/* * Kernel-based Virtual Machine driver for Linux * * This module enables machines with Intel VT-x extensions to run virtual * machines without emulation or binary translation. * * Copyright (C) 2006 Qumranet, Inc. * * Authors: * Avi Kivity * Yaniv Kamay * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * */ #include "kvm.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "x86_emulate.h" #include "segment_descriptor.h" MODULE_AUTHOR("Qumranet"); MODULE_LICENSE("GPL"); struct kvm_arch_ops *kvm_arch_ops; struct kvm_stat kvm_stat; EXPORT_SYMBOL_GPL(kvm_stat); static struct kvm_stats_debugfs_item { const char *name; u32 *data; struct dentry *dentry; } debugfs_entries[] = { { "pf_fixed", &kvm_stat.pf_fixed }, { "pf_guest", &kvm_stat.pf_guest }, { "tlb_flush", &kvm_stat.tlb_flush }, { "invlpg", &kvm_stat.invlpg }, { "exits", &kvm_stat.exits }, { "io_exits", &kvm_stat.io_exits }, { "mmio_exits", &kvm_stat.mmio_exits }, { "signal_exits", &kvm_stat.signal_exits }, { "irq_exits", &kvm_stat.irq_exits }, { 0, 0 } }; static struct dentry *debugfs_dir; #define MAX_IO_MSRS 256 #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL #define LMSW_GUEST_MASK 0x0eULL #define CR4_RESEVED_BITS (~((1ULL << 11) - 1)) #define CR8_RESEVED_BITS (~0x0fULL) #define EFER_RESERVED_BITS 0xfffffffffffff2fe #ifdef CONFIG_X86_64 // LDT or TSS descriptor in the GDT. 16 bytes. struct segment_descriptor_64 { struct segment_descriptor s; u32 base_higher; u32 pad_zero; }; #endif unsigned long segment_base(u16 selector) { struct descriptor_table gdt; struct segment_descriptor *d; unsigned long table_base; typedef unsigned long ul; unsigned long v; if (selector == 0) return 0; asm ("sgdt %0" : "=m"(gdt)); table_base = gdt.base; if (selector & 4) { /* from ldt */ u16 ldt_selector; asm ("sldt %0" : "=g"(ldt_selector)); table_base = segment_base(ldt_selector); } d = (struct segment_descriptor *)(table_base + (selector & ~7)); v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24); #ifdef CONFIG_X86_64 if (d->system == 0 && (d->type == 2 || d->type == 9 || d->type == 11)) v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32; #endif return v; } EXPORT_SYMBOL_GPL(segment_base); int kvm_read_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size, void *dest) { unsigned char *host_buf = dest; unsigned long req_size = size; while (size) { hpa_t paddr; unsigned now; unsigned offset; hva_t guest_buf; paddr = gva_to_hpa(vcpu, addr); if (is_error_hpa(paddr)) break; guest_buf = (hva_t)kmap_atomic( pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0); offset = addr & ~PAGE_MASK; guest_buf |= offset; now = min(size, PAGE_SIZE - offset); memcpy(host_buf, (void*)guest_buf, now); host_buf += now; addr += now; size -= now; kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0); } return req_size - size; } EXPORT_SYMBOL_GPL(kvm_read_guest); int kvm_write_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size, void *data) { unsigned char *host_buf = data; unsigned long req_size = size; while (size) { hpa_t paddr; unsigned now; unsigned offset; hva_t guest_buf; paddr = gva_to_hpa(vcpu, addr); if (is_error_hpa(paddr)) break; guest_buf = (hva_t)kmap_atomic( pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0); offset = addr & ~PAGE_MASK; guest_buf |= offset; now = min(size, PAGE_SIZE - offset); memcpy((void*)guest_buf, host_buf, now); host_buf += now; addr += now; size -= now; kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0); } return req_size - size; } EXPORT_SYMBOL_GPL(kvm_write_guest); static int vcpu_slot(struct kvm_vcpu *vcpu) { return vcpu - vcpu->kvm->vcpus; } /* * Switches to specified vcpu, until a matching vcpu_put() */ static struct kvm_vcpu *vcpu_load(struct kvm *kvm, int vcpu_slot) { struct kvm_vcpu *vcpu = &kvm->vcpus[vcpu_slot]; mutex_lock(&vcpu->mutex); if (unlikely(!vcpu->vmcs)) { mutex_unlock(&vcpu->mutex); return 0; } return kvm_arch_ops->vcpu_load(vcpu); } static void vcpu_put(struct kvm_vcpu *vcpu) { kvm_arch_ops->vcpu_put(vcpu); put_cpu(); mutex_unlock(&vcpu->mutex); } static int kvm_dev_open(struct inode *inode, struct file *filp) { struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL); int i; if (!kvm) return -ENOMEM; spin_lock_init(&kvm->lock); INIT_LIST_HEAD(&kvm->active_mmu_pages); for (i = 0; i < KVM_MAX_VCPUS; ++i) { struct kvm_vcpu *vcpu = &kvm->vcpus[i]; mutex_init(&vcpu->mutex); vcpu->mmu.root_hpa = INVALID_PAGE; INIT_LIST_HEAD(&vcpu->free_pages); } filp->private_data = kvm; return 0; } /* * Free any memory in @free but not in @dont. */ static void kvm_free_physmem_slot(struct kvm_memory_slot *free, struct kvm_memory_slot *dont) { int i; if (!dont || free->phys_mem != dont->phys_mem) if (free->phys_mem) { for (i = 0; i < free->npages; ++i) __free_page(free->phys_mem[i]); vfree(free->phys_mem); } if (!dont || free->dirty_bitmap != dont->dirty_bitmap) vfree(free->dirty_bitmap); free->phys_mem = 0; free->npages = 0; free->dirty_bitmap = 0; } static void kvm_free_physmem(struct kvm *kvm) { int i; for (i = 0; i < kvm->nmemslots; ++i) kvm_free_physmem_slot(&kvm->memslots[i], 0); } static void kvm_free_vcpu(struct kvm_vcpu *vcpu) { kvm_arch_ops->vcpu_free(vcpu); kvm_mmu_destroy(vcpu); } static void kvm_free_vcpus(struct kvm *kvm) { unsigned int i; for (i = 0; i < KVM_MAX_VCPUS; ++i) kvm_free_vcpu(&kvm->vcpus[i]); } static int kvm_dev_release(struct inode *inode, struct file *filp) { struct kvm *kvm = filp->private_data; kvm_free_vcpus(kvm); kvm_free_physmem(kvm); kfree(kvm); return 0; } static void inject_gp(struct kvm_vcpu *vcpu) { kvm_arch_ops->inject_gp(vcpu, 0); } static int pdptrs_have_reserved_bits_set(struct kvm_vcpu *vcpu, unsigned long cr3) { gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; unsigned offset = (cr3 & (PAGE_SIZE-1)) >> 5; int i; u64 pdpte; u64 *pdpt; struct kvm_memory_slot *memslot; spin_lock(&vcpu->kvm->lock); memslot = gfn_to_memslot(vcpu->kvm, pdpt_gfn); /* FIXME: !memslot - emulate? 0xff? */ pdpt = kmap_atomic(gfn_to_page(memslot, pdpt_gfn), KM_USER0); for (i = 0; i < 4; ++i) { pdpte = pdpt[offset + i]; if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) break; } kunmap_atomic(pdpt, KM_USER0); spin_unlock(&vcpu->kvm->lock); return i != 4; } void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) { if (cr0 & CR0_RESEVED_BITS) { printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n", cr0, vcpu->cr0); inject_gp(vcpu); return; } if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) { printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n"); inject_gp(vcpu); return; } if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) { printk(KERN_DEBUG "set_cr0: #GP, set PG flag " "and a clear PE flag\n"); inject_gp(vcpu); return; } if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) { #ifdef CONFIG_X86_64 if ((vcpu->shadow_efer & EFER_LME)) { int cs_db, cs_l; if (!is_pae(vcpu)) { printk(KERN_DEBUG "set_cr0: #GP, start paging " "in long mode while PAE is disabled\n"); inject_gp(vcpu); return; } kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); if (cs_l) { printk(KERN_DEBUG "set_cr0: #GP, start paging " "in long mode while CS.L == 1\n"); inject_gp(vcpu); return; } } else #endif if (is_pae(vcpu) && pdptrs_have_reserved_bits_set(vcpu, vcpu->cr3)) { printk(KERN_DEBUG "set_cr0: #GP, pdptrs " "reserved bits\n"); inject_gp(vcpu); return; } } kvm_arch_ops->set_cr0(vcpu, cr0); vcpu->cr0 = cr0; spin_lock(&vcpu->kvm->lock); kvm_mmu_reset_context(vcpu); spin_unlock(&vcpu->kvm->lock); return; } EXPORT_SYMBOL_GPL(set_cr0); void lmsw(struct kvm_vcpu *vcpu, unsigned long msw) { set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f)); } EXPORT_SYMBOL_GPL(lmsw); void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) { if (cr4 & CR4_RESEVED_BITS) { printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n"); inject_gp(vcpu); return; } if (kvm_arch_ops->is_long_mode(vcpu)) { if (!(cr4 & CR4_PAE_MASK)) { printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while " "in long mode\n"); inject_gp(vcpu); return; } } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK) && pdptrs_have_reserved_bits_set(vcpu, vcpu->cr3)) { printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n"); inject_gp(vcpu); } if (cr4 & CR4_VMXE_MASK) { printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n"); inject_gp(vcpu); return; } kvm_arch_ops->set_cr4(vcpu, cr4); spin_lock(&vcpu->kvm->lock); kvm_mmu_reset_context(vcpu); spin_unlock(&vcpu->kvm->lock); } EXPORT_SYMBOL_GPL(set_cr4); void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) { if (kvm_arch_ops->is_long_mode(vcpu)) { if ( cr3 & CR3_L_MODE_RESEVED_BITS) { printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n"); inject_gp(vcpu); return; } } else { if (cr3 & CR3_RESEVED_BITS) { printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n"); inject_gp(vcpu); return; } if (is_paging(vcpu) && is_pae(vcpu) && pdptrs_have_reserved_bits_set(vcpu, cr3)) { printk(KERN_DEBUG "set_cr3: #GP, pdptrs " "reserved bits\n"); inject_gp(vcpu); return; } } vcpu->cr3 = cr3; spin_lock(&vcpu->kvm->lock); vcpu->mmu.new_cr3(vcpu); spin_unlock(&vcpu->kvm->lock); } EXPORT_SYMBOL_GPL(set_cr3); void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) { if ( cr8 & CR8_RESEVED_BITS) { printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8); inject_gp(vcpu); return; } vcpu->cr8 = cr8; } EXPORT_SYMBOL_GPL(set_cr8); void fx_init(struct kvm_vcpu *vcpu) { struct __attribute__ ((__packed__)) fx_image_s { u16 control; //fcw u16 status; //fsw u16 tag; // ftw u16 opcode; //fop u64 ip; // fpu ip u64 operand;// fpu dp u32 mxcsr; u32 mxcsr_mask; } *fx_image; fx_save(vcpu->host_fx_image); fpu_init(); fx_save(vcpu->guest_fx_image); fx_restore(vcpu->host_fx_image); fx_image = (struct fx_image_s *)vcpu->guest_fx_image; fx_image->mxcsr = 0x1f80; memset(vcpu->guest_fx_image + sizeof(struct fx_image_s), 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s)); } EXPORT_SYMBOL_GPL(fx_init); /* * Creates some virtual cpus. Good luck creating more than one. */ static int kvm_dev_ioctl_create_vcpu(struct kvm *kvm, int n) { int r; struct kvm_vcpu *vcpu; r = -EINVAL; if (n < 0 || n >= KVM_MAX_VCPUS) goto out; vcpu = &kvm->vcpus[n]; mutex_lock(&vcpu->mutex); if (vcpu->vmcs) { mutex_unlock(&vcpu->mutex); return -EEXIST; } vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf, FX_IMAGE_ALIGN); vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE; vcpu->cpu = -1; /* First load will set up TR */ vcpu->kvm = kvm; r = kvm_arch_ops->vcpu_create(vcpu); if (r < 0) goto out_free_vcpus; kvm_arch_ops->vcpu_load(vcpu); r = kvm_arch_ops->vcpu_setup(vcpu); if (r >= 0) r = kvm_mmu_init(vcpu); vcpu_put(vcpu); if (r < 0) goto out_free_vcpus; return 0; out_free_vcpus: kvm_free_vcpu(vcpu); mutex_unlock(&vcpu->mutex); out: return r; } /* * Allocate some memory and give it an address in the guest physical address * space. * * Discontiguous memory is allowed, mostly for framebuffers. */ static int kvm_dev_ioctl_set_memory_region(struct kvm *kvm, struct kvm_memory_region *mem) { int r; gfn_t base_gfn; unsigned long npages; unsigned long i; struct kvm_memory_slot *memslot; struct kvm_memory_slot old, new; int memory_config_version; r = -EINVAL; /* General sanity checks */ if (mem->memory_size & (PAGE_SIZE - 1)) goto out; if (mem->guest_phys_addr & (PAGE_SIZE - 1)) goto out; if (mem->slot >= KVM_MEMORY_SLOTS) goto out; if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) goto out; memslot = &kvm->memslots[mem->slot]; base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; npages = mem->memory_size >> PAGE_SHIFT; if (!npages) mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES; raced: spin_lock(&kvm->lock); memory_config_version = kvm->memory_config_version; new = old = *memslot; new.base_gfn = base_gfn; new.npages = npages; new.flags = mem->flags; /* Disallow changing a memory slot's size. */ r = -EINVAL; if (npages && old.npages && npages != old.npages) goto out_unlock; /* Check for overlaps */ r = -EEXIST; for (i = 0; i < KVM_MEMORY_SLOTS; ++i) { struct kvm_memory_slot *s = &kvm->memslots[i]; if (s == memslot) continue; if (!((base_gfn + npages <= s->base_gfn) || (base_gfn >= s->base_gfn + s->npages))) goto out_unlock; } /* * Do memory allocations outside lock. memory_config_version will * detect any races. */ spin_unlock(&kvm->lock); /* Deallocate if slot is being removed */ if (!npages) new.phys_mem = 0; /* Free page dirty bitmap if unneeded */ if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) new.dirty_bitmap = 0; r = -ENOMEM; /* Allocate if a slot is being created */ if (npages && !new.phys_mem) { new.phys_mem = vmalloc(npages * sizeof(struct page *)); if (!new.phys_mem) goto out_free; memset(new.phys_mem, 0, npages * sizeof(struct page *)); for (i = 0; i < npages; ++i) { new.phys_mem[i] = alloc_page(GFP_HIGHUSER | __GFP_ZERO); if (!new.phys_mem[i]) goto out_free; } } /* Allocate page dirty bitmap if needed */ if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8; new.dirty_bitmap = vmalloc(dirty_bytes); if (!new.dirty_bitmap) goto out_free; memset(new.dirty_bitmap, 0, dirty_bytes); } spin_lock(&kvm->lock); if (memory_config_version != kvm->memory_config_version) { spin_unlock(&kvm->lock); kvm_free_physmem_slot(&new, &old); goto raced; } r = -EAGAIN; if (kvm->busy) goto out_unlock; if (mem->slot >= kvm->nmemslots) kvm->nmemslots = mem->slot + 1; *memslot = new; ++kvm->memory_config_version; spin_unlock(&kvm->lock); for (i = 0; i < KVM_MAX_VCPUS; ++i) { struct kvm_vcpu *vcpu; vcpu = vcpu_load(kvm, i); if (!vcpu) continue; kvm_mmu_reset_context(vcpu); vcpu_put(vcpu); } kvm_free_physmem_slot(&old, &new); return 0; out_unlock: spin_unlock(&kvm->lock); out_free: kvm_free_physmem_slot(&new, &old); out: return r; } /* * Get (and clear) the dirty memory log for a memory slot. */ static int kvm_dev_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) { struct kvm_memory_slot *memslot; int r, i; int n; unsigned long any = 0; spin_lock(&kvm->lock); /* * Prevent changes to guest memory configuration even while the lock * is not taken. */ ++kvm->busy; spin_unlock(&kvm->lock); r = -EINVAL; if (log->slot >= KVM_MEMORY_SLOTS) goto out; memslot = &kvm->memslots[log->slot]; r = -ENOENT; if (!memslot->dirty_bitmap) goto out; n = ALIGN(memslot->npages, 8) / 8; for (i = 0; !any && i < n; ++i) any = memslot->dirty_bitmap[i]; r = -EFAULT; if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) goto out; if (any) { spin_lock(&kvm->lock); kvm_mmu_slot_remove_write_access(kvm, log->slot); spin_unlock(&kvm->lock); memset(memslot->dirty_bitmap, 0, n); for (i = 0; i < KVM_MAX_VCPUS; ++i) { struct kvm_vcpu *vcpu = vcpu_load(kvm, i); if (!vcpu) continue; kvm_arch_ops->tlb_flush(vcpu); vcpu_put(vcpu); } } r = 0; out: spin_lock(&kvm->lock); --kvm->busy; spin_unlock(&kvm->lock); return r; } struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) { int i; for (i = 0; i < kvm->nmemslots; ++i) { struct kvm_memory_slot *memslot = &kvm->memslots[i]; if (gfn >= memslot->base_gfn && gfn < memslot->base_gfn + memslot->npages) return memslot; } return 0; } EXPORT_SYMBOL_GPL(gfn_to_memslot); void mark_page_dirty(struct kvm *kvm, gfn_t gfn) { int i; struct kvm_memory_slot *memslot = 0; unsigned long rel_gfn; for (i = 0; i < kvm->nmemslots; ++i) { memslot = &kvm->memslots[i]; if (gfn >= memslot->base_gfn && gfn < memslot->base_gfn + memslot->npages) { if (!memslot || !memslot->dirty_bitmap) return; rel_gfn = gfn - memslot->base_gfn; /* avoid RMW */ if (!test_bit(rel_gfn, memslot->dirty_bitmap)) set_bit(rel_gfn, memslot->dirty_bitmap); return; } } } static int emulator_read_std(unsigned long addr, unsigned long *val, unsigned int bytes, struct x86_emulate_ctxt *ctxt) { struct kvm_vcpu *vcpu = ctxt->vcpu; void *data = val; while (bytes) { gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr); unsigned offset = addr & (PAGE_SIZE-1); unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset); unsigned long pfn; struct kvm_memory_slot *memslot; void *page; if (gpa == UNMAPPED_GVA) return X86EMUL_PROPAGATE_FAULT; pfn = gpa >> PAGE_SHIFT; memslot = gfn_to_memslot(vcpu->kvm, pfn); if (!memslot) return X86EMUL_UNHANDLEABLE; page = kmap_atomic(gfn_to_page(memslot, pfn), KM_USER0); memcpy(data, page + offset, tocopy); kunmap_atomic(page, KM_USER0); bytes -= tocopy; data += tocopy; addr += tocopy; } return X86EMUL_CONTINUE; } static int emulator_write_std(unsigned long addr, unsigned long val, unsigned int bytes, struct x86_emulate_ctxt *ctxt) { printk(KERN_ERR "emulator_write_std: addr %lx n %d\n", addr, bytes); return X86EMUL_UNHANDLEABLE; } static int emulator_read_emulated(unsigned long addr, unsigned long *val, unsigned int bytes, struct x86_emulate_ctxt *ctxt) { struct kvm_vcpu *vcpu = ctxt->vcpu; if (vcpu->mmio_read_completed) { memcpy(val, vcpu->mmio_data, bytes); vcpu->mmio_read_completed = 0; return X86EMUL_CONTINUE; } else if (emulator_read_std(addr, val, bytes, ctxt) == X86EMUL_CONTINUE) return X86EMUL_CONTINUE; else { gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr); if (gpa == UNMAPPED_GVA) return vcpu_printf(vcpu, "not present\n"), X86EMUL_PROPAGATE_FAULT; vcpu->mmio_needed = 1; vcpu->mmio_phys_addr = gpa; vcpu->mmio_size = bytes; vcpu->mmio_is_write = 0; return X86EMUL_UNHANDLEABLE; } } static int emulator_write_emulated(unsigned long addr, unsigned long val, unsigned int bytes, struct x86_emulate_ctxt *ctxt) { struct kvm_vcpu *vcpu = ctxt->vcpu; gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr); if (gpa == UNMAPPED_GVA) return X86EMUL_PROPAGATE_FAULT; vcpu->mmio_needed = 1; vcpu->mmio_phys_addr = gpa; vcpu->mmio_size = bytes; vcpu->mmio_is_write = 1; memcpy(vcpu->mmio_data, &val, bytes); return X86EMUL_CONTINUE; } static int emulator_cmpxchg_emulated(unsigned long addr, unsigned long old, unsigned long new, unsigned int bytes, struct x86_emulate_ctxt *ctxt) { static int reported; if (!reported) { reported = 1; printk(KERN_WARNING "kvm: emulating exchange as write\n"); } return emulator_write_emulated(addr, new, bytes, ctxt); } static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) { return kvm_arch_ops->get_segment_base(vcpu, seg); } int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address) { spin_lock(&vcpu->kvm->lock); vcpu->mmu.inval_page(vcpu, address); spin_unlock(&vcpu->kvm->lock); kvm_arch_ops->invlpg(vcpu, address); return X86EMUL_CONTINUE; } int emulate_clts(struct kvm_vcpu *vcpu) { unsigned long cr0 = vcpu->cr0; cr0 &= ~CR0_TS_MASK; kvm_arch_ops->set_cr0(vcpu, cr0); return X86EMUL_CONTINUE; } int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest) { struct kvm_vcpu *vcpu = ctxt->vcpu; switch (dr) { case 0 ... 3: *dest = kvm_arch_ops->get_dr(vcpu, dr); return X86EMUL_CONTINUE; default: printk(KERN_DEBUG "%s: unexpected dr %u\n", __FUNCTION__, dr); return X86EMUL_UNHANDLEABLE; } } int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value) { unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U; int exception; kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception); if (exception) { /* FIXME: better handling */ return X86EMUL_UNHANDLEABLE; } return X86EMUL_CONTINUE; } static void report_emulation_failure(struct x86_emulate_ctxt *ctxt) { static int reported; u8 opcodes[4]; unsigned long rip = ctxt->vcpu->rip; unsigned long rip_linear; rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS); if (reported) return; emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt); printk(KERN_ERR "emulation failed but !mmio_needed?" " rip %lx %02x %02x %02x %02x\n", rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]); reported = 1; } struct x86_emulate_ops emulate_ops = { .read_std = emulator_read_std, .write_std = emulator_write_std, .read_emulated = emulator_read_emulated, .write_emulated = emulator_write_emulated, .cmpxchg_emulated = emulator_cmpxchg_emulated, }; int emulate_instruction(struct kvm_vcpu *vcpu, struct kvm_run *run, unsigned long cr2, u16 error_code) { struct x86_emulate_ctxt emulate_ctxt; int r; int cs_db, cs_l; kvm_arch_ops->cache_regs(vcpu); kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); emulate_ctxt.vcpu = vcpu; emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu); emulate_ctxt.cr2 = cr2; emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_REAL : cs_l ? X86EMUL_MODE_PROT64 : cs_db ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16; if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) { emulate_ctxt.cs_base = 0; emulate_ctxt.ds_base = 0; emulate_ctxt.es_base = 0; emulate_ctxt.ss_base = 0; } else { emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS); emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS); emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES); emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS); } emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS); emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS); vcpu->mmio_is_write = 0; r = x86_emulate_memop(&emulate_ctxt, &emulate_ops); if ((r || vcpu->mmio_is_write) && run) { run->mmio.phys_addr = vcpu->mmio_phys_addr; memcpy(run->mmio.data, vcpu->mmio_data, 8); run->mmio.len = vcpu->mmio_size; run->mmio.is_write = vcpu->mmio_is_write; } if (r) { if (!vcpu->mmio_needed) { report_emulation_failure(&emulate_ctxt); return EMULATE_FAIL; } return EMULATE_DO_MMIO; } kvm_arch_ops->decache_regs(vcpu); kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags); if (vcpu->mmio_is_write) return EMULATE_DO_MMIO; return EMULATE_DONE; } EXPORT_SYMBOL_GPL(emulate_instruction); static u64 mk_cr_64(u64 curr_cr, u32 new_val) { return (curr_cr & ~((1ULL << 32) - 1)) | new_val; } void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base) { struct descriptor_table dt = { limit, base }; kvm_arch_ops->set_gdt(vcpu, &dt); } void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base) { struct descriptor_table dt = { limit, base }; kvm_arch_ops->set_idt(vcpu, &dt); } void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw, unsigned long *rflags) { lmsw(vcpu, msw); *rflags = kvm_arch_ops->get_rflags(vcpu); } unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr) { switch (cr) { case 0: return vcpu->cr0; case 2: return vcpu->cr2; case 3: return vcpu->cr3; case 4: return vcpu->cr4; default: vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr); return 0; } } void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val, unsigned long *rflags) { switch (cr) { case 0: set_cr0(vcpu, mk_cr_64(vcpu->cr0, val)); *rflags = kvm_arch_ops->get_rflags(vcpu); break; case 2: vcpu->cr2 = val; break; case 3: set_cr3(vcpu, val); break; case 4: set_cr4(vcpu, mk_cr_64(vcpu->cr4, val)); break; default: vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr); } } /* * Reads an msr value (of 'msr_index') into 'pdata'. * Returns 0 on success, non-0 otherwise. * Assumes vcpu_load() was already called. */ static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) { return kvm_arch_ops->get_msr(vcpu, msr_index, pdata); } #ifdef CONFIG_X86_64 void set_efer(struct kvm_vcpu *vcpu, u64 efer) { if (efer & EFER_RESERVED_BITS) { printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n", efer); inject_gp(vcpu); return; } if (is_paging(vcpu) && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) { printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n"); inject_gp(vcpu); return; } kvm_arch_ops->set_efer(vcpu, efer); efer &= ~EFER_LMA; efer |= vcpu->shadow_efer & EFER_LMA; vcpu->shadow_efer = efer; } EXPORT_SYMBOL_GPL(set_efer); #endif /* * Writes msr value into into the appropriate "register". * Returns 0 on success, non-0 otherwise. * Assumes vcpu_load() was already called. */ static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) { return kvm_arch_ops->set_msr(vcpu, msr_index, data); } void kvm_resched(struct kvm_vcpu *vcpu) { vcpu_put(vcpu); cond_resched(); /* Cannot fail - no vcpu unplug yet. */ vcpu_load(vcpu->kvm, vcpu_slot(vcpu)); } EXPORT_SYMBOL_GPL(kvm_resched); void load_msrs(struct vmx_msr_entry *e, int n) { int i; for (i = 0; i < n; ++i) wrmsrl(e[i].index, e[i].data); } EXPORT_SYMBOL_GPL(load_msrs); void save_msrs(struct vmx_msr_entry *e, int n) { int i; for (i = 0; i < n; ++i) rdmsrl(e[i].index, e[i].data); } EXPORT_SYMBOL_GPL(save_msrs); static int kvm_dev_ioctl_run(struct kvm *kvm, struct kvm_run *kvm_run) { struct kvm_vcpu *vcpu; int r; if (kvm_run->vcpu < 0 || kvm_run->vcpu >= KVM_MAX_VCPUS) return -EINVAL; vcpu = vcpu_load(kvm, kvm_run->vcpu); if (!vcpu) return -ENOENT; if (kvm_run->emulated) { kvm_arch_ops->skip_emulated_instruction(vcpu); kvm_run->emulated = 0; } if (kvm_run->mmio_completed) { memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8); vcpu->mmio_read_completed = 1; } vcpu->mmio_needed = 0; r = kvm_arch_ops->run(vcpu, kvm_run); vcpu_put(vcpu); return r; } static int kvm_dev_ioctl_get_regs(struct kvm *kvm, struct kvm_regs *regs) { struct kvm_vcpu *vcpu; if (regs->vcpu < 0 || regs->vcpu >= KVM_MAX_VCPUS) return -EINVAL; vcpu = vcpu_load(kvm, regs->vcpu); if (!vcpu) return -ENOENT; kvm_arch_ops->cache_regs(vcpu); regs->rax = vcpu->regs[VCPU_REGS_RAX]; regs->rbx = vcpu->regs[VCPU_REGS_RBX]; regs->rcx = vcpu->regs[VCPU_REGS_RCX]; regs->rdx = vcpu->regs[VCPU_REGS_RDX]; regs->rsi = vcpu->regs[VCPU_REGS_RSI]; regs->rdi = vcpu->regs[VCPU_REGS_RDI]; regs->rsp = vcpu->regs[VCPU_REGS_RSP]; regs->rbp = vcpu->regs[VCPU_REGS_RBP]; #ifdef CONFIG_X86_64 regs->r8 = vcpu->regs[VCPU_REGS_R8]; regs->r9 = vcpu->regs[VCPU_REGS_R9]; regs->r10 = vcpu->regs[VCPU_REGS_R10]; regs->r11 = vcpu->regs[VCPU_REGS_R11]; regs->r12 = vcpu->regs[VCPU_REGS_R12]; regs->r13 = vcpu->regs[VCPU_REGS_R13]; regs->r14 = vcpu->regs[VCPU_REGS_R14]; regs->r15 = vcpu->regs[VCPU_REGS_R15]; #endif regs->rip = vcpu->rip; regs->rflags = kvm_arch_ops->get_rflags(vcpu); /* * Don't leak debug flags in case they were set for guest debugging */ if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep) regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF); vcpu_put(vcpu); return 0; } static int kvm_dev_ioctl_set_regs(struct kvm *kvm, struct kvm_regs *regs) { struct kvm_vcpu *vcpu; if (regs->vcpu < 0 || regs->vcpu >= KVM_MAX_VCPUS) return -EINVAL; vcpu = vcpu_load(kvm, regs->vcpu); if (!vcpu) return -ENOENT; vcpu->regs[VCPU_REGS_RAX] = regs->rax; vcpu->regs[VCPU_REGS_RBX] = regs->rbx; vcpu->regs[VCPU_REGS_RCX] = regs->rcx; vcpu->regs[VCPU_REGS_RDX] = regs->rdx; vcpu->regs[VCPU_REGS_RSI] = regs->rsi; vcpu->regs[VCPU_REGS_RDI] = regs->rdi; vcpu->regs[VCPU_REGS_RSP] = regs->rsp; vcpu->regs[VCPU_REGS_RBP] = regs->rbp; #ifdef CONFIG_X86_64 vcpu->regs[VCPU_REGS_R8] = regs->r8; vcpu->regs[VCPU_REGS_R9] = regs->r9; vcpu->regs[VCPU_REGS_R10] = regs->r10; vcpu->regs[VCPU_REGS_R11] = regs->r11; vcpu->regs[VCPU_REGS_R12] = regs->r12; vcpu->regs[VCPU_REGS_R13] = regs->r13; vcpu->regs[VCPU_REGS_R14] = regs->r14; vcpu->regs[VCPU_REGS_R15] = regs->r15; #endif vcpu->rip = regs->rip; kvm_arch_ops->set_rflags(vcpu, regs->rflags); kvm_arch_ops->decache_regs(vcpu); vcpu_put(vcpu); return 0; } static void get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { return kvm_arch_ops->get_segment(vcpu, var, seg); } static int kvm_dev_ioctl_get_sregs(struct kvm *kvm, struct kvm_sregs *sregs) { struct kvm_vcpu *vcpu; struct descriptor_table dt; if (sregs->vcpu < 0 || sregs->vcpu >= KVM_MAX_VCPUS) return -EINVAL; vcpu = vcpu_load(kvm, sregs->vcpu); if (!vcpu) return -ENOENT; get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); get_segment(vcpu, &sregs->es, VCPU_SREG_ES); get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); kvm_arch_ops->get_idt(vcpu, &dt); sregs->idt.limit = dt.limit; sregs->idt.base = dt.base; kvm_arch_ops->get_gdt(vcpu, &dt); sregs->gdt.limit = dt.limit; sregs->gdt.base = dt.base; sregs->cr0 = vcpu->cr0; sregs->cr2 = vcpu->cr2; sregs->cr3 = vcpu->cr3; sregs->cr4 = vcpu->cr4; sregs->cr8 = vcpu->cr8; sregs->efer = vcpu->shadow_efer; sregs->apic_base = vcpu->apic_base; memcpy(sregs->interrupt_bitmap, vcpu->irq_pending, sizeof sregs->interrupt_bitmap); vcpu_put(vcpu); return 0; } static void set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { return kvm_arch_ops->set_segment(vcpu, var, seg); } static int kvm_dev_ioctl_set_sregs(struct kvm *kvm, struct kvm_sregs *sregs) { struct kvm_vcpu *vcpu; int mmu_reset_needed = 0; int i; struct descriptor_table dt; if (sregs->vcpu < 0 || sregs->vcpu >= KVM_MAX_VCPUS) return -EINVAL; vcpu = vcpu_load(kvm, sregs->vcpu); if (!vcpu) return -ENOENT; set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); set_segment(vcpu, &sregs->es, VCPU_SREG_ES); set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); dt.limit = sregs->idt.limit; dt.base = sregs->idt.base; kvm_arch_ops->set_idt(vcpu, &dt); dt.limit = sregs->gdt.limit; dt.base = sregs->gdt.base; kvm_arch_ops->set_gdt(vcpu, &dt); vcpu->cr2 = sregs->cr2; mmu_reset_needed |= vcpu->cr3 != sregs->cr3; vcpu->cr3 = sregs->cr3; vcpu->cr8 = sregs->cr8; mmu_reset_needed |= vcpu->shadow_efer != sregs->efer; #ifdef CONFIG_X86_64 kvm_arch_ops->set_efer(vcpu, sregs->efer); #endif vcpu->apic_base = sregs->apic_base; mmu_reset_needed |= vcpu->cr0 != sregs->cr0; kvm_arch_ops->set_cr0_no_modeswitch(vcpu, sregs->cr0); mmu_reset_needed |= vcpu->cr4 != sregs->cr4; kvm_arch_ops->set_cr4(vcpu, sregs->cr4); if (mmu_reset_needed) kvm_mmu_reset_context(vcpu); memcpy(vcpu->irq_pending, sregs->interrupt_bitmap, sizeof vcpu->irq_pending); vcpu->irq_summary = 0; for (i = 0; i < NR_IRQ_WORDS; ++i) if (vcpu->irq_pending[i]) __set_bit(i, &vcpu->irq_summary); vcpu_put(vcpu); return 0; } /* * List of msr numbers which we expose to userspace through KVM_GET_MSRS * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. */ static u32 msrs_to_save[] = { MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, MSR_K6_STAR, #ifdef CONFIG_X86_64 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, #endif MSR_IA32_TIME_STAMP_COUNTER, }; /* * Adapt set_msr() to msr_io()'s calling convention */ static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) { return set_msr(vcpu, index, *data); } /* * Read or write a bunch of msrs. All parameters are kernel addresses. * * @return number of msrs set successfully. */ static int __msr_io(struct kvm *kvm, struct kvm_msrs *msrs, struct kvm_msr_entry *entries, int (*do_msr)(struct kvm_vcpu *vcpu, unsigned index, u64 *data)) { struct kvm_vcpu *vcpu; int i; if (msrs->vcpu < 0 || msrs->vcpu >= KVM_MAX_VCPUS) return -EINVAL; vcpu = vcpu_load(kvm, msrs->vcpu); if (!vcpu) return -ENOENT; for (i = 0; i < msrs->nmsrs; ++i) if (do_msr(vcpu, entries[i].index, &entries[i].data)) break; vcpu_put(vcpu); return i; } /* * Read or write a bunch of msrs. Parameters are user addresses. * * @return number of msrs set successfully. */ static int msr_io(struct kvm *kvm, struct kvm_msrs __user *user_msrs, int (*do_msr)(struct kvm_vcpu *vcpu, unsigned index, u64 *data), int writeback) { struct kvm_msrs msrs; struct kvm_msr_entry *entries; int r, n; unsigned size; r = -EFAULT; if (copy_from_user(&msrs, user_msrs, sizeof msrs)) goto out; r = -E2BIG; if (msrs.nmsrs >= MAX_IO_MSRS) goto out; r = -ENOMEM; size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; entries = vmalloc(size); if (!entries) goto out; r = -EFAULT; if (copy_from_user(entries, user_msrs->entries, size)) goto out_free; r = n = __msr_io(kvm, &msrs, entries, do_msr); if (r < 0) goto out_free; r = -EFAULT; if (writeback && copy_to_user(user_msrs->entries, entries, size)) goto out_free; r = n; out_free: vfree(entries); out: return r; } /* * Translate a guest virtual address to a guest physical address. */ static int kvm_dev_ioctl_translate(struct kvm *kvm, struct kvm_translation *tr) { unsigned long vaddr = tr->linear_address; struct kvm_vcpu *vcpu; gpa_t gpa; vcpu = vcpu_load(kvm, tr->vcpu); if (!vcpu) return -ENOENT; spin_lock(&kvm->lock); gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr); tr->physical_address = gpa; tr->valid = gpa != UNMAPPED_GVA; tr->writeable = 1; tr->usermode = 0; spin_unlock(&kvm->lock); vcpu_put(vcpu); return 0; } static int kvm_dev_ioctl_interrupt(struct kvm *kvm, struct kvm_interrupt *irq) { struct kvm_vcpu *vcpu; if (irq->vcpu < 0 || irq->vcpu >= KVM_MAX_VCPUS) return -EINVAL; if (irq->irq < 0 || irq->irq >= 256) return -EINVAL; vcpu = vcpu_load(kvm, irq->vcpu); if (!vcpu) return -ENOENT; set_bit(irq->irq, vcpu->irq_pending); set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary); vcpu_put(vcpu); return 0; } static int kvm_dev_ioctl_debug_guest(struct kvm *kvm, struct kvm_debug_guest *dbg) { struct kvm_vcpu *vcpu; int r; if (dbg->vcpu < 0 || dbg->vcpu >= KVM_MAX_VCPUS) return -EINVAL; vcpu = vcpu_load(kvm, dbg->vcpu); if (!vcpu) return -ENOENT; r = kvm_arch_ops->set_guest_debug(vcpu, dbg); vcpu_put(vcpu); return r; } static long kvm_dev_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { struct kvm *kvm = filp->private_data; int r = -EINVAL; switch (ioctl) { case KVM_CREATE_VCPU: { r = kvm_dev_ioctl_create_vcpu(kvm, arg); if (r) goto out; break; } case KVM_RUN: { struct kvm_run kvm_run; r = -EFAULT; if (copy_from_user(&kvm_run, (void *)arg, sizeof kvm_run)) goto out; r = kvm_dev_ioctl_run(kvm, &kvm_run); if (r < 0) goto out; r = -EFAULT; if (copy_to_user((void *)arg, &kvm_run, sizeof kvm_run)) goto out; r = 0; break; } case KVM_GET_REGS: { struct kvm_regs kvm_regs; r = -EFAULT; if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs)) goto out; r = kvm_dev_ioctl_get_regs(kvm, &kvm_regs); if (r) goto out; r = -EFAULT; if (copy_to_user((void *)arg, &kvm_regs, sizeof kvm_regs)) goto out; r = 0; break; } case KVM_SET_REGS: { struct kvm_regs kvm_regs; r = -EFAULT; if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs)) goto out; r = kvm_dev_ioctl_set_regs(kvm, &kvm_regs); if (r) goto out; r = 0; break; } case KVM_GET_SREGS: { struct kvm_sregs kvm_sregs; r = -EFAULT; if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs)) goto out; r = kvm_dev_ioctl_get_sregs(kvm, &kvm_sregs); if (r) goto out; r = -EFAULT; if (copy_to_user((void *)arg, &kvm_sregs, sizeof kvm_sregs)) goto out; r = 0; break; } case KVM_SET_SREGS: { struct kvm_sregs kvm_sregs; r = -EFAULT; if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs)) goto out; r = kvm_dev_ioctl_set_sregs(kvm, &kvm_sregs); if (r) goto out; r = 0; break; } case KVM_TRANSLATE: { struct kvm_translation tr; r = -EFAULT; if (copy_from_user(&tr, (void *)arg, sizeof tr)) goto out; r = kvm_dev_ioctl_translate(kvm, &tr); if (r) goto out; r = -EFAULT; if (copy_to_user((void *)arg, &tr, sizeof tr)) goto out; r = 0; break; } case KVM_INTERRUPT: { struct kvm_interrupt irq; r = -EFAULT; if (copy_from_user(&irq, (void *)arg, sizeof irq)) goto out; r = kvm_dev_ioctl_interrupt(kvm, &irq); if (r) goto out; r = 0; break; } case KVM_DEBUG_GUEST: { struct kvm_debug_guest dbg; r = -EFAULT; if (copy_from_user(&dbg, (void *)arg, sizeof dbg)) goto out; r = kvm_dev_ioctl_debug_guest(kvm, &dbg); if (r) goto out; r = 0; break; } case KVM_SET_MEMORY_REGION: { struct kvm_memory_region kvm_mem; r = -EFAULT; if (copy_from_user(&kvm_mem, (void *)arg, sizeof kvm_mem)) goto out; r = kvm_dev_ioctl_set_memory_region(kvm, &kvm_mem); if (r) goto out; break; } case KVM_GET_DIRTY_LOG: { struct kvm_dirty_log log; r = -EFAULT; if (copy_from_user(&log, (void *)arg, sizeof log)) goto out; r = kvm_dev_ioctl_get_dirty_log(kvm, &log); if (r) goto out; break; } case KVM_GET_MSRS: r = msr_io(kvm, (void __user *)arg, get_msr, 1); break; case KVM_SET_MSRS: r = msr_io(kvm, (void __user *)arg, do_set_msr, 0); break; case KVM_GET_MSR_INDEX_LIST: { struct kvm_msr_list __user *user_msr_list = (void __user *)arg; struct kvm_msr_list msr_list; unsigned n; r = -EFAULT; if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) goto out; n = msr_list.nmsrs; msr_list.nmsrs = ARRAY_SIZE(msrs_to_save); if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) goto out; r = -E2BIG; if (n < ARRAY_SIZE(msrs_to_save)) goto out; r = -EFAULT; if (copy_to_user(user_msr_list->indices, &msrs_to_save, sizeof msrs_to_save)) goto out; r = 0; } default: ; } out: return r; } static struct page *kvm_dev_nopage(struct vm_area_struct *vma, unsigned long address, int *type) { struct kvm *kvm = vma->vm_file->private_data; unsigned long pgoff; struct kvm_memory_slot *slot; struct page *page; *type = VM_FAULT_MINOR; pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; slot = gfn_to_memslot(kvm, pgoff); if (!slot) return NOPAGE_SIGBUS; page = gfn_to_page(slot, pgoff); if (!page) return NOPAGE_SIGBUS; get_page(page); return page; } static struct vm_operations_struct kvm_dev_vm_ops = { .nopage = kvm_dev_nopage, }; static int kvm_dev_mmap(struct file *file, struct vm_area_struct *vma) { vma->vm_ops = &kvm_dev_vm_ops; return 0; } static struct file_operations kvm_chardev_ops = { .open = kvm_dev_open, .release = kvm_dev_release, .unlocked_ioctl = kvm_dev_ioctl, .compat_ioctl = kvm_dev_ioctl, .mmap = kvm_dev_mmap, }; static struct miscdevice kvm_dev = { MISC_DYNAMIC_MINOR, "kvm", &kvm_chardev_ops, }; static int kvm_reboot(struct notifier_block *notifier, unsigned long val, void *v) { if (val == SYS_RESTART) { /* * Some (well, at least mine) BIOSes hang on reboot if * in vmx root mode. */ printk(KERN_INFO "kvm: exiting hardware virtualization\n"); on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1); } return NOTIFY_OK; } static struct notifier_block kvm_reboot_notifier = { .notifier_call = kvm_reboot, .priority = 0, }; static __init void kvm_init_debug(void) { struct kvm_stats_debugfs_item *p; debugfs_dir = debugfs_create_dir("kvm", 0); for (p = debugfs_entries; p->name; ++p) p->dentry = debugfs_create_u32(p->name, 0444, debugfs_dir, p->data); } static void kvm_exit_debug(void) { struct kvm_stats_debugfs_item *p; for (p = debugfs_entries; p->name; ++p) debugfs_remove(p->dentry); debugfs_remove(debugfs_dir); } hpa_t bad_page_address; int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module) { int r; kvm_arch_ops = ops; if (!kvm_arch_ops->cpu_has_kvm_support()) { printk(KERN_ERR "kvm: no hardware support\n"); return -EOPNOTSUPP; } if (kvm_arch_ops->disabled_by_bios()) { printk(KERN_ERR "kvm: disabled by bios\n"); return -EOPNOTSUPP; } r = kvm_arch_ops->hardware_setup(); if (r < 0) return r; on_each_cpu(kvm_arch_ops->hardware_enable, 0, 0, 1); register_reboot_notifier(&kvm_reboot_notifier); kvm_chardev_ops.owner = module; r = misc_register(&kvm_dev); if (r) { printk (KERN_ERR "kvm: misc device register failed\n"); goto out_free; } return r; out_free: unregister_reboot_notifier(&kvm_reboot_notifier); on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1); kvm_arch_ops->hardware_unsetup(); return r; } void kvm_exit_arch(void) { misc_deregister(&kvm_dev); unregister_reboot_notifier(&kvm_reboot_notifier); on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1); kvm_arch_ops->hardware_unsetup(); } static __init int kvm_init(void) { static struct page *bad_page; int r = 0; kvm_init_debug(); if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) { r = -ENOMEM; goto out; } bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT; memset(__va(bad_page_address), 0, PAGE_SIZE); return r; out: kvm_exit_debug(); return r; } static __exit void kvm_exit(void) { kvm_exit_debug(); __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT)); } module_init(kvm_init) module_exit(kvm_exit) EXPORT_SYMBOL_GPL(kvm_init_arch); EXPORT_SYMBOL_GPL(kvm_exit_arch);