/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /** MMU register offsets */ #define RK_MMU_DTE_ADDR 0x00 /* Directory table address */ #define RK_MMU_STATUS 0x04 #define RK_MMU_COMMAND 0x08 #define RK_MMU_PAGE_FAULT_ADDR 0x0C /* IOVA of last page fault */ #define RK_MMU_ZAP_ONE_LINE 0x10 /* Shootdown one IOTLB entry */ #define RK_MMU_INT_RAWSTAT 0x14 /* IRQ status ignoring mask */ #define RK_MMU_INT_CLEAR 0x18 /* Acknowledge and re-arm irq */ #define RK_MMU_INT_MASK 0x1C /* IRQ enable */ #define RK_MMU_INT_STATUS 0x20 /* IRQ status after masking */ #define RK_MMU_AUTO_GATING 0x24 #define DTE_ADDR_DUMMY 0xCAFEBABE #define RK_MMU_POLL_PERIOD_US 100 #define RK_MMU_FORCE_RESET_TIMEOUT_US 100000 #define RK_MMU_POLL_TIMEOUT_US 1000 /* RK_MMU_STATUS fields */ #define RK_MMU_STATUS_PAGING_ENABLED BIT(0) #define RK_MMU_STATUS_PAGE_FAULT_ACTIVE BIT(1) #define RK_MMU_STATUS_STALL_ACTIVE BIT(2) #define RK_MMU_STATUS_IDLE BIT(3) #define RK_MMU_STATUS_REPLAY_BUFFER_EMPTY BIT(4) #define RK_MMU_STATUS_PAGE_FAULT_IS_WRITE BIT(5) #define RK_MMU_STATUS_STALL_NOT_ACTIVE BIT(31) /* RK_MMU_COMMAND command values */ #define RK_MMU_CMD_ENABLE_PAGING 0 /* Enable memory translation */ #define RK_MMU_CMD_DISABLE_PAGING 1 /* Disable memory translation */ #define RK_MMU_CMD_ENABLE_STALL 2 /* Stall paging to allow other cmds */ #define RK_MMU_CMD_DISABLE_STALL 3 /* Stop stall re-enables paging */ #define RK_MMU_CMD_ZAP_CACHE 4 /* Shoot down entire IOTLB */ #define RK_MMU_CMD_PAGE_FAULT_DONE 5 /* Clear page fault */ #define RK_MMU_CMD_FORCE_RESET 6 /* Reset all registers */ /* RK_MMU_INT_* register fields */ #define RK_MMU_IRQ_PAGE_FAULT 0x01 /* page fault */ #define RK_MMU_IRQ_BUS_ERROR 0x02 /* bus read error */ #define RK_MMU_IRQ_MASK (RK_MMU_IRQ_PAGE_FAULT | RK_MMU_IRQ_BUS_ERROR) #define NUM_DT_ENTRIES 1024 #define NUM_PT_ENTRIES 1024 #define SPAGE_ORDER 12 #define SPAGE_SIZE (1 << SPAGE_ORDER) /* * Support mapping any size that fits in one page table: * 4 KiB to 4 MiB */ #define RK_IOMMU_PGSIZE_BITMAP 0x007ff000 struct rk_iommu_domain { struct list_head iommus; u32 *dt; /* page directory table */ dma_addr_t dt_dma; spinlock_t iommus_lock; /* lock for iommus list */ spinlock_t dt_lock; /* lock for modifying page directory table */ struct iommu_domain domain; }; /* list of clocks required by IOMMU */ static const char * const rk_iommu_clocks[] = { "aclk", "iface", }; struct rk_iommu { struct device *dev; void __iomem **bases; int num_mmu; struct clk_bulk_data *clocks; int num_clocks; bool reset_disabled; struct iommu_device iommu; struct list_head node; /* entry in rk_iommu_domain.iommus */ struct iommu_domain *domain; /* domain to which iommu is attached */ struct iommu_group *group; }; struct rk_iommudata { struct device_link *link; /* runtime PM link from IOMMU to master */ struct rk_iommu *iommu; }; static struct device *dma_dev; static inline void rk_table_flush(struct rk_iommu_domain *dom, dma_addr_t dma, unsigned int count) { size_t size = count * sizeof(u32); /* count of u32 entry */ dma_sync_single_for_device(dma_dev, dma, size, DMA_TO_DEVICE); } static struct rk_iommu_domain *to_rk_domain(struct iommu_domain *dom) { return container_of(dom, struct rk_iommu_domain, domain); } /* * The Rockchip rk3288 iommu uses a 2-level page table. * The first level is the "Directory Table" (DT). * The DT consists of 1024 4-byte Directory Table Entries (DTEs), each pointing * to a "Page Table". * The second level is the 1024 Page Tables (PT). * Each PT consists of 1024 4-byte Page Table Entries (PTEs), each pointing to * a 4 KB page of physical memory. * * The DT and each PT fits in a single 4 KB page (4-bytes * 1024 entries). * Each iommu device has a MMU_DTE_ADDR register that contains the physical * address of the start of the DT page. * * The structure of the page table is as follows: * * DT * MMU_DTE_ADDR -> +-----+ * | | * +-----+ PT * | DTE | -> +-----+ * +-----+ | | Memory * | | +-----+ Page * | | | PTE | -> +-----+ * +-----+ +-----+ | | * | | | | * | | | | * +-----+ | | * | | * | | * +-----+ */ /* * Each DTE has a PT address and a valid bit: * +---------------------+-----------+-+ * | PT address | Reserved |V| * +---------------------+-----------+-+ * 31:12 - PT address (PTs always starts on a 4 KB boundary) * 11: 1 - Reserved * 0 - 1 if PT @ PT address is valid */ #define RK_DTE_PT_ADDRESS_MASK 0xfffff000 #define RK_DTE_PT_VALID BIT(0) static inline phys_addr_t rk_dte_pt_address(u32 dte) { return (phys_addr_t)dte & RK_DTE_PT_ADDRESS_MASK; } static inline bool rk_dte_is_pt_valid(u32 dte) { return dte & RK_DTE_PT_VALID; } static inline u32 rk_mk_dte(dma_addr_t pt_dma) { return (pt_dma & RK_DTE_PT_ADDRESS_MASK) | RK_DTE_PT_VALID; } /* * Each PTE has a Page address, some flags and a valid bit: * +---------------------+---+-------+-+ * | Page address |Rsv| Flags |V| * +---------------------+---+-------+-+ * 31:12 - Page address (Pages always start on a 4 KB boundary) * 11: 9 - Reserved * 8: 1 - Flags * 8 - Read allocate - allocate cache space on read misses * 7 - Read cache - enable cache & prefetch of data * 6 - Write buffer - enable delaying writes on their way to memory * 5 - Write allocate - allocate cache space on write misses * 4 - Write cache - different writes can be merged together * 3 - Override cache attributes * if 1, bits 4-8 control cache attributes * if 0, the system bus defaults are used * 2 - Writable * 1 - Readable * 0 - 1 if Page @ Page address is valid */ #define RK_PTE_PAGE_ADDRESS_MASK 0xfffff000 #define RK_PTE_PAGE_FLAGS_MASK 0x000001fe #define RK_PTE_PAGE_WRITABLE BIT(2) #define RK_PTE_PAGE_READABLE BIT(1) #define RK_PTE_PAGE_VALID BIT(0) static inline phys_addr_t rk_pte_page_address(u32 pte) { return (phys_addr_t)pte & RK_PTE_PAGE_ADDRESS_MASK; } static inline bool rk_pte_is_page_valid(u32 pte) { return pte & RK_PTE_PAGE_VALID; } /* TODO: set cache flags per prot IOMMU_CACHE */ static u32 rk_mk_pte(phys_addr_t page, int prot) { u32 flags = 0; flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE : 0; flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE : 0; page &= RK_PTE_PAGE_ADDRESS_MASK; return page | flags | RK_PTE_PAGE_VALID; } static u32 rk_mk_pte_invalid(u32 pte) { return pte & ~RK_PTE_PAGE_VALID; } /* * rk3288 iova (IOMMU Virtual Address) format * 31 22.21 12.11 0 * +-----------+-----------+-------------+ * | DTE index | PTE index | Page offset | * +-----------+-----------+-------------+ * 31:22 - DTE index - index of DTE in DT * 21:12 - PTE index - index of PTE in PT @ DTE.pt_address * 11: 0 - Page offset - offset into page @ PTE.page_address */ #define RK_IOVA_DTE_MASK 0xffc00000 #define RK_IOVA_DTE_SHIFT 22 #define RK_IOVA_PTE_MASK 0x003ff000 #define RK_IOVA_PTE_SHIFT 12 #define RK_IOVA_PAGE_MASK 0x00000fff #define RK_IOVA_PAGE_SHIFT 0 static u32 rk_iova_dte_index(dma_addr_t iova) { return (u32)(iova & RK_IOVA_DTE_MASK) >> RK_IOVA_DTE_SHIFT; } static u32 rk_iova_pte_index(dma_addr_t iova) { return (u32)(iova & RK_IOVA_PTE_MASK) >> RK_IOVA_PTE_SHIFT; } static u32 rk_iova_page_offset(dma_addr_t iova) { return (u32)(iova & RK_IOVA_PAGE_MASK) >> RK_IOVA_PAGE_SHIFT; } static u32 rk_iommu_read(void __iomem *base, u32 offset) { return readl(base + offset); } static void rk_iommu_write(void __iomem *base, u32 offset, u32 value) { writel(value, base + offset); } static void rk_iommu_command(struct rk_iommu *iommu, u32 command) { int i; for (i = 0; i < iommu->num_mmu; i++) writel(command, iommu->bases[i] + RK_MMU_COMMAND); } static void rk_iommu_base_command(void __iomem *base, u32 command) { writel(command, base + RK_MMU_COMMAND); } static void rk_iommu_zap_lines(struct rk_iommu *iommu, dma_addr_t iova_start, size_t size) { int i; dma_addr_t iova_end = iova_start + size; /* * TODO(djkurtz): Figure out when it is more efficient to shootdown the * entire iotlb rather than iterate over individual iovas. */ for (i = 0; i < iommu->num_mmu; i++) { dma_addr_t iova; for (iova = iova_start; iova < iova_end; iova += SPAGE_SIZE) rk_iommu_write(iommu->bases[i], RK_MMU_ZAP_ONE_LINE, iova); } } static bool rk_iommu_is_stall_active(struct rk_iommu *iommu) { bool active = true; int i; for (i = 0; i < iommu->num_mmu; i++) active &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) & RK_MMU_STATUS_STALL_ACTIVE); return active; } static bool rk_iommu_is_paging_enabled(struct rk_iommu *iommu) { bool enable = true; int i; for (i = 0; i < iommu->num_mmu; i++) enable &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) & RK_MMU_STATUS_PAGING_ENABLED); return enable; } static bool rk_iommu_is_reset_done(struct rk_iommu *iommu) { bool done = true; int i; for (i = 0; i < iommu->num_mmu; i++) done &= rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR) == 0; return done; } static int rk_iommu_enable_stall(struct rk_iommu *iommu) { int ret, i; bool val; if (rk_iommu_is_stall_active(iommu)) return 0; /* Stall can only be enabled if paging is enabled */ if (!rk_iommu_is_paging_enabled(iommu)) return 0; rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_STALL); ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val, val, RK_MMU_POLL_PERIOD_US, RK_MMU_POLL_TIMEOUT_US); if (ret) for (i = 0; i < iommu->num_mmu; i++) dev_err(iommu->dev, "Enable stall request timed out, status: %#08x\n", rk_iommu_read(iommu->bases[i], RK_MMU_STATUS)); return ret; } static int rk_iommu_disable_stall(struct rk_iommu *iommu) { int ret, i; bool val; if (!rk_iommu_is_stall_active(iommu)) return 0; rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_STALL); ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val, !val, RK_MMU_POLL_PERIOD_US, RK_MMU_POLL_TIMEOUT_US); if (ret) for (i = 0; i < iommu->num_mmu; i++) dev_err(iommu->dev, "Disable stall request timed out, status: %#08x\n", rk_iommu_read(iommu->bases[i], RK_MMU_STATUS)); return ret; } static int rk_iommu_enable_paging(struct rk_iommu *iommu) { int ret, i; bool val; if (rk_iommu_is_paging_enabled(iommu)) return 0; rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_PAGING); ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val, val, RK_MMU_POLL_PERIOD_US, RK_MMU_POLL_TIMEOUT_US); if (ret) for (i = 0; i < iommu->num_mmu; i++) dev_err(iommu->dev, "Enable paging request timed out, status: %#08x\n", rk_iommu_read(iommu->bases[i], RK_MMU_STATUS)); return ret; } static int rk_iommu_disable_paging(struct rk_iommu *iommu) { int ret, i; bool val; if (!rk_iommu_is_paging_enabled(iommu)) return 0; rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_PAGING); ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val, !val, RK_MMU_POLL_PERIOD_US, RK_MMU_POLL_TIMEOUT_US); if (ret) for (i = 0; i < iommu->num_mmu; i++) dev_err(iommu->dev, "Disable paging request timed out, status: %#08x\n", rk_iommu_read(iommu->bases[i], RK_MMU_STATUS)); return ret; } static int rk_iommu_force_reset(struct rk_iommu *iommu) { int ret, i; u32 dte_addr; bool val; if (iommu->reset_disabled) return 0; /* * Check if register DTE_ADDR is working by writing DTE_ADDR_DUMMY * and verifying that upper 5 nybbles are read back. */ for (i = 0; i < iommu->num_mmu; i++) { rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, DTE_ADDR_DUMMY); dte_addr = rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR); if (dte_addr != (DTE_ADDR_DUMMY & RK_DTE_PT_ADDRESS_MASK)) { dev_err(iommu->dev, "Error during raw reset. MMU_DTE_ADDR is not functioning\n"); return -EFAULT; } } rk_iommu_command(iommu, RK_MMU_CMD_FORCE_RESET); ret = readx_poll_timeout(rk_iommu_is_reset_done, iommu, val, val, RK_MMU_FORCE_RESET_TIMEOUT_US, RK_MMU_POLL_TIMEOUT_US); if (ret) { dev_err(iommu->dev, "FORCE_RESET command timed out\n"); return ret; } return 0; } static void log_iova(struct rk_iommu *iommu, int index, dma_addr_t iova) { void __iomem *base = iommu->bases[index]; u32 dte_index, pte_index, page_offset; u32 mmu_dte_addr; phys_addr_t mmu_dte_addr_phys, dte_addr_phys; u32 *dte_addr; u32 dte; phys_addr_t pte_addr_phys = 0; u32 *pte_addr = NULL; u32 pte = 0; phys_addr_t page_addr_phys = 0; u32 page_flags = 0; dte_index = rk_iova_dte_index(iova); pte_index = rk_iova_pte_index(iova); page_offset = rk_iova_page_offset(iova); mmu_dte_addr = rk_iommu_read(base, RK_MMU_DTE_ADDR); mmu_dte_addr_phys = (phys_addr_t)mmu_dte_addr; dte_addr_phys = mmu_dte_addr_phys + (4 * dte_index); dte_addr = phys_to_virt(dte_addr_phys); dte = *dte_addr; if (!rk_dte_is_pt_valid(dte)) goto print_it; pte_addr_phys = rk_dte_pt_address(dte) + (pte_index * 4); pte_addr = phys_to_virt(pte_addr_phys); pte = *pte_addr; if (!rk_pte_is_page_valid(pte)) goto print_it; page_addr_phys = rk_pte_page_address(pte) + page_offset; page_flags = pte & RK_PTE_PAGE_FLAGS_MASK; print_it: dev_err(iommu->dev, "iova = %pad: dte_index: %#03x pte_index: %#03x page_offset: %#03x\n", &iova, dte_index, pte_index, page_offset); dev_err(iommu->dev, "mmu_dte_addr: %pa dte@%pa: %#08x valid: %u pte@%pa: %#08x valid: %u page@%pa flags: %#03x\n", &mmu_dte_addr_phys, &dte_addr_phys, dte, rk_dte_is_pt_valid(dte), &pte_addr_phys, pte, rk_pte_is_page_valid(pte), &page_addr_phys, page_flags); } static irqreturn_t rk_iommu_irq(int irq, void *dev_id) { struct rk_iommu *iommu = dev_id; u32 status; u32 int_status; dma_addr_t iova; irqreturn_t ret = IRQ_NONE; int i; if (WARN_ON(!pm_runtime_get_if_in_use(iommu->dev))) return 0; if (WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks))) goto out; for (i = 0; i < iommu->num_mmu; i++) { int_status = rk_iommu_read(iommu->bases[i], RK_MMU_INT_STATUS); if (int_status == 0) continue; ret = IRQ_HANDLED; iova = rk_iommu_read(iommu->bases[i], RK_MMU_PAGE_FAULT_ADDR); if (int_status & RK_MMU_IRQ_PAGE_FAULT) { int flags; status = rk_iommu_read(iommu->bases[i], RK_MMU_STATUS); flags = (status & RK_MMU_STATUS_PAGE_FAULT_IS_WRITE) ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ; dev_err(iommu->dev, "Page fault at %pad of type %s\n", &iova, (flags == IOMMU_FAULT_WRITE) ? "write" : "read"); log_iova(iommu, i, iova); /* * Report page fault to any installed handlers. * Ignore the return code, though, since we always zap cache * and clear the page fault anyway. */ if (iommu->domain) report_iommu_fault(iommu->domain, iommu->dev, iova, flags); else dev_err(iommu->dev, "Page fault while iommu not attached to domain?\n"); rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE); rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_PAGE_FAULT_DONE); } if (int_status & RK_MMU_IRQ_BUS_ERROR) dev_err(iommu->dev, "BUS_ERROR occurred at %pad\n", &iova); if (int_status & ~RK_MMU_IRQ_MASK) dev_err(iommu->dev, "unexpected int_status: %#08x\n", int_status); rk_iommu_write(iommu->bases[i], RK_MMU_INT_CLEAR, int_status); } clk_bulk_disable(iommu->num_clocks, iommu->clocks); out: pm_runtime_put(iommu->dev); return ret; } static phys_addr_t rk_iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova) { struct rk_iommu_domain *rk_domain = to_rk_domain(domain); unsigned long flags; phys_addr_t pt_phys, phys = 0; u32 dte, pte; u32 *page_table; spin_lock_irqsave(&rk_domain->dt_lock, flags); dte = rk_domain->dt[rk_iova_dte_index(iova)]; if (!rk_dte_is_pt_valid(dte)) goto out; pt_phys = rk_dte_pt_address(dte); page_table = (u32 *)phys_to_virt(pt_phys); pte = page_table[rk_iova_pte_index(iova)]; if (!rk_pte_is_page_valid(pte)) goto out; phys = rk_pte_page_address(pte) + rk_iova_page_offset(iova); out: spin_unlock_irqrestore(&rk_domain->dt_lock, flags); return phys; } static void rk_iommu_zap_iova(struct rk_iommu_domain *rk_domain, dma_addr_t iova, size_t size) { struct list_head *pos; unsigned long flags; /* shootdown these iova from all iommus using this domain */ spin_lock_irqsave(&rk_domain->iommus_lock, flags); list_for_each(pos, &rk_domain->iommus) { struct rk_iommu *iommu; iommu = list_entry(pos, struct rk_iommu, node); /* Only zap TLBs of IOMMUs that are powered on. */ if (pm_runtime_get_if_in_use(iommu->dev)) { WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks)); rk_iommu_zap_lines(iommu, iova, size); clk_bulk_disable(iommu->num_clocks, iommu->clocks); pm_runtime_put(iommu->dev); } } spin_unlock_irqrestore(&rk_domain->iommus_lock, flags); } static void rk_iommu_zap_iova_first_last(struct rk_iommu_domain *rk_domain, dma_addr_t iova, size_t size) { rk_iommu_zap_iova(rk_domain, iova, SPAGE_SIZE); if (size > SPAGE_SIZE) rk_iommu_zap_iova(rk_domain, iova + size - SPAGE_SIZE, SPAGE_SIZE); } static u32 *rk_dte_get_page_table(struct rk_iommu_domain *rk_domain, dma_addr_t iova) { u32 *page_table, *dte_addr; u32 dte_index, dte; phys_addr_t pt_phys; dma_addr_t pt_dma; assert_spin_locked(&rk_domain->dt_lock); dte_index = rk_iova_dte_index(iova); dte_addr = &rk_domain->dt[dte_index]; dte = *dte_addr; if (rk_dte_is_pt_valid(dte)) goto done; page_table = (u32 *)get_zeroed_page(GFP_ATOMIC | GFP_DMA32); if (!page_table) return ERR_PTR(-ENOMEM); pt_dma = dma_map_single(dma_dev, page_table, SPAGE_SIZE, DMA_TO_DEVICE); if (dma_mapping_error(dma_dev, pt_dma)) { dev_err(dma_dev, "DMA mapping error while allocating page table\n"); free_page((unsigned long)page_table); return ERR_PTR(-ENOMEM); } dte = rk_mk_dte(pt_dma); *dte_addr = dte; rk_table_flush(rk_domain, pt_dma, NUM_PT_ENTRIES); rk_table_flush(rk_domain, rk_domain->dt_dma + dte_index * sizeof(u32), 1); done: pt_phys = rk_dte_pt_address(dte); return (u32 *)phys_to_virt(pt_phys); } static size_t rk_iommu_unmap_iova(struct rk_iommu_domain *rk_domain, u32 *pte_addr, dma_addr_t pte_dma, size_t size) { unsigned int pte_count; unsigned int pte_total = size / SPAGE_SIZE; assert_spin_locked(&rk_domain->dt_lock); for (pte_count = 0; pte_count < pte_total; pte_count++) { u32 pte = pte_addr[pte_count]; if (!rk_pte_is_page_valid(pte)) break; pte_addr[pte_count] = rk_mk_pte_invalid(pte); } rk_table_flush(rk_domain, pte_dma, pte_count); return pte_count * SPAGE_SIZE; } static int rk_iommu_map_iova(struct rk_iommu_domain *rk_domain, u32 *pte_addr, dma_addr_t pte_dma, dma_addr_t iova, phys_addr_t paddr, size_t size, int prot) { unsigned int pte_count; unsigned int pte_total = size / SPAGE_SIZE; phys_addr_t page_phys; assert_spin_locked(&rk_domain->dt_lock); for (pte_count = 0; pte_count < pte_total; pte_count++) { u32 pte = pte_addr[pte_count]; if (rk_pte_is_page_valid(pte)) goto unwind; pte_addr[pte_count] = rk_mk_pte(paddr, prot); paddr += SPAGE_SIZE; } rk_table_flush(rk_domain, pte_dma, pte_total); /* * Zap the first and last iova to evict from iotlb any previously * mapped cachelines holding stale values for its dte and pte. * We only zap the first and last iova, since only they could have * dte or pte shared with an existing mapping. */ rk_iommu_zap_iova_first_last(rk_domain, iova, size); return 0; unwind: /* Unmap the range of iovas that we just mapped */ rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma, pte_count * SPAGE_SIZE); iova += pte_count * SPAGE_SIZE; page_phys = rk_pte_page_address(pte_addr[pte_count]); pr_err("iova: %pad already mapped to %pa cannot remap to phys: %pa prot: %#x\n", &iova, &page_phys, &paddr, prot); return -EADDRINUSE; } static int rk_iommu_map(struct iommu_domain *domain, unsigned long _iova, phys_addr_t paddr, size_t size, int prot) { struct rk_iommu_domain *rk_domain = to_rk_domain(domain); unsigned long flags; dma_addr_t pte_dma, iova = (dma_addr_t)_iova; u32 *page_table, *pte_addr; u32 dte_index, pte_index; int ret; spin_lock_irqsave(&rk_domain->dt_lock, flags); /* * pgsize_bitmap specifies iova sizes that fit in one page table * (1024 4-KiB pages = 4 MiB). * So, size will always be 4096 <= size <= 4194304. * Since iommu_map() guarantees that both iova and size will be * aligned, we will always only be mapping from a single dte here. */ page_table = rk_dte_get_page_table(rk_domain, iova); if (IS_ERR(page_table)) { spin_unlock_irqrestore(&rk_domain->dt_lock, flags); return PTR_ERR(page_table); } dte_index = rk_domain->dt[rk_iova_dte_index(iova)]; pte_index = rk_iova_pte_index(iova); pte_addr = &page_table[pte_index]; pte_dma = rk_dte_pt_address(dte_index) + pte_index * sizeof(u32); ret = rk_iommu_map_iova(rk_domain, pte_addr, pte_dma, iova, paddr, size, prot); spin_unlock_irqrestore(&rk_domain->dt_lock, flags); return ret; } static size_t rk_iommu_unmap(struct iommu_domain *domain, unsigned long _iova, size_t size) { struct rk_iommu_domain *rk_domain = to_rk_domain(domain); unsigned long flags; dma_addr_t pte_dma, iova = (dma_addr_t)_iova; phys_addr_t pt_phys; u32 dte; u32 *pte_addr; size_t unmap_size; spin_lock_irqsave(&rk_domain->dt_lock, flags); /* * pgsize_bitmap specifies iova sizes that fit in one page table * (1024 4-KiB pages = 4 MiB). * So, size will always be 4096 <= size <= 4194304. * Since iommu_unmap() guarantees that both iova and size will be * aligned, we will always only be unmapping from a single dte here. */ dte = rk_domain->dt[rk_iova_dte_index(iova)]; /* Just return 0 if iova is unmapped */ if (!rk_dte_is_pt_valid(dte)) { spin_unlock_irqrestore(&rk_domain->dt_lock, flags); return 0; } pt_phys = rk_dte_pt_address(dte); pte_addr = (u32 *)phys_to_virt(pt_phys) + rk_iova_pte_index(iova); pte_dma = pt_phys + rk_iova_pte_index(iova) * sizeof(u32); unmap_size = rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma, size); spin_unlock_irqrestore(&rk_domain->dt_lock, flags); /* Shootdown iotlb entries for iova range that was just unmapped */ rk_iommu_zap_iova(rk_domain, iova, unmap_size); return unmap_size; } static struct rk_iommu *rk_iommu_from_dev(struct device *dev) { struct rk_iommudata *data = dev->archdata.iommu; return data ? data->iommu : NULL; } /* Must be called with iommu powered on and attached */ static void rk_iommu_disable(struct rk_iommu *iommu) { int i; /* Ignore error while disabling, just keep going */ WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks)); rk_iommu_enable_stall(iommu); rk_iommu_disable_paging(iommu); for (i = 0; i < iommu->num_mmu; i++) { rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, 0); rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, 0); } rk_iommu_disable_stall(iommu); clk_bulk_disable(iommu->num_clocks, iommu->clocks); } /* Must be called with iommu powered on and attached */ static int rk_iommu_enable(struct rk_iommu *iommu) { struct iommu_domain *domain = iommu->domain; struct rk_iommu_domain *rk_domain = to_rk_domain(domain); int ret, i; ret = clk_bulk_enable(iommu->num_clocks, iommu->clocks); if (ret) return ret; ret = rk_iommu_enable_stall(iommu); if (ret) goto out_disable_clocks; ret = rk_iommu_force_reset(iommu); if (ret) goto out_disable_stall; for (i = 0; i < iommu->num_mmu; i++) { rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, rk_domain->dt_dma); rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE); rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, RK_MMU_IRQ_MASK); } ret = rk_iommu_enable_paging(iommu); out_disable_stall: rk_iommu_disable_stall(iommu); out_disable_clocks: clk_bulk_disable(iommu->num_clocks, iommu->clocks); return ret; } static void rk_iommu_detach_device(struct iommu_domain *domain, struct device *dev) { struct rk_iommu *iommu; struct rk_iommu_domain *rk_domain = to_rk_domain(domain); unsigned long flags; /* Allow 'virtual devices' (eg drm) to detach from domain */ iommu = rk_iommu_from_dev(dev); if (!iommu) return; dev_dbg(dev, "Detaching from iommu domain\n"); /* iommu already detached */ if (iommu->domain != domain) return; iommu->domain = NULL; spin_lock_irqsave(&rk_domain->iommus_lock, flags); list_del_init(&iommu->node); spin_unlock_irqrestore(&rk_domain->iommus_lock, flags); if (pm_runtime_get_if_in_use(iommu->dev)) { rk_iommu_disable(iommu); pm_runtime_put(iommu->dev); } } static int rk_iommu_attach_device(struct iommu_domain *domain, struct device *dev) { struct rk_iommu *iommu; struct rk_iommu_domain *rk_domain = to_rk_domain(domain); unsigned long flags; int ret; /* * Allow 'virtual devices' (e.g., drm) to attach to domain. * Such a device does not belong to an iommu group. */ iommu = rk_iommu_from_dev(dev); if (!iommu) return 0; dev_dbg(dev, "Attaching to iommu domain\n"); /* iommu already attached */ if (iommu->domain == domain) return 0; if (iommu->domain) rk_iommu_detach_device(iommu->domain, dev); iommu->domain = domain; spin_lock_irqsave(&rk_domain->iommus_lock, flags); list_add_tail(&iommu->node, &rk_domain->iommus); spin_unlock_irqrestore(&rk_domain->iommus_lock, flags); if (!pm_runtime_get_if_in_use(iommu->dev)) return 0; ret = rk_iommu_enable(iommu); if (ret) rk_iommu_detach_device(iommu->domain, dev); pm_runtime_put(iommu->dev); return ret; } static struct iommu_domain *rk_iommu_domain_alloc(unsigned type) { struct rk_iommu_domain *rk_domain; if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA) return NULL; if (!dma_dev) return NULL; rk_domain = devm_kzalloc(dma_dev, sizeof(*rk_domain), GFP_KERNEL); if (!rk_domain) return NULL; if (type == IOMMU_DOMAIN_DMA && iommu_get_dma_cookie(&rk_domain->domain)) return NULL; /* * rk32xx iommus use a 2 level pagetable. * Each level1 (dt) and level2 (pt) table has 1024 4-byte entries. * Allocate one 4 KiB page for each table. */ rk_domain->dt = (u32 *)get_zeroed_page(GFP_KERNEL | GFP_DMA32); if (!rk_domain->dt) goto err_put_cookie; rk_domain->dt_dma = dma_map_single(dma_dev, rk_domain->dt, SPAGE_SIZE, DMA_TO_DEVICE); if (dma_mapping_error(dma_dev, rk_domain->dt_dma)) { dev_err(dma_dev, "DMA map error for DT\n"); goto err_free_dt; } rk_table_flush(rk_domain, rk_domain->dt_dma, NUM_DT_ENTRIES); spin_lock_init(&rk_domain->iommus_lock); spin_lock_init(&rk_domain->dt_lock); INIT_LIST_HEAD(&rk_domain->iommus); rk_domain->domain.geometry.aperture_start = 0; rk_domain->domain.geometry.aperture_end = DMA_BIT_MASK(32); rk_domain->domain.geometry.force_aperture = true; return &rk_domain->domain; err_free_dt: free_page((unsigned long)rk_domain->dt); err_put_cookie: if (type == IOMMU_DOMAIN_DMA) iommu_put_dma_cookie(&rk_domain->domain); return NULL; } static void rk_iommu_domain_free(struct iommu_domain *domain) { struct rk_iommu_domain *rk_domain = to_rk_domain(domain); int i; WARN_ON(!list_empty(&rk_domain->iommus)); for (i = 0; i < NUM_DT_ENTRIES; i++) { u32 dte = rk_domain->dt[i]; if (rk_dte_is_pt_valid(dte)) { phys_addr_t pt_phys = rk_dte_pt_address(dte); u32 *page_table = phys_to_virt(pt_phys); dma_unmap_single(dma_dev, pt_phys, SPAGE_SIZE, DMA_TO_DEVICE); free_page((unsigned long)page_table); } } dma_unmap_single(dma_dev, rk_domain->dt_dma, SPAGE_SIZE, DMA_TO_DEVICE); free_page((unsigned long)rk_domain->dt); if (domain->type == IOMMU_DOMAIN_DMA) iommu_put_dma_cookie(&rk_domain->domain); } static int rk_iommu_add_device(struct device *dev) { struct iommu_group *group; struct rk_iommu *iommu; struct rk_iommudata *data; data = dev->archdata.iommu; if (!data) return -ENODEV; iommu = rk_iommu_from_dev(dev); group = iommu_group_get_for_dev(dev); if (IS_ERR(group)) return PTR_ERR(group); iommu_group_put(group); iommu_device_link(&iommu->iommu, dev); data->link = device_link_add(dev, iommu->dev, DL_FLAG_PM_RUNTIME); return 0; } static void rk_iommu_remove_device(struct device *dev) { struct rk_iommu *iommu; struct rk_iommudata *data = dev->archdata.iommu; iommu = rk_iommu_from_dev(dev); device_link_del(data->link); iommu_device_unlink(&iommu->iommu, dev); iommu_group_remove_device(dev); } static struct iommu_group *rk_iommu_device_group(struct device *dev) { struct rk_iommu *iommu; iommu = rk_iommu_from_dev(dev); return iommu_group_ref_get(iommu->group); } static int rk_iommu_of_xlate(struct device *dev, struct of_phandle_args *args) { struct platform_device *iommu_dev; struct rk_iommudata *data; data = devm_kzalloc(dma_dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; iommu_dev = of_find_device_by_node(args->np); data->iommu = platform_get_drvdata(iommu_dev); dev->archdata.iommu = data; platform_device_put(iommu_dev); return 0; } static const struct iommu_ops rk_iommu_ops = { .domain_alloc = rk_iommu_domain_alloc, .domain_free = rk_iommu_domain_free, .attach_dev = rk_iommu_attach_device, .detach_dev = rk_iommu_detach_device, .map = rk_iommu_map, .unmap = rk_iommu_unmap, .map_sg = default_iommu_map_sg, .add_device = rk_iommu_add_device, .remove_device = rk_iommu_remove_device, .iova_to_phys = rk_iommu_iova_to_phys, .device_group = rk_iommu_device_group, .pgsize_bitmap = RK_IOMMU_PGSIZE_BITMAP, .of_xlate = rk_iommu_of_xlate, }; static int rk_iommu_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct rk_iommu *iommu; struct resource *res; int num_res = pdev->num_resources; int err, i, irq; iommu = devm_kzalloc(dev, sizeof(*iommu), GFP_KERNEL); if (!iommu) return -ENOMEM; platform_set_drvdata(pdev, iommu); iommu->dev = dev; iommu->num_mmu = 0; iommu->bases = devm_kcalloc(dev, num_res, sizeof(*iommu->bases), GFP_KERNEL); if (!iommu->bases) return -ENOMEM; for (i = 0; i < num_res; i++) { res = platform_get_resource(pdev, IORESOURCE_MEM, i); if (!res) continue; iommu->bases[i] = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(iommu->bases[i])) continue; iommu->num_mmu++; } if (iommu->num_mmu == 0) return PTR_ERR(iommu->bases[0]); i = 0; while ((irq = platform_get_irq(pdev, i++)) != -ENXIO) { if (irq < 0) return irq; err = devm_request_irq(iommu->dev, irq, rk_iommu_irq, IRQF_SHARED, dev_name(dev), iommu); if (err) return err; } iommu->reset_disabled = device_property_read_bool(dev, "rockchip,disable-mmu-reset"); iommu->num_clocks = ARRAY_SIZE(rk_iommu_clocks); iommu->clocks = devm_kcalloc(iommu->dev, iommu->num_clocks, sizeof(*iommu->clocks), GFP_KERNEL); if (!iommu->clocks) return -ENOMEM; for (i = 0; i < iommu->num_clocks; ++i) iommu->clocks[i].id = rk_iommu_clocks[i]; /* * iommu clocks should be present for all new devices and devicetrees * but there are older devicetrees without clocks out in the wild. * So clocks as optional for the time being. */ err = devm_clk_bulk_get(iommu->dev, iommu->num_clocks, iommu->clocks); if (err == -ENOENT) iommu->num_clocks = 0; else if (err) return err; err = clk_bulk_prepare(iommu->num_clocks, iommu->clocks); if (err) return err; iommu->group = iommu_group_alloc(); if (IS_ERR(iommu->group)) { err = PTR_ERR(iommu->group); goto err_unprepare_clocks; } err = iommu_device_sysfs_add(&iommu->iommu, dev, NULL, dev_name(dev)); if (err) goto err_put_group; iommu_device_set_ops(&iommu->iommu, &rk_iommu_ops); iommu_device_set_fwnode(&iommu->iommu, &dev->of_node->fwnode); err = iommu_device_register(&iommu->iommu); if (err) goto err_remove_sysfs; /* * Use the first registered IOMMU device for domain to use with DMA * API, since a domain might not physically correspond to a single * IOMMU device.. */ if (!dma_dev) dma_dev = &pdev->dev; bus_set_iommu(&platform_bus_type, &rk_iommu_ops); pm_runtime_enable(dev); return 0; err_remove_sysfs: iommu_device_sysfs_remove(&iommu->iommu); err_put_group: iommu_group_put(iommu->group); err_unprepare_clocks: clk_bulk_unprepare(iommu->num_clocks, iommu->clocks); return err; } static void rk_iommu_shutdown(struct platform_device *pdev) { pm_runtime_force_suspend(&pdev->dev); } static int __maybe_unused rk_iommu_suspend(struct device *dev) { struct rk_iommu *iommu = dev_get_drvdata(dev); if (!iommu->domain) return 0; rk_iommu_disable(iommu); return 0; } static int __maybe_unused rk_iommu_resume(struct device *dev) { struct rk_iommu *iommu = dev_get_drvdata(dev); if (!iommu->domain) return 0; return rk_iommu_enable(iommu); } static const struct dev_pm_ops rk_iommu_pm_ops = { SET_RUNTIME_PM_OPS(rk_iommu_suspend, rk_iommu_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) }; static const struct of_device_id rk_iommu_dt_ids[] = { { .compatible = "rockchip,iommu" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, rk_iommu_dt_ids); static struct platform_driver rk_iommu_driver = { .probe = rk_iommu_probe, .shutdown = rk_iommu_shutdown, .driver = { .name = "rk_iommu", .of_match_table = rk_iommu_dt_ids, .pm = &rk_iommu_pm_ops, .suppress_bind_attrs = true, }, }; static int __init rk_iommu_init(void) { return platform_driver_register(&rk_iommu_driver); } subsys_initcall(rk_iommu_init); IOMMU_OF_DECLARE(rk_iommu_of, "rockchip,iommu"); MODULE_DESCRIPTION("IOMMU API for Rockchip"); MODULE_AUTHOR("Simon Xue and Daniel Kurtz "); MODULE_ALIAS("platform:rockchip-iommu"); MODULE_LICENSE("GPL v2");