for buffers\n", memory); shrink_stripes(conf); md_unregister_thread(mddev->thread); goto abort; } else printk(KERN_INFO "raid6: allocated %dkB for %s\n", memory, mdname(mddev)); if (mddev->degraded == 0) printk(KERN_INFO "raid6: raid level %d set %s active with %d out of %d" " devices, algorithm %d\n", conf->level, mdname(mddev), mddev->raid_disks-mddev->degraded, mddev->raid_disks, conf->algorithm); else printk(KERN_ALERT "raid6: raid level %d set %s active with %d" " out of %d devices, algorithm %d\n", conf->level, mdname(mddev), mddev->raid_disks - mddev->degraded, mddev->raid_disks, conf->algorithm); print_raid6_conf(conf); /* read-ahead size must cover two whole stripes, which is * 2 * (n-2) * chunksize where 'n' is the number of raid devices */ { int stripe = (mddev->raid_disks-2) * mddev->chunk_size / PAGE_CACHE_SIZE; if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) mddev->queue->backing_dev_info.ra_pages = 2 * stripe; } /* Ok, everything is just fine now */ mddev->array_size = mddev->size * (mddev->raid_disks - 2); mddev->queue->unplug_fn = raid6_unplug_device; mddev->queue->issue_flush_fn = raid6_issue_flush; return 0; abort: if (conf) { print_raid6_conf(conf); if (conf->stripe_hashtbl) free_pages((unsigned long) conf->stripe_hashtbl, HASH_PAGES_ORDER); kfree(conf); } mddev->private = NULL; printk(KERN_ALERT "raid6: failed to run raid set %s\n", mdname(mddev)); return -EIO; } static int stop (mddev_t *mddev) { raid6_conf_t *conf = (raid6_conf_t *) mddev->private; md_unregister_thread(mddev->thread); mddev->thread = NULL; shrink_stripes(conf); free_pages((unsigned long) conf->stripe_hashtbl, HASH_PAGES_ORDER); blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ kfree(conf); mddev->private = NULL; return 0; } #if RAID6_DUMPSTATE static void print_sh (struct seq_file *seq, struct stripe_head *sh) { int i; seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n", (unsigned long long)sh->sector, sh->pd_idx, sh->state); seq_printf(seq, "sh %llu, count %d.\n", (unsigned long long)sh->sector, atomic_read(&sh->count)); seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector); for (i = 0; i < sh->raid_conf->raid_disks; i++) { seq_printf(seq, "(cache%d: %p %ld) ", i, sh->dev[i].page, sh->dev[i].flags); } seq_printf(seq, "\n"); } static void printall (struct seq_file *seq, raid6_conf_t *conf) { struct stripe_head *sh; int i; spin_lock_irq(&conf->device_lock); for (i = 0; i < NR_HASH; i++) { sh = conf->stripe_hashtbl[i]; for (; sh; sh = sh->hash_next) { if (sh->raid_conf != conf) continue; print_sh(seq, sh); } } spin_unlock_irq(&conf->device_lock); } #endif static void status (struct seq_file *seq, mddev_t *mddev) { raid6_conf_t *conf = (raid6_conf_t *) mddev->private; int i; seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout); seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->working_disks); for (i = 0; i < conf->raid_disks; i++) seq_printf (seq, "%s", conf->disks[i].rdev && conf->disks[i].rdev->in_sync ? "U" : "_"); seq_printf (seq, "]"); #if RAID6_DUMPSTATE seq_printf (seq, "\n"); printall(seq, conf); #endif } static void print_raid6_conf (raid6_conf_t *conf) { int i; struct disk_info *tmp; printk("RAID6 conf printout:\n"); if (!conf) { printk("(conf==NULL)\n"); return; } printk(" --- rd:%d wd:%d fd:%d\n", conf->raid_disks, conf->working_disks, conf->failed_disks); for (i = 0; i < conf->raid_disks; i++) { char b[BDEVNAME_SIZE]; tmp = conf->disks + i; if (tmp->rdev) printk(" disk %d, o:%d, dev:%s\n", i, !tmp->rdev->faulty, bdevname(tmp->rdev->bdev,b)); } } static int raid6_spare_active(mddev_t *mddev) { int i; raid6_conf_t *conf = mddev->private; struct disk_info *tmp; for (i = 0; i < conf->raid_disks; i++) { tmp = conf->disks + i; if (tmp->rdev && !tmp->rdev->faulty && !tmp->rdev->in_sync) { mddev->degraded--; conf->failed_disks--; conf->working_disks++; tmp->rdev->in_sync = 1; } } print_raid6_conf(conf); return 0; } static int raid6_remove_disk(mddev_t *mddev, int number) { raid6_conf_t *conf = mddev->private; int err = 0; mdk_rdev_t *rdev; struct disk_info *p = conf->disks + number; print_raid6_conf(conf); rdev = p->rdev; if (rdev) { if (rdev->in_sync || atomic_read(&rdev->nr_pending)) { err = -EBUSY; goto abort; } p->rdev = NULL; synchronize_rcu(); if (atomic_read(&rdev->nr_pending)) { /* lost the race, try later */ err = -EBUSY; p->rdev = rdev; } } abort: print_raid6_conf(conf); return err; } static int raid6_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) { raid6_conf_t *conf = mddev->private; int found = 0; int disk; struct disk_info *p; if (mddev->degraded > 2) /* no point adding a device */ return 0; /* * find the disk ... */ for (disk=0; disk < mddev->raid_disks; disk++) if ((p=conf->disks + disk)->rdev == NULL) { rdev->in_sync = 0; rdev->raid_disk = disk; found = 1; p->rdev = rdev; break; } print_raid6_conf(conf); return found; } static int raid6_resize(mddev_t *mddev, sector_t sectors) { /* no resync is happening, and there is enough space * on all devices, so we can resize. * We need to make sure resync covers any new space. * If the array is shrinking we should possibly wait until * any io in the removed space completes, but it hardly seems * worth it. */ sectors &= ~((sector_t)mddev->chunk_size/512 - 1); mddev->array_size = (sectors * (mddev->raid_disks-2))>>1; set_capacity(mddev->gendisk, mddev->array_size << 1); mddev->changed = 1; if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) { mddev->recovery_cp = mddev->size << 1; set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); } mddev->size = sectors /2; mddev->resync_max_sectors = sectors; return 0; } static mdk_personality_t raid6_personality= { .name = "raid6", .owner = THIS_MODULE, .make_request = make_request, .run = run, .stop = stop, .status = status, .error_handler = error, .hot_add_disk = raid6_add_disk, .hot_remove_disk= raid6_remove_disk, .spare_active = raid6_spare_active, .sync_request = sync_request, .resize = raid6_resize, }; static int __init raid6_init (void) { int e; e = raid6_select_algo(); if ( e ) return e; return register_md_personality (RAID6, &raid6_personality); } static void raid6_exit (void) { unregister_md_personality (RAID6); } module_init(raid6_init); module_exit(raid6_exit); MODULE_LICENSE("GPL"); MODULE_ALIAS("md-personality-8"); /* RAID6 */