/* * CPU-agnostic ARM page table allocator. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * Copyright (C) 2014 ARM Limited * * Author: Will Deacon */ #define pr_fmt(fmt) "arm-lpae io-pgtable: " fmt #include #include #include #include #include #include "io-pgtable.h" #define ARM_LPAE_MAX_ADDR_BITS 48 #define ARM_LPAE_S2_MAX_CONCAT_PAGES 16 #define ARM_LPAE_MAX_LEVELS 4 /* Struct accessors */ #define io_pgtable_to_data(x) \ container_of((x), struct arm_lpae_io_pgtable, iop) #define io_pgtable_ops_to_pgtable(x) \ container_of((x), struct io_pgtable, ops) #define io_pgtable_ops_to_data(x) \ io_pgtable_to_data(io_pgtable_ops_to_pgtable(x)) /* * For consistency with the architecture, we always consider * ARM_LPAE_MAX_LEVELS levels, with the walk starting at level n >=0 */ #define ARM_LPAE_START_LVL(d) (ARM_LPAE_MAX_LEVELS - (d)->levels) /* * Calculate the right shift amount to get to the portion describing level l * in a virtual address mapped by the pagetable in d. */ #define ARM_LPAE_LVL_SHIFT(l,d) \ ((((d)->levels - ((l) - ARM_LPAE_START_LVL(d) + 1)) \ * (d)->bits_per_level) + (d)->pg_shift) #define ARM_LPAE_PAGES_PER_PGD(d) ((d)->pgd_size >> (d)->pg_shift) /* * Calculate the index at level l used to map virtual address a using the * pagetable in d. */ #define ARM_LPAE_PGD_IDX(l,d) \ ((l) == ARM_LPAE_START_LVL(d) ? ilog2(ARM_LPAE_PAGES_PER_PGD(d)) : 0) #define ARM_LPAE_LVL_IDX(a,l,d) \ (((a) >> ARM_LPAE_LVL_SHIFT(l,d)) & \ ((1 << ((d)->bits_per_level + ARM_LPAE_PGD_IDX(l,d))) - 1)) /* Calculate the block/page mapping size at level l for pagetable in d. */ #define ARM_LPAE_BLOCK_SIZE(l,d) \ (1 << (ilog2(sizeof(arm_lpae_iopte)) + \ ((ARM_LPAE_MAX_LEVELS - (l)) * (d)->bits_per_level))) /* Page table bits */ #define ARM_LPAE_PTE_TYPE_SHIFT 0 #define ARM_LPAE_PTE_TYPE_MASK 0x3 #define ARM_LPAE_PTE_TYPE_BLOCK 1 #define ARM_LPAE_PTE_TYPE_TABLE 3 #define ARM_LPAE_PTE_TYPE_PAGE 3 #define ARM_LPAE_PTE_NSTABLE (((arm_lpae_iopte)1) << 63) #define ARM_LPAE_PTE_XN (((arm_lpae_iopte)3) << 53) #define ARM_LPAE_PTE_AF (((arm_lpae_iopte)1) << 10) #define ARM_LPAE_PTE_SH_NS (((arm_lpae_iopte)0) << 8) #define ARM_LPAE_PTE_SH_OS (((arm_lpae_iopte)2) << 8) #define ARM_LPAE_PTE_SH_IS (((arm_lpae_iopte)3) << 8) #define ARM_LPAE_PTE_NS (((arm_lpae_iopte)1) << 5) #define ARM_LPAE_PTE_VALID (((arm_lpae_iopte)1) << 0) #define ARM_LPAE_PTE_ATTR_LO_MASK (((arm_lpae_iopte)0x3ff) << 2) /* Ignore the contiguous bit for block splitting */ #define ARM_LPAE_PTE_ATTR_HI_MASK (((arm_lpae_iopte)6) << 52) #define ARM_LPAE_PTE_ATTR_MASK (ARM_LPAE_PTE_ATTR_LO_MASK | \ ARM_LPAE_PTE_ATTR_HI_MASK) /* Stage-1 PTE */ #define ARM_LPAE_PTE_AP_UNPRIV (((arm_lpae_iopte)1) << 6) #define ARM_LPAE_PTE_AP_RDONLY (((arm_lpae_iopte)2) << 6) #define ARM_LPAE_PTE_ATTRINDX_SHIFT 2 #define ARM_LPAE_PTE_nG (((arm_lpae_iopte)1) << 11) /* Stage-2 PTE */ #define ARM_LPAE_PTE_HAP_FAULT (((arm_lpae_iopte)0) << 6) #define ARM_LPAE_PTE_HAP_READ (((arm_lpae_iopte)1) << 6) #define ARM_LPAE_PTE_HAP_WRITE (((arm_lpae_iopte)2) << 6) #define ARM_LPAE_PTE_MEMATTR_OIWB (((arm_lpae_iopte)0xf) << 2) #define ARM_LPAE_PTE_MEMATTR_NC (((arm_lpae_iopte)0x5) << 2) #define ARM_LPAE_PTE_MEMATTR_DEV (((arm_lpae_iopte)0x1) << 2) /* Register bits */ #define ARM_32_LPAE_TCR_EAE (1 << 31) #define ARM_64_LPAE_S2_TCR_RES1 (1 << 31) #define ARM_LPAE_TCR_TG0_4K (0 << 14) #define ARM_LPAE_TCR_TG0_64K (1 << 14) #define ARM_LPAE_TCR_TG0_16K (2 << 14) #define ARM_LPAE_TCR_SH0_SHIFT 12 #define ARM_LPAE_TCR_SH0_MASK 0x3 #define ARM_LPAE_TCR_SH_NS 0 #define ARM_LPAE_TCR_SH_OS 2 #define ARM_LPAE_TCR_SH_IS 3 #define ARM_LPAE_TCR_ORGN0_SHIFT 10 #define ARM_LPAE_TCR_IRGN0_SHIFT 8 #define ARM_LPAE_TCR_RGN_MASK 0x3 #define ARM_LPAE_TCR_RGN_NC 0 #define ARM_LPAE_TCR_RGN_WBWA 1 #define ARM_LPAE_TCR_RGN_WT 2 #define ARM_LPAE_TCR_RGN_WB 3 #define ARM_LPAE_TCR_SL0_SHIFT 6 #define ARM_LPAE_TCR_SL0_MASK 0x3 #define ARM_LPAE_TCR_T0SZ_SHIFT 0 #define ARM_LPAE_TCR_SZ_MASK 0xf #define ARM_LPAE_TCR_PS_SHIFT 16 #define ARM_LPAE_TCR_PS_MASK 0x7 #define ARM_LPAE_TCR_IPS_SHIFT 32 #define ARM_LPAE_TCR_IPS_MASK 0x7 #define ARM_LPAE_TCR_PS_32_BIT 0x0ULL #define ARM_LPAE_TCR_PS_36_BIT 0x1ULL #define ARM_LPAE_TCR_PS_40_BIT 0x2ULL #define ARM_LPAE_TCR_PS_42_BIT 0x3ULL #define ARM_LPAE_TCR_PS_44_BIT 0x4ULL #define ARM_LPAE_TCR_PS_48_BIT 0x5ULL #define ARM_LPAE_MAIR_ATTR_SHIFT(n) ((n) << 3) #define ARM_LPAE_MAIR_ATTR_MASK 0xff #define ARM_LPAE_MAIR_ATTR_DEVICE 0x04 #define ARM_LPAE_MAIR_ATTR_NC 0x44 #define ARM_LPAE_MAIR_ATTR_WBRWA 0xff #define ARM_LPAE_MAIR_ATTR_IDX_NC 0 #define ARM_LPAE_MAIR_ATTR_IDX_CACHE 1 #define ARM_LPAE_MAIR_ATTR_IDX_DEV 2 /* IOPTE accessors */ #define iopte_deref(pte,d) \ (__va((pte) & ((1ULL << ARM_LPAE_MAX_ADDR_BITS) - 1) \ & ~((1ULL << (d)->pg_shift) - 1))) #define iopte_type(pte,l) \ (((pte) >> ARM_LPAE_PTE_TYPE_SHIFT) & ARM_LPAE_PTE_TYPE_MASK) #define iopte_prot(pte) ((pte) & ARM_LPAE_PTE_ATTR_MASK) #define iopte_leaf(pte,l) \ (l == (ARM_LPAE_MAX_LEVELS - 1) ? \ (iopte_type(pte,l) == ARM_LPAE_PTE_TYPE_PAGE) : \ (iopte_type(pte,l) == ARM_LPAE_PTE_TYPE_BLOCK)) #define iopte_to_pfn(pte,d) \ (((pte) & ((1ULL << ARM_LPAE_MAX_ADDR_BITS) - 1)) >> (d)->pg_shift) #define pfn_to_iopte(pfn,d) \ (((pfn) << (d)->pg_shift) & ((1ULL << ARM_LPAE_MAX_ADDR_BITS) - 1)) struct arm_lpae_io_pgtable { struct io_pgtable iop; int levels; size_t pgd_size; unsigned long pg_shift; unsigned long bits_per_level; void *pgd; }; typedef u64 arm_lpae_iopte; static bool selftest_running = false; static int arm_lpae_init_pte(struct arm_lpae_io_pgtable *data, unsigned long iova, phys_addr_t paddr, arm_lpae_iopte prot, int lvl, arm_lpae_iopte *ptep) { arm_lpae_iopte pte = prot; /* We require an unmap first */ if (iopte_leaf(*ptep, lvl)) { WARN_ON(!selftest_running); return -EEXIST; } if (data->iop.cfg.quirks & IO_PGTABLE_QUIRK_ARM_NS) pte |= ARM_LPAE_PTE_NS; if (lvl == ARM_LPAE_MAX_LEVELS - 1) pte |= ARM_LPAE_PTE_TYPE_PAGE; else pte |= ARM_LPAE_PTE_TYPE_BLOCK; pte |= ARM_LPAE_PTE_AF | ARM_LPAE_PTE_SH_IS; pte |= pfn_to_iopte(paddr >> data->pg_shift, data); *ptep = pte; data->iop.cfg.tlb->flush_pgtable(ptep, sizeof(*ptep), data->iop.cookie); return 0; } static int __arm_lpae_map(struct arm_lpae_io_pgtable *data, unsigned long iova, phys_addr_t paddr, size_t size, arm_lpae_iopte prot, int lvl, arm_lpae_iopte *ptep) { arm_lpae_iopte *cptep, pte; void *cookie = data->iop.cookie; size_t block_size = ARM_LPAE_BLOCK_SIZE(lvl, data); /* Find our entry at the current level */ ptep += ARM_LPAE_LVL_IDX(iova, lvl, data); /* If we can install a leaf entry at this level, then do so */ if (size == block_size && (size & data->iop.cfg.pgsize_bitmap)) return arm_lpae_init_pte(data, iova, paddr, prot, lvl, ptep); /* We can't allocate tables at the final level */ if (WARN_ON(lvl >= ARM_LPAE_MAX_LEVELS - 1)) return -EINVAL; /* Grab a pointer to the next level */ pte = *ptep; if (!pte) { cptep = alloc_pages_exact(1UL << data->pg_shift, GFP_ATOMIC | __GFP_ZERO); if (!cptep) return -ENOMEM; data->iop.cfg.tlb->flush_pgtable(cptep, 1UL << data->pg_shift, cookie); pte = __pa(cptep) | ARM_LPAE_PTE_TYPE_TABLE; if (data->iop.cfg.quirks & IO_PGTABLE_QUIRK_ARM_NS) pte |= ARM_LPAE_PTE_NSTABLE; *ptep = pte; data->iop.cfg.tlb->flush_pgtable(ptep, sizeof(*ptep), cookie); } else { cptep = iopte_deref(pte, data); } /* Rinse, repeat */ return __arm_lpae_map(data, iova, paddr, size, prot, lvl + 1, cptep); } static arm_lpae_iopte arm_lpae_prot_to_pte(struct arm_lpae_io_pgtable *data, int prot) { arm_lpae_iopte pte; if (data->iop.fmt == ARM_64_LPAE_S1 || data->iop.fmt == ARM_32_LPAE_S1) { pte = ARM_LPAE_PTE_AP_UNPRIV | ARM_LPAE_PTE_nG; if (!(prot & IOMMU_WRITE) && (prot & IOMMU_READ)) pte |= ARM_LPAE_PTE_AP_RDONLY; if (prot & IOMMU_CACHE) pte |= (ARM_LPAE_MAIR_ATTR_IDX_CACHE << ARM_LPAE_PTE_ATTRINDX_SHIFT); } else { pte = ARM_LPAE_PTE_HAP_FAULT; if (prot & IOMMU_READ) pte |= ARM_LPAE_PTE_HAP_READ; if (prot & IOMMU_WRITE) pte |= ARM_LPAE_PTE_HAP_WRITE; if (prot & IOMMU_CACHE) pte |= ARM_LPAE_PTE_MEMATTR_OIWB; else pte |= ARM_LPAE_PTE_MEMATTR_NC; } if (prot & IOMMU_NOEXEC) pte |= ARM_LPAE_PTE_XN; return pte; } static int arm_lpae_map(struct io_pgtable_ops *ops, unsigned long iova, phys_addr_t paddr, size_t size, int iommu_prot) { struct arm_lpae_io_pgtable *data = io_pgtable_ops_to_data(ops); arm_lpae_iopte *ptep = data->pgd; int lvl = ARM_LPAE_START_LVL(data); arm_lpae_iopte prot; /* If no access, then nothing to do */ if (!(iommu_prot & (IOMMU_READ | IOMMU_WRITE))) return 0; prot = arm_lpae_prot_to_pte(data, iommu_prot); return __arm_lpae_map(data, iova, paddr, size, prot, lvl, ptep); } static void __arm_lpae_free_pgtable(struct arm_lpae_io_pgtable *data, int lvl, arm_lpae_iopte *ptep) { arm_lpae_iopte *start, *end; unsigned long table_size; /* Only leaf entries at the last level */ if (lvl == ARM_LPAE_MAX_LEVELS - 1) return; if (lvl == ARM_LPAE_START_LVL(data)) table_size = data->pgd_size; else table_size = 1UL << data->pg_shift; start = ptep; end = (void *)ptep + table_size; while (ptep != end) { arm_lpae_iopte pte = *ptep++; if (!pte || iopte_leaf(pte, lvl)) continue; __arm_lpae_free_pgtable(data, lvl + 1, iopte_deref(pte, data)); } free_pages_exact(start, table_size); } static void arm_lpae_free_pgtable(struct io_pgtable *iop) { struct arm_lpae_io_pgtable *data = io_pgtable_to_data(iop); __arm_lpae_free_pgtable(data, ARM_LPAE_START_LVL(data), data->pgd); kfree(data); } static int arm_lpae_split_blk_unmap(struct arm_lpae_io_pgtable *data, unsigned long iova, size_t size, arm_lpae_iopte prot, int lvl, arm_lpae_iopte *ptep, size_t blk_size) { unsigned long blk_start, blk_end; phys_addr_t blk_paddr; arm_lpae_iopte table = 0; void *cookie = data->iop.cookie; const struct iommu_gather_ops *tlb = data->iop.cfg.tlb; blk_start = iova & ~(blk_size - 1); blk_end = blk_start + blk_size; blk_paddr = iopte_to_pfn(*ptep, data) << data->pg_shift; for (; blk_start < blk_end; blk_start += size, blk_paddr += size) { arm_lpae_iopte *tablep; /* Unmap! */ if (blk_start == iova) continue; /* __arm_lpae_map expects a pointer to the start of the table */ tablep = &table - ARM_LPAE_LVL_IDX(blk_start, lvl, data); if (__arm_lpae_map(data, blk_start, blk_paddr, size, prot, lvl, tablep) < 0) { if (table) { /* Free the table we allocated */ tablep = iopte_deref(table, data); __arm_lpae_free_pgtable(data, lvl + 1, tablep); } return 0; /* Bytes unmapped */ } } *ptep = table; tlb->flush_pgtable(ptep, sizeof(*ptep), cookie); iova &= ~(blk_size - 1); tlb->tlb_add_flush(iova, blk_size, true, cookie); return size; } static int __arm_lpae_unmap(struct arm_lpae_io_pgtable *data, unsigned long iova, size_t size, int lvl, arm_lpae_iopte *ptep) { arm_lpae_iopte pte; const struct iommu_gather_ops *tlb = data->iop.cfg.tlb; void *cookie = data->iop.cookie; size_t blk_size = ARM_LPAE_BLOCK_SIZE(lvl, data); ptep += ARM_LPAE_LVL_IDX(iova, lvl, data); pte = *ptep; /* Something went horribly wrong and we ran out of page table */ if (WARN_ON(!pte || (lvl == ARM_LPAE_MAX_LEVELS))) return 0; /* If the size matches this level, we're in the right place */ if (size == blk_size) { *ptep = 0; tlb->flush_pgtable(ptep, sizeof(*ptep), cookie); if (!iopte_leaf(pte, lvl)) { /* Also flush any partial walks */ tlb->tlb_add_flush(iova, size, false, cookie); tlb->tlb_sync(data->iop.cookie); ptep = iopte_deref(pte, data); __arm_lpae_free_pgtable(data, lvl + 1, ptep); } else { tlb->tlb_add_flush(iova, size, true, cookie); } return size; } else if (iopte_leaf(pte, lvl)) { /* * Insert a table at the next level to map the old region, * minus the part we want to unmap */ return arm_lpae_split_blk_unmap(data, iova, size, iopte_prot(pte), lvl, ptep, blk_size); } /* Keep on walkin' */ ptep = iopte_deref(pte, data); return __arm_lpae_unmap(data, iova, size, lvl + 1, ptep); } static int arm_lpae_unmap(struct io_pgtable_ops *ops, unsigned long iova, size_t size) { size_t unmapped; struct arm_lpae_io_pgtable *data = io_pgtable_ops_to_data(ops); struct io_pgtable *iop = &data->iop; arm_lpae_iopte *ptep = data->pgd; int lvl = ARM_LPAE_START_LVL(data); unmapped = __arm_lpae_unmap(data, iova, size, lvl, ptep); if (unmapped) iop->cfg.tlb->tlb_sync(iop->cookie); return unmapped; } static phys_addr_t arm_lpae_iova_to_phys(struct io_pgtable_ops *ops, unsigned long iova) { struct arm_lpae_io_pgtable *data = io_pgtable_ops_to_data(ops); arm_lpae_iopte pte, *ptep = data->pgd; int lvl = ARM_LPAE_START_LVL(data); do { /* Valid IOPTE pointer? */ if (!ptep) return 0; /* Grab the IOPTE we're interested in */ pte = *(ptep + ARM_LPAE_LVL_IDX(iova, lvl, data)); /* Valid entry? */ if (!pte) return 0; /* Leaf entry? */ if (iopte_leaf(pte,lvl)) goto found_translation; /* Take it to the next level */ ptep = iopte_deref(pte, data); } while (++lvl < ARM_LPAE_MAX_LEVELS); /* Ran out of page tables to walk */ return 0; found_translation: iova &= ((1 << data->pg_shift) - 1); return ((phys_addr_t)iopte_to_pfn(pte,data) << data->pg_shift) | iova; } static void arm_lpae_restrict_pgsizes(struct io_pgtable_cfg *cfg) { unsigned long granule; /* * We need to restrict the supported page sizes to match the * translation regime for a particular granule. Aim to match * the CPU page size if possible, otherwise prefer smaller sizes. * While we're at it, restrict the block sizes to match the * chosen granule. */ if (cfg->pgsize_bitmap & PAGE_SIZE) granule = PAGE_SIZE; else if (cfg->pgsize_bitmap & ~PAGE_MASK) granule = 1UL << __fls(cfg->pgsize_bitmap & ~PAGE_MASK); else if (cfg->pgsize_bitmap & PAGE_MASK) granule = 1UL << __ffs(cfg->pgsize_bitmap & PAGE_MASK); else granule = 0; switch (granule) { case SZ_4K: cfg->pgsize_bitmap &= (SZ_4K | SZ_2M | SZ_1G); break; case SZ_16K: cfg->pgsize_bitmap &= (SZ_16K | SZ_32M); break; case SZ_64K: cfg->pgsize_bitmap &= (SZ_64K | SZ_512M); break; default: cfg->pgsize_bitmap = 0; } } static struct arm_lpae_io_pgtable * arm_lpae_alloc_pgtable(struct io_pgtable_cfg *cfg) { unsigned long va_bits, pgd_bits; struct arm_lpae_io_pgtable *data; arm_lpae_restrict_pgsizes(cfg); if (!(cfg->pgsize_bitmap & (SZ_4K | SZ_16K | SZ_64K))) return NULL; if (cfg->ias > ARM_LPAE_MAX_ADDR_BITS) return NULL; if (cfg->oas > ARM_LPAE_MAX_ADDR_BITS) return NULL; data = kmalloc(sizeof(*data), GFP_KERNEL); if (!data) return NULL; data->pg_shift = __ffs(cfg->pgsize_bitmap); data->bits_per_level = data->pg_shift - ilog2(sizeof(arm_lpae_iopte)); va_bits = cfg->ias - data->pg_shift; data->levels = DIV_ROUND_UP(va_bits, data->bits_per_level); /* Calculate the actual size of our pgd (without concatenation) */ pgd_bits = va_bits - (data->bits_per_level * (data->levels - 1)); data->pgd_size = 1UL << (pgd_bits + ilog2(sizeof(arm_lpae_iopte))); data->iop.ops = (struct io_pgtable_ops) { .map = arm_lpae_map, .unmap = arm_lpae_unmap, .iova_to_phys = arm_lpae_iova_to_phys, }; return data; } static struct io_pgtable * arm_64_lpae_alloc_pgtable_s1(struct io_pgtable_cfg *cfg, void *cookie) { u64 reg; struct arm_lpae_io_pgtable *data = arm_lpae_alloc_pgtable(cfg); if (!data) return NULL; /* TCR */ reg = (ARM_LPAE_TCR_SH_IS << ARM_LPAE_TCR_SH0_SHIFT) | (ARM_LPAE_TCR_RGN_WBWA << ARM_LPAE_TCR_IRGN0_SHIFT) | (ARM_LPAE_TCR_RGN_WBWA << ARM_LPAE_TCR_ORGN0_SHIFT); switch (1 << data->pg_shift) { case SZ_4K: reg |= ARM_LPAE_TCR_TG0_4K; break; case SZ_16K: reg |= ARM_LPAE_TCR_TG0_16K; break; case SZ_64K: reg |= ARM_LPAE_TCR_TG0_64K; break; } switch (cfg->oas) { case 32: reg |= (ARM_LPAE_TCR_PS_32_BIT << ARM_LPAE_TCR_IPS_SHIFT); break; case 36: reg |= (ARM_LPAE_TCR_PS_36_BIT << ARM_LPAE_TCR_IPS_SHIFT); break; case 40: reg |= (ARM_LPAE_TCR_PS_40_BIT << ARM_LPAE_TCR_IPS_SHIFT); break; case 42: reg |= (ARM_LPAE_TCR_PS_42_BIT << ARM_LPAE_TCR_IPS_SHIFT); break; case 44: reg |= (ARM_LPAE_TCR_PS_44_BIT << ARM_LPAE_TCR_IPS_SHIFT); break; case 48: reg |= (ARM_LPAE_TCR_PS_48_BIT << ARM_LPAE_TCR_IPS_SHIFT); break; default: goto out_free_data; } reg |= (64ULL - cfg->ias) << ARM_LPAE_TCR_T0SZ_SHIFT; cfg->arm_lpae_s1_cfg.tcr = reg; /* MAIRs */ reg = (ARM_LPAE_MAIR_ATTR_NC << ARM_LPAE_MAIR_ATTR_SHIFT(ARM_LPAE_MAIR_ATTR_IDX_NC)) | (ARM_LPAE_MAIR_ATTR_WBRWA << ARM_LPAE_MAIR_ATTR_SHIFT(ARM_LPAE_MAIR_ATTR_IDX_CACHE)) | (ARM_LPAE_MAIR_ATTR_DEVICE << ARM_LPAE_MAIR_ATTR_SHIFT(ARM_LPAE_MAIR_ATTR_IDX_DEV)); cfg->arm_lpae_s1_cfg.mair[0] = reg; cfg->arm_lpae_s1_cfg.mair[1] = 0; /* Looking good; allocate a pgd */ data->pgd = alloc_pages_exact(data->pgd_size, GFP_KERNEL | __GFP_ZERO); if (!data->pgd) goto out_free_data; cfg->tlb->flush_pgtable(data->pgd, data->pgd_size, cookie); /* TTBRs */ cfg->arm_lpae_s1_cfg.ttbr[0] = virt_to_phys(data->pgd); cfg->arm_lpae_s1_cfg.ttbr[1] = 0; return &data->iop; out_free_data: kfree(data); return NULL; } static struct io_pgtable * arm_64_lpae_alloc_pgtable_s2(struct io_pgtable_cfg *cfg, void *cookie) { u64 reg, sl; struct arm_lpae_io_pgtable *data = arm_lpae_alloc_pgtable(cfg); if (!data) return NULL; /* * Concatenate PGDs at level 1 if possible in order to reduce * the depth of the stage-2 walk. */ if (data->levels == ARM_LPAE_MAX_LEVELS) { unsigned long pgd_pages; pgd_pages = data->pgd_size >> ilog2(sizeof(arm_lpae_iopte)); if (pgd_pages <= ARM_LPAE_S2_MAX_CONCAT_PAGES) { data->pgd_size = pgd_pages << data->pg_shift; data->levels--; } } /* VTCR */ reg = ARM_64_LPAE_S2_TCR_RES1 | (ARM_LPAE_TCR_SH_IS << ARM_LPAE_TCR_SH0_SHIFT) | (ARM_LPAE_TCR_RGN_WBWA << ARM_LPAE_TCR_IRGN0_SHIFT) | (ARM_LPAE_TCR_RGN_WBWA << ARM_LPAE_TCR_ORGN0_SHIFT); sl = ARM_LPAE_START_LVL(data); switch (1 << data->pg_shift) { case SZ_4K: reg |= ARM_LPAE_TCR_TG0_4K; sl++; /* SL0 format is different for 4K granule size */ break; case SZ_16K: reg |= ARM_LPAE_TCR_TG0_16K; break; case SZ_64K: reg |= ARM_LPAE_TCR_TG0_64K; break; } switch (cfg->oas) { case 32: reg |= (ARM_LPAE_TCR_PS_32_BIT << ARM_LPAE_TCR_PS_SHIFT); break; case 36: reg |= (ARM_LPAE_TCR_PS_36_BIT << ARM_LPAE_TCR_PS_SHIFT); break; case 40: reg |= (ARM_LPAE_TCR_PS_40_BIT << ARM_LPAE_TCR_PS_SHIFT); break; case 42: reg |= (ARM_LPAE_TCR_PS_42_BIT << ARM_LPAE_TCR_PS_SHIFT); break; case 44: reg |= (ARM_LPAE_TCR_PS_44_BIT << ARM_LPAE_TCR_PS_SHIFT); break; case 48: reg |= (ARM_LPAE_TCR_PS_48_BIT << ARM_LPAE_TCR_PS_SHIFT); break; default: goto out_free_data; } reg |= (64ULL - cfg->ias) << ARM_LPAE_TCR_T0SZ_SHIFT; reg |= (~sl & ARM_LPAE_TCR_SL0_MASK) << ARM_LPAE_TCR_SL0_SHIFT; cfg->arm_lpae_s2_cfg.vtcr = reg; /* Allocate pgd pages */ data->pgd = alloc_pages_exact(data->pgd_size, GFP_KERNEL | __GFP_ZERO); if (!data->pgd) goto out_free_data; cfg->tlb->flush_pgtable(data->pgd, data->pgd_size, cookie); /* VTTBR */ cfg->arm_lpae_s2_cfg.vttbr = virt_to_phys(data->pgd); return &data->iop; out_free_data: kfree(data); return NULL; } static struct io_pgtable * arm_32_lpae_alloc_pgtable_s1(struct io_pgtable_cfg *cfg, void *cookie) { struct io_pgtable *iop; if (cfg->ias > 32 || cfg->oas > 40) return NULL; cfg->pgsize_bitmap &= (SZ_4K | SZ_2M | SZ_1G); iop = arm_64_lpae_alloc_pgtable_s1(cfg, cookie); if (iop) { cfg->arm_lpae_s1_cfg.tcr |= ARM_32_LPAE_TCR_EAE; cfg->arm_lpae_s1_cfg.tcr &= 0xffffffff; } return iop; } static struct io_pgtable * arm_32_lpae_alloc_pgtable_s2(struct io_pgtable_cfg *cfg, void *cookie) { struct io_pgtable *iop; if (cfg->ias > 40 || cfg->oas > 40) return NULL; cfg->pgsize_bitmap &= (SZ_4K | SZ_2M | SZ_1G); iop = arm_64_lpae_alloc_pgtable_s2(cfg, cookie); if (iop) cfg->arm_lpae_s2_cfg.vtcr &= 0xffffffff; return iop; } struct io_pgtable_init_fns io_pgtable_arm_64_lpae_s1_init_fns = { .alloc = arm_64_lpae_alloc_pgtable_s1, .free = arm_lpae_free_pgtable, }; struct io_pgtable_init_fns io_pgtable_arm_64_lpae_s2_init_fns = { .alloc = arm_64_lpae_alloc_pgtable_s2, .free = arm_lpae_free_pgtable, }; struct io_pgtable_init_fns io_pgtable_arm_32_lpae_s1_init_fns = { .alloc = arm_32_lpae_alloc_pgtable_s1, .free = arm_lpae_free_pgtable, }; struct io_pgtable_init_fns io_pgtable_arm_32_lpae_s2_init_fns = { .alloc = arm_32_lpae_alloc_pgtable_s2, .free = arm_lpae_free_pgtable, }; #ifdef CONFIG_IOMMU_IO_PGTABLE_LPAE_SELFTEST static struct io_pgtable_cfg *cfg_cookie; static void dummy_tlb_flush_all(void *cookie) { WARN_ON(cookie != cfg_cookie); } static void dummy_tlb_add_flush(unsigned long iova, size_t size, bool leaf, void *cookie) { WARN_ON(cookie != cfg_cookie); WARN_ON(!(size & cfg_cookie->pgsize_bitmap)); } static void dummy_tlb_sync(void *cookie) { WARN_ON(cookie != cfg_cookie); } static void dummy_flush_pgtable(void *ptr, size_t size, void *cookie) { WARN_ON(cookie != cfg_cookie); } static struct iommu_gather_ops dummy_tlb_ops __initdata = { .tlb_flush_all = dummy_tlb_flush_all, .tlb_add_flush = dummy_tlb_add_flush, .tlb_sync = dummy_tlb_sync, .flush_pgtable = dummy_flush_pgtable, }; static void __init arm_lpae_dump_ops(struct io_pgtable_ops *ops) { struct arm_lpae_io_pgtable *data = io_pgtable_ops_to_data(ops); struct io_pgtable_cfg *cfg = &data->iop.cfg; pr_err("cfg: pgsize_bitmap 0x%lx, ias %u-bit\n", cfg->pgsize_bitmap, cfg->ias); pr_err("data: %d levels, 0x%zx pgd_size, %lu pg_shift, %lu bits_per_level, pgd @ %p\n", data->levels, data->pgd_size, data->pg_shift, data->bits_per_level, data->pgd); } #define __FAIL(ops, i) ({ \ WARN(1, "selftest: test failed for fmt idx %d\n", (i)); \ arm_lpae_dump_ops(ops); \ selftest_running = false; \ -EFAULT; \ }) static int __init arm_lpae_run_tests(struct io_pgtable_cfg *cfg) { static const enum io_pgtable_fmt fmts[] = { ARM_64_LPAE_S1, ARM_64_LPAE_S2, }; int i, j; unsigned long iova; size_t size; struct io_pgtable_ops *ops; selftest_running = true; for (i = 0; i < ARRAY_SIZE(fmts); ++i) { cfg_cookie = cfg; ops = alloc_io_pgtable_ops(fmts[i], cfg, cfg); if (!ops) { pr_err("selftest: failed to allocate io pgtable ops\n"); return -ENOMEM; } /* * Initial sanity checks. * Empty page tables shouldn't provide any translations. */ if (ops->iova_to_phys(ops, 42)) return __FAIL(ops, i); if (ops->iova_to_phys(ops, SZ_1G + 42)) return __FAIL(ops, i); if (ops->iova_to_phys(ops, SZ_2G + 42)) return __FAIL(ops, i); /* * Distinct mappings of different granule sizes. */ iova = 0; j = find_first_bit(&cfg->pgsize_bitmap, BITS_PER_LONG); while (j != BITS_PER_LONG) { size = 1UL << j; if (ops->map(ops, iova, iova, size, IOMMU_READ | IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_CACHE)) return __FAIL(ops, i); /* Overlapping mappings */ if (!ops->map(ops, iova, iova + size, size, IOMMU_READ | IOMMU_NOEXEC)) return __FAIL(ops, i); if (ops->iova_to_phys(ops, iova + 42) != (iova + 42)) return __FAIL(ops, i); iova += SZ_1G; j++; j = find_next_bit(&cfg->pgsize_bitmap, BITS_PER_LONG, j); } /* Partial unmap */ size = 1UL << __ffs(cfg->pgsize_bitmap); if (ops->unmap(ops, SZ_1G + size, size) != size) return __FAIL(ops, i); /* Remap of partial unmap */ if (ops->map(ops, SZ_1G + size, size, size, IOMMU_READ)) return __FAIL(ops, i); if (ops->iova_to_phys(ops, SZ_1G + size + 42) != (size + 42)) return __FAIL(ops, i); /* Full unmap */ iova = 0; j = find_first_bit(&cfg->pgsize_bitmap, BITS_PER_LONG); while (j != BITS_PER_LONG) { size = 1UL << j; if (ops->unmap(ops, iova, size) != size) return __FAIL(ops, i); if (ops->iova_to_phys(ops, iova + 42)) return __FAIL(ops, i); /* Remap full block */ if (ops->map(ops, iova, iova, size, IOMMU_WRITE)) return __FAIL(ops, i); if (ops->iova_to_phys(ops, iova + 42) != (iova + 42)) return __FAIL(ops, i); iova += SZ_1G; j++; j = find_next_bit(&cfg->pgsize_bitmap, BITS_PER_LONG, j); } free_io_pgtable_ops(ops); } selftest_running = false; return 0; } static int __init arm_lpae_do_selftests(void) { static const unsigned long pgsize[] = { SZ_4K | SZ_2M | SZ_1G, SZ_16K | SZ_32M, SZ_64K | SZ_512M, }; static const unsigned int ias[] = { 32, 36, 40, 42, 44, 48, }; int i, j, pass = 0, fail = 0; struct io_pgtable_cfg cfg = { .tlb = &dummy_tlb_ops, .oas = 48, }; for (i = 0; i < ARRAY_SIZE(pgsize); ++i) { for (j = 0; j < ARRAY_SIZE(ias); ++j) { cfg.pgsize_bitmap = pgsize[i]; cfg.ias = ias[j]; pr_info("selftest: pgsize_bitmap 0x%08lx, IAS %u\n", pgsize[i], ias[j]); if (arm_lpae_run_tests(&cfg)) fail++; else pass++; } } pr_info("selftest: completed with %d PASS %d FAIL\n", pass, fail); return fail ? -EFAULT : 0; } subsys_initcall(arm_lpae_do_selftests); #endif