/* * IEEE 1394 for Linux * * Core support: hpsb_packet management, packet handling and forwarding to * highlevel or lowlevel code * * Copyright (C) 1999, 2000 Andreas E. Bombe * 2002 Manfred Weihs * * This code is licensed under the GPL. See the file COPYING in the root * directory of the kernel sources for details. * * * Contributions: * * Manfred Weihs * loopback functionality in hpsb_send_packet * allow highlevel drivers to disable automatic response generation * and to generate responses themselves (deferred) * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ieee1394_types.h" #include "ieee1394.h" #include "hosts.h" #include "ieee1394_core.h" #include "highlevel.h" #include "ieee1394_transactions.h" #include "csr.h" #include "nodemgr.h" #include "dma.h" #include "iso.h" #include "config_roms.h" /* * Disable the nodemgr detection and config rom reading functionality. */ static int disable_nodemgr; module_param(disable_nodemgr, int, 0444); MODULE_PARM_DESC(disable_nodemgr, "Disable nodemgr functionality."); /* Disable Isochronous Resource Manager functionality */ int hpsb_disable_irm = 0; module_param_named(disable_irm, hpsb_disable_irm, bool, 0444); MODULE_PARM_DESC(disable_irm, "Disable Isochronous Resource Manager functionality."); /* We are GPL, so treat us special */ MODULE_LICENSE("GPL"); /* Some globals used */ const char *hpsb_speedto_str[] = { "S100", "S200", "S400", "S800", "S1600", "S3200" }; struct class *hpsb_protocol_class; #ifdef CONFIG_IEEE1394_VERBOSEDEBUG static void dump_packet(const char *text, quadlet_t *data, int size, int speed) { int i; size /= 4; size = (size > 4 ? 4 : size); printk(KERN_DEBUG "ieee1394: %s", text); if (speed > -1 && speed < 6) printk(" at %s", hpsb_speedto_str[speed]); printk(":"); for (i = 0; i < size; i++) printk(" %08x", data[i]); printk("\n"); } #else #define dump_packet(a,b,c,d) do {} while (0) #endif static void abort_requests(struct hpsb_host *host); static void queue_packet_complete(struct hpsb_packet *packet); /** * hpsb_set_packet_complete_task - set the task that runs when a packet * completes. You cannot call this more than once on a single packet * before it is sent. * * @packet: the packet whose completion we want the task added to * @routine: function to call * @data: data (if any) to pass to the above function */ void hpsb_set_packet_complete_task(struct hpsb_packet *packet, void (*routine)(void *), void *data) { WARN_ON(packet->complete_routine != NULL); packet->complete_routine = routine; packet->complete_data = data; return; } /** * hpsb_alloc_packet - allocate new packet structure * @data_size: size of the data block to be allocated * * This function allocates, initializes and returns a new &struct hpsb_packet. * It can be used in interrupt context. A header block is always included, its * size is big enough to contain all possible 1394 headers. The data block is * only allocated when @data_size is not zero. * * For packets for which responses will be received the @data_size has to be big * enough to contain the response's data block since no further allocation * occurs at response matching time. * * The packet's generation value will be set to the current generation number * for ease of use. Remember to overwrite it with your own recorded generation * number if you can not be sure that your code will not race with a bus reset. * * Return value: A pointer to a &struct hpsb_packet or NULL on allocation * failure. */ struct hpsb_packet *hpsb_alloc_packet(size_t data_size) { struct hpsb_packet *packet = NULL; struct sk_buff *skb; data_size = ((data_size + 3) & ~3); skb = alloc_skb(data_size + sizeof(*packet), GFP_ATOMIC); if (skb == NULL) return NULL; memset(skb->data, 0, data_size + sizeof(*packet)); packet = (struct hpsb_packet *)skb->data; packet->skb = skb; packet->header = packet->embedded_header; packet->state = hpsb_unused; packet->generation = -1; INIT_LIST_HEAD(&packet->driver_list); atomic_set(&packet->refcnt, 1); if (data_size) { packet->data = (quadlet_t *)(skb->data + sizeof(*packet)); packet->data_size = data_size; } return packet; } /** * hpsb_free_packet - free packet and data associated with it * @packet: packet to free (is NULL safe) * * This function will free packet->data and finally the packet itself. */ void hpsb_free_packet(struct hpsb_packet *packet) { if (packet && atomic_dec_and_test(&packet->refcnt)) { BUG_ON(!list_empty(&packet->driver_list)); kfree_skb(packet->skb); } } int hpsb_reset_bus(struct hpsb_host *host, int type) { if (!host->in_bus_reset) { host->driver->devctl(host, RESET_BUS, type); return 0; } else { return 1; } } int hpsb_bus_reset(struct hpsb_host *host) { if (host->in_bus_reset) { HPSB_NOTICE("%s called while bus reset already in progress", __FUNCTION__); return 1; } abort_requests(host); host->in_bus_reset = 1; host->irm_id = -1; host->is_irm = 0; host->busmgr_id = -1; host->is_busmgr = 0; host->is_cycmst = 0; host->node_count = 0; host->selfid_count = 0; return 0; } /* * Verify num_of_selfids SelfIDs and return number of nodes. Return zero in * case verification failed. */ static int check_selfids(struct hpsb_host *host) { int nodeid = -1; int rest_of_selfids = host->selfid_count; struct selfid *sid = (struct selfid *)host->topology_map; struct ext_selfid *esid; int esid_seq = 23; host->nodes_active = 0; while (rest_of_selfids--) { if (!sid->extended) { nodeid++; esid_seq = 0; if (sid->phy_id != nodeid) { HPSB_INFO("SelfIDs failed monotony check with " "%d", sid->phy_id); return 0; } if (sid->link_active) { host->nodes_active++; if (sid->contender) host->irm_id = LOCAL_BUS | sid->phy_id; } } else { esid = (struct ext_selfid *)sid; if ((esid->phy_id != nodeid) || (esid->seq_nr != esid_seq)) { HPSB_INFO("SelfIDs failed monotony check with " "%d/%d", esid->phy_id, esid->seq_nr); return 0; } esid_seq++; } sid++; } esid = (struct ext_selfid *)(sid - 1); while (esid->extended) { if ((esid->porta == SELFID_PORT_PARENT) || (esid->portb == SELFID_PORT_PARENT) || (esid->portc == SELFID_PORT_PARENT) || (esid->portd == SELFID_PORT_PARENT) || (esid->porte == SELFID_PORT_PARENT) || (esid->portf == SELFID_PORT_PARENT) || (esid->portg == SELFID_PORT_PARENT) || (esid->porth == SELFID_PORT_PARENT)) { HPSB_INFO("SelfIDs failed root check on " "extended SelfID"); return 0; } esid--; } sid = (struct selfid *)esid; if ((sid->port0 == SELFID_PORT_PARENT) || (sid->port1 == SELFID_PORT_PARENT) || (sid->port2 == SELFID_PORT_PARENT)) { HPSB_INFO("SelfIDs failed root check"); return 0; } host->node_count = nodeid + 1; return 1; } static void build_speed_map(struct hpsb_host *host, int nodecount) { u8 cldcnt[nodecount]; u8 *map = host->speed_map; u8 *speedcap = host->speed; struct selfid *sid; struct ext_selfid *esid; int i, j, n; for (i = 0; i < (nodecount * 64); i += 64) { for (j = 0; j < nodecount; j++) { map[i+j] = IEEE1394_SPEED_MAX; } } for (i = 0; i < nodecount; i++) { cldcnt[i] = 0; } /* find direct children count and speed */ for (sid = (struct selfid *)&host->topology_map[host->selfid_count-1], n = nodecount - 1; (void *)sid >= (void *)host->topology_map; sid--) { if (sid->extended) { esid = (struct ext_selfid *)sid; if (esid->porta == SELFID_PORT_CHILD) cldcnt[n]++; if (esid->portb == SELFID_PORT_CHILD) cldcnt[n]++; if (esid->portc == SELFID_PORT_CHILD) cldcnt[n]++; if (esid->portd == SELFID_PORT_CHILD) cldcnt[n]++; if (esid->porte == SELFID_PORT_CHILD) cldcnt[n]++; if (esid->portf == SELFID_PORT_CHILD) cldcnt[n]++; if (esid->portg == SELFID_PORT_CHILD) cldcnt[n]++; if (esid->porth == SELFID_PORT_CHILD) cldcnt[n]++; } else { if (sid->port0 == SELFID_PORT_CHILD) cldcnt[n]++; if (sid->port1 == SELFID_PORT_CHILD) cldcnt[n]++; if (sid->port2 == SELFID_PORT_CHILD) cldcnt[n]++; speedcap[n] = sid->speed; n--; } } /* set self mapping */ for (i = 0; i < nodecount; i++) { map[64*i + i] = speedcap[i]; } /* fix up direct children count to total children count; * also fix up speedcaps for sibling and parent communication */ for (i = 1; i < nodecount; i++) { for (j = cldcnt[i], n = i - 1; j > 0; j--) { cldcnt[i] += cldcnt[n]; speedcap[n] = min(speedcap[n], speedcap[i]); n -= cldcnt[n] + 1; } } for (n = 0; n < nodecount; n++) { for (i = n - cldcnt[n]; i <= n; i++) { for (j = 0; j < (n - cldcnt[n]); j++) { map[j*64 + i] = map[i*64 + j] = min(map[i*64 + j], speedcap[n]); } for (j = n + 1; j < nodecount; j++) { map[j*64 + i] = map[i*64 + j] = min(map[i*64 + j], speedcap[n]); } } } #if SELFID_SPEED_UNKNOWN != IEEE1394_SPEED_MAX /* assume maximum speed for 1394b PHYs, nodemgr will correct it */ for (n = 0; n < nodecount; n++) if (speedcap[n] == SELFID_SPEED_UNKNOWN) speedcap[n] = IEEE1394_SPEED_MAX; #endif } void hpsb_selfid_received(struct hpsb_host *host, quadlet_t sid) { if (host->in_bus_reset) { HPSB_VERBOSE("Including SelfID 0x%x", sid); host->topology_map[host->selfid_count++] = sid; } else { HPSB_NOTICE("Spurious SelfID packet (0x%08x) received from bus %d", sid, NODEID_TO_BUS(host->node_id)); } } void hpsb_selfid_complete(struct hpsb_host *host, int phyid, int isroot) { if (!host->in_bus_reset) HPSB_NOTICE("SelfID completion called outside of bus reset!"); host->node_id = LOCAL_BUS | phyid; host->is_root = isroot; if (!check_selfids(host)) { if (host->reset_retries++ < 20) { /* selfid stage did not complete without error */ HPSB_NOTICE("Error in SelfID stage, resetting"); host->in_bus_reset = 0; /* this should work from ohci1394 now... */ hpsb_reset_bus(host, LONG_RESET); return; } else { HPSB_NOTICE("Stopping out-of-control reset loop"); HPSB_NOTICE("Warning - topology map and speed map will not be valid"); host->reset_retries = 0; } } else { host->reset_retries = 0; build_speed_map(host, host->node_count); } HPSB_VERBOSE("selfid_complete called with successful SelfID stage " "... irm_id: 0x%X node_id: 0x%X",host->irm_id,host->node_id); /* irm_id is kept up to date by check_selfids() */ if (host->irm_id == host->node_id) { host->is_irm = 1; } else { host->is_busmgr = 0; host->is_irm = 0; } if (isroot) { host->driver->devctl(host, ACT_CYCLE_MASTER, 1); host->is_cycmst = 1; } atomic_inc(&host->generation); host->in_bus_reset = 0; highlevel_host_reset(host); } void hpsb_packet_sent(struct hpsb_host *host, struct hpsb_packet *packet, int ackcode) { unsigned long flags; spin_lock_irqsave(&host->pending_packet_queue.lock, flags); packet->ack_code = ackcode; if (packet->no_waiter || packet->state == hpsb_complete) { /* if packet->no_waiter, must not have a tlabel allocated */ spin_unlock_irqrestore(&host->pending_packet_queue.lock, flags); hpsb_free_packet(packet); return; } atomic_dec(&packet->refcnt); /* drop HC's reference */ /* here the packet must be on the host->pending_packet_queue */ if (ackcode != ACK_PENDING || !packet->expect_response) { packet->state = hpsb_complete; __skb_unlink(packet->skb, &host->pending_packet_queue); spin_unlock_irqrestore(&host->pending_packet_queue.lock, flags); queue_packet_complete(packet); return; } packet->state = hpsb_pending; packet->sendtime = jiffies; spin_unlock_irqrestore(&host->pending_packet_queue.lock, flags); mod_timer(&host->timeout, jiffies + host->timeout_interval); } /** * hpsb_send_phy_config - transmit a PHY configuration packet on the bus * @host: host that PHY config packet gets sent through * @rootid: root whose force_root bit should get set (-1 = don't set force_root) * @gapcnt: gap count value to set (-1 = don't set gap count) * * This function sends a PHY config packet on the bus through the specified host. * * Return value: 0 for success or error number otherwise. */ int hpsb_send_phy_config(struct hpsb_host *host, int rootid, int gapcnt) { struct hpsb_packet *packet; quadlet_t d = 0; int retval = 0; if (rootid >= ALL_NODES || rootid < -1 || gapcnt > 0x3f || gapcnt < -1 || (rootid == -1 && gapcnt == -1)) { HPSB_DEBUG("Invalid Parameter: rootid = %d gapcnt = %d", rootid, gapcnt); return -EINVAL; } if (rootid != -1) d |= PHYPACKET_PHYCONFIG_R | rootid << PHYPACKET_PORT_SHIFT; if (gapcnt != -1) d |= PHYPACKET_PHYCONFIG_T | gapcnt << PHYPACKET_GAPCOUNT_SHIFT; packet = hpsb_make_phypacket(host, d); if (!packet) return -ENOMEM; packet->generation = get_hpsb_generation(host); retval = hpsb_send_packet_and_wait(packet); hpsb_free_packet(packet); return retval; } /** * hpsb_send_packet - transmit a packet on the bus * @packet: packet to send * * The packet is sent through the host specified in the packet->host field. * Before sending, the packet's transmit speed is automatically determined * using the local speed map when it is an async, non-broadcast packet. * * Possibilities for failure are that host is either not initialized, in bus * reset, the packet's generation number doesn't match the current generation * number or the host reports a transmit error. * * Return value: 0 on success, negative errno on failure. */ int hpsb_send_packet(struct hpsb_packet *packet) { struct hpsb_host *host = packet->host; if (host->is_shutdown) return -EINVAL; if (host->in_bus_reset || (packet->generation != get_hpsb_generation(host))) return -EAGAIN; packet->state = hpsb_queued; /* This just seems silly to me */ WARN_ON(packet->no_waiter && packet->expect_response); if (!packet->no_waiter || packet->expect_response) { atomic_inc(&packet->refcnt); /* Set the initial "sendtime" to 10 seconds from now, to prevent premature expiry. If a packet takes more than 10 seconds to hit the wire, we have bigger problems :) */ packet->sendtime = jiffies + 10 * HZ; skb_queue_tail(&host->pending_packet_queue, packet->skb); } if (packet->node_id == host->node_id) { /* it is a local request, so handle it locally */ quadlet_t *data; size_t size = packet->data_size + packet->header_size; data = kmalloc(size, GFP_ATOMIC); if (!data) { HPSB_ERR("unable to allocate memory for concatenating header and data"); return -ENOMEM; } memcpy(data, packet->header, packet->header_size); if (packet->data_size) memcpy(((u8*)data) + packet->header_size, packet->data, packet->data_size); dump_packet("send packet local", packet->header, packet->header_size, -1); hpsb_packet_sent(host, packet, packet->expect_response ? ACK_PENDING : ACK_COMPLETE); hpsb_packet_received(host, data, size, 0); kfree(data); return 0; } if (packet->type == hpsb_async && NODEID_TO_NODE(packet->node_id) != ALL_NODES) packet->speed_code = host->speed[NODEID_TO_NODE(packet->node_id)]; dump_packet("send packet", packet->header, packet->header_size, packet->speed_code); return host->driver->transmit_packet(host, packet); } /* We could just use complete() directly as the packet complete * callback, but this is more typesafe, in the sense that we get a * compiler error if the prototype for complete() changes. */ static void complete_packet(void *data) { complete((struct completion *) data); } int hpsb_send_packet_and_wait(struct hpsb_packet *packet) { struct completion done; int retval; init_completion(&done); hpsb_set_packet_complete_task(packet, complete_packet, &done); retval = hpsb_send_packet(packet); if (retval == 0) wait_for_completion(&done); return retval; } static void send_packet_nocare(struct hpsb_packet *packet) { if (hpsb_send_packet(packet) < 0) { hpsb_free_packet(packet); } } static void handle_packet_response(struct hpsb_host *host, int tcode, quadlet_t *data, size_t size) { struct hpsb_packet *packet = NULL; struct sk_buff *skb; int tcode_match = 0; int tlabel; unsigned long flags; tlabel = (data[0] >> 10) & 0x3f; spin_lock_irqsave(&host->pending_packet_queue.lock, flags); skb_queue_walk(&host->pending_packet_queue, skb) { packet = (struct hpsb_packet *)skb->data; if ((packet->tlabel == tlabel) && (packet->node_id == (data[1] >> 16))){ break; } packet = NULL; } if (packet == NULL) { HPSB_DEBUG("unsolicited response packet received - no tlabel match"); dump_packet("contents", data, 16, -1); spin_unlock_irqrestore(&host->pending_packet_queue.lock, flags); return; } switch (packet->tcode) { case TCODE_WRITEQ: case TCODE_WRITEB: if (tcode != TCODE_WRITE_RESPONSE) break; tcode_match = 1; memcpy(packet->header, data, 12); break; case TCODE_READQ: if (tcode != TCODE_READQ_RESPONSE) break; tcode_match = 1; memcpy(packet->header, data, 16); break; case TCODE_READB: if (tcode != TCODE_READB_RESPONSE) break; tcode_match = 1; BUG_ON(packet->skb->len - sizeof(*packet) < size - 16); memcpy(packet->header, data, 16); memcpy(packet->data, data + 4, size - 16); break; case TCODE_LOCK_REQUEST: if (tcode != TCODE_LOCK_RESPONSE) break; tcode_match = 1; size = min((size - 16), (size_t)8); BUG_ON(packet->skb->len - sizeof(*packet) < size); memcpy(packet->header, data, 16); memcpy(packet->data, data + 4, size); break; } if (!tcode_match) { spin_unlock_irqrestore(&host->pending_packet_queue.lock, flags); HPSB_INFO("unsolicited response packet received - tcode mismatch"); dump_packet("contents", data, 16, -1); return; } __skb_unlink(skb, &host->pending_packet_queue); if (packet->state == hpsb_queued) { packet->sendtime = jiffies; packet->ack_code = ACK_PENDING; } packet->state = hpsb_complete; spin_unlock_irqrestore(&host->pending_packet_queue.lock, flags); queue_packet_complete(packet); } static struct hpsb_packet *create_reply_packet(struct hpsb_host *host, quadlet_t *data, size_t dsize) { struct hpsb_packet *p; p = hpsb_alloc_packet(dsize); if (unlikely(p == NULL)) { /* FIXME - send data_error response */ return NULL; } p->type = hpsb_async; p->state = hpsb_unused; p->host = host; p->node_id = data[1] >> 16; p->tlabel = (data[0] >> 10) & 0x3f; p->no_waiter = 1; p->generation = get_hpsb_generation(host); if (dsize % 4) p->data[dsize / 4] = 0; return p; } #define PREP_ASYNC_HEAD_RCODE(tc) \ packet->tcode = tc; \ packet->header[0] = (packet->node_id << 16) | (packet->tlabel << 10) \ | (1 << 8) | (tc << 4); \ packet->header[1] = (packet->host->node_id << 16) | (rcode << 12); \ packet->header[2] = 0 static void fill_async_readquad_resp(struct hpsb_packet *packet, int rcode, quadlet_t data) { PREP_ASYNC_HEAD_RCODE(TCODE_READQ_RESPONSE); packet->header[3] = data; packet->header_size = 16; packet->data_size = 0; } static void fill_async_readblock_resp(struct hpsb_packet *packet, int rcode, int length) { if (rcode != RCODE_COMPLETE) length = 0; PREP_ASYNC_HEAD_RCODE(TCODE_READB_RESPONSE); packet->header[3] = length << 16; packet->header_size = 16; packet->data_size = length + (length % 4 ? 4 - (length % 4) : 0); } static void fill_async_write_resp(struct hpsb_packet *packet, int rcode) { PREP_ASYNC_HEAD_RCODE(TCODE_WRITE_RESPONSE); packet->header[2] = 0; packet->header_size = 12; packet->data_size = 0; } static void fill_async_lock_resp(struct hpsb_packet *packet, int rcode, int extcode, int length) { if (rcode != RCODE_COMPLETE) length = 0; PREP_ASYNC_HEAD_RCODE(TCODE_LOCK_RESPONSE); packet->header[3] = (length << 16) | extcode; packet->header_size = 16; packet->data_size = length; } #define PREP_REPLY_PACKET(length) \ packet = create_reply_packet(host, data, length); \ if (packet == NULL) break static void handle_incoming_packet(struct hpsb_host *host, int tcode, quadlet_t *data, size_t size, int write_acked) { struct hpsb_packet *packet; int length, rcode, extcode; quadlet_t buffer; nodeid_t source = data[1] >> 16; nodeid_t dest = data[0] >> 16; u16 flags = (u16) data[0]; u64 addr; /* big FIXME - no error checking is done for an out of bounds length */ switch (tcode) { case TCODE_WRITEQ: addr = (((u64)(data[1] & 0xffff)) << 32) | data[2]; rcode = highlevel_write(host, source, dest, data+3, addr, 4, flags); if (!write_acked && (NODEID_TO_NODE(data[0] >> 16) != NODE_MASK) && (rcode >= 0)) { /* not a broadcast write, reply */ PREP_REPLY_PACKET(0); fill_async_write_resp(packet, rcode); send_packet_nocare(packet); } break; case TCODE_WRITEB: addr = (((u64)(data[1] & 0xffff)) << 32) | data[2]; rcode = highlevel_write(host, source, dest, data+4, addr, data[3]>>16, flags); if (!write_acked && (NODEID_TO_NODE(data[0] >> 16) != NODE_MASK) && (rcode >= 0)) { /* not a broadcast write, reply */ PREP_REPLY_PACKET(0); fill_async_write_resp(packet, rcode); send_packet_nocare(packet); } break; case TCODE_READQ: addr = (((u64)(data[1] & 0xffff)) << 32) | data[2]; rcode = highlevel_read(host, source, &buffer, addr, 4, flags); if (rcode >= 0) { PREP_REPLY_PACKET(0); fill_async_readquad_resp(packet, rcode, buffer); send_packet_nocare(packet); } break; case TCODE_READB: length = data[3] >> 16; PREP_REPLY_PACKET(length); addr = (((u64)(data[1] & 0xffff)) << 32) | data[2]; rcode = highlevel_read(host, source, packet->data, addr, length, flags); if (rcode >= 0) { fill_async_readblock_resp(packet, rcode, length); send_packet_nocare(packet); } else { hpsb_free_packet(packet); } break; case TCODE_LOCK_REQUEST: length = data[3] >> 16; extcode = data[3] & 0xffff; addr = (((u64)(data[1] & 0xffff)) << 32) | data[2]; PREP_REPLY_PACKET(8); if ((extcode == 0) || (extcode >= 7)) { /* let switch default handle error */ length = 0; } switch (length) { case 4: rcode = highlevel_lock(host, source, packet->data, addr, data[4], 0, extcode,flags); fill_async_lock_resp(packet, rcode, extcode, 4); break; case 8: if ((extcode != EXTCODE_FETCH_ADD) && (extcode != EXTCODE_LITTLE_ADD)) { rcode = highlevel_lock(host, source, packet->data, addr, data[5], data[4], extcode, flags); fill_async_lock_resp(packet, rcode, extcode, 4); } else { rcode = highlevel_lock64(host, source, (octlet_t *)packet->data, addr, *(octlet_t *)(data + 4), 0ULL, extcode, flags); fill_async_lock_resp(packet, rcode, extcode, 8); } break; case 16: rcode = highlevel_lock64(host, source, (octlet_t *)packet->data, addr, *(octlet_t *)(data + 6), *(octlet_t *)(data + 4), extcode, flags); fill_async_lock_resp(packet, rcode, extcode, 8); break; default: rcode = RCODE_TYPE_ERROR; fill_async_lock_resp(packet, rcode, extcode, 0); } if (rcode >= 0) { send_packet_nocare(packet); } else { hpsb_free_packet(packet); } break; } } #undef PREP_REPLY_PACKET void hpsb_packet_received(struct hpsb_host *host, quadlet_t *data, size_t size, int write_acked) { int tcode; if (host->in_bus_reset) { HPSB_INFO("received packet during reset; ignoring"); return; } dump_packet("received packet", data, size, -1); tcode = (data[0] >> 4) & 0xf; switch (tcode) { case TCODE_WRITE_RESPONSE: case TCODE_READQ_RESPONSE: case TCODE_READB_RESPONSE: case TCODE_LOCK_RESPONSE: handle_packet_response(host, tcode, data, size); break; case TCODE_WRITEQ: case TCODE_WRITEB: case TCODE_READQ: case TCODE_READB: case TCODE_LOCK_REQUEST: handle_incoming_packet(host, tcode, data, size, write_acked); break; case TCODE_ISO_DATA: highlevel_iso_receive(host, data, size); break; case TCODE_CYCLE_START: /* simply ignore this packet if it is passed on */ break; default: HPSB_NOTICE("received packet with bogus transaction code %d", tcode); break; } } static void abort_requests(struct hpsb_host *host) { struct hpsb_packet *packet; struct sk_buff *skb; host->driver->devctl(host, CANCEL_REQUESTS, 0); while ((skb = skb_dequeue(&host->pending_packet_queue)) != NULL) { packet = (struct hpsb_packet *)skb->data; packet->state = hpsb_complete; packet->ack_code = ACKX_ABORTED; queue_packet_complete(packet); } } void abort_timedouts(unsigned long __opaque) { struct hpsb_host *host = (struct hpsb_host *)__opaque; unsigned long flags; struct hpsb_packet *packet; struct sk_buff *skb; unsigned long expire; spin_lock_irqsave(&host->csr.lock, flags); expire = host->csr.expire; spin_unlock_irqrestore(&host->csr.lock, flags); /* Hold the lock around this, since we aren't dequeuing all * packets, just ones we need. */ spin_lock_irqsave(&host->pending_packet_queue.lock, flags); while (!skb_queue_empty(&host->pending_packet_queue)) { skb = skb_peek(&host->pending_packet_queue); packet = (struct hpsb_packet *)skb->data; if (time_before(packet->sendtime + expire, jiffies)) { __skb_unlink(skb, &host->pending_packet_queue); packet->state = hpsb_complete; packet->ack_code = ACKX_TIMEOUT; queue_packet_complete(packet); } else { /* Since packets are added to the tail, the oldest * ones are first, always. When we get to one that * isn't timed out, the rest aren't either. */ break; } } if (!skb_queue_empty(&host->pending_packet_queue)) mod_timer(&host->timeout, jiffies + host->timeout_interval); spin_unlock_irqrestore(&host->pending_packet_queue.lock, flags); } /* Kernel thread and vars, which handles packets that are completed. Only * packets that have a "complete" function are sent here. This way, the * completion is run out of kernel context, and doesn't block the rest of * the stack. */ static struct task_struct *khpsbpkt_thread; static struct sk_buff_head hpsbpkt_queue; static void queue_packet_complete(struct hpsb_packet *packet) { if (packet->no_waiter) { hpsb_free_packet(packet); return; } if (packet->complete_routine != NULL) { skb_queue_tail(&hpsbpkt_queue, packet->skb); wake_up_process(khpsbpkt_thread); } return; } static int hpsbpkt_thread(void *__hi) { struct sk_buff *skb; struct hpsb_packet *packet; void (*complete_routine)(void*); void *complete_data; current->flags |= PF_NOFREEZE; while (!kthread_should_stop()) { while ((skb = skb_dequeue(&hpsbpkt_queue)) != NULL) { packet = (struct hpsb_packet *)skb->data; complete_routine = packet->complete_routine; complete_data = packet->complete_data; packet->complete_routine = packet->complete_data = NULL; complete_routine(complete_data); } set_current_state(TASK_INTERRUPTIBLE); if (!skb_peek(&hpsbpkt_queue)) schedule(); __set_current_state(TASK_RUNNING); } return 0; } static int __init ieee1394_init(void) { int i, ret; skb_queue_head_init(&hpsbpkt_queue); /* non-fatal error */ if (hpsb_init_config_roms()) { HPSB_ERR("Failed to initialize some config rom entries.\n"); HPSB_ERR("Some features may not be available\n"); } khpsbpkt_thread = kthread_run(hpsbpkt_thread, NULL, "khpsbpkt"); if (IS_ERR(khpsbpkt_thread)) { HPSB_ERR("Failed to start hpsbpkt thread!\n"); ret = PTR_ERR(khpsbpkt_thread); goto exit_cleanup_config_roms; } if (register_chrdev_region(IEEE1394_CORE_DEV, 256, "ieee1394")) { HPSB_ERR("unable to register character device major %d!\n", IEEE1394_MAJOR); ret = -ENODEV; goto exit_release_kernel_thread; } ret = bus_register(&ieee1394_bus_type); if (ret < 0) { HPSB_INFO("bus register failed"); goto release_chrdev; } for (i = 0; fw_bus_attrs[i]; i++) { ret = bus_create_file(&ieee1394_bus_type, fw_bus_attrs[i]); if (ret < 0) { while (i >= 0) { bus_remove_file(&ieee1394_bus_type, fw_bus_attrs[i--]); } bus_unregister(&ieee1394_bus_type); goto release_chrdev; } } ret = class_register(&hpsb_host_class); if (ret < 0) goto release_all_bus; hpsb_protocol_class = class_create(THIS_MODULE, "ieee1394_protocol"); if (IS_ERR(hpsb_protocol_class)) { ret = PTR_ERR(hpsb_protocol_class); goto release_class_host; } ret = init_csr(); if (ret) { HPSB_INFO("init csr failed"); ret = -ENOMEM; goto release_class_protocol; } if (disable_nodemgr) { HPSB_INFO("nodemgr and IRM functionality disabled"); /* We shouldn't contend for IRM with nodemgr disabled, since nodemgr implements functionality required of ieee1394a-2000 IRMs */ hpsb_disable_irm = 1; return 0; } if (hpsb_disable_irm) { HPSB_INFO("IRM functionality disabled"); } ret = init_ieee1394_nodemgr(); if (ret < 0) { HPSB_INFO("init nodemgr failed"); goto cleanup_csr; } return 0; cleanup_csr: cleanup_csr(); release_class_protocol: class_destroy(hpsb_protocol_class); release_class_host: class_unregister(&hpsb_host_class); release_all_bus: for (i = 0; fw_bus_attrs[i]; i++) bus_remove_file(&ieee1394_bus_type, fw_bus_attrs[i]); bus_unregister(&ieee1394_bus_type); release_chrdev: unregister_chrdev_region(IEEE1394_CORE_DEV, 256); exit_release_kernel_thread: kthread_stop(khpsbpkt_thread); exit_cleanup_config_roms: hpsb_cleanup_config_roms(); return ret; } static void __exit ieee1394_cleanup(void) { int i; if (!disable_nodemgr) cleanup_ieee1394_nodemgr(); cleanup_csr(); class_destroy(hpsb_protocol_class); class_unregister(&hpsb_host_class); for (i = 0; fw_bus_attrs[i]; i++) bus_remove_file(&ieee1394_bus_type, fw_bus_attrs[i]); bus_unregister(&ieee1394_bus_type); kthread_stop(khpsbpkt_thread); hpsb_cleanup_config_roms(); unregister_chrdev_region(IEEE1394_CORE_DEV, 256); } fs_initcall(ieee1394_init); /* same as ohci1394 */ module_exit(ieee1394_cleanup); /* Exported symbols */ /** hosts.c **/ EXPORT_SYMBOL(hpsb_alloc_host); EXPORT_SYMBOL(hpsb_add_host); EXPORT_SYMBOL(hpsb_remove_host); EXPORT_SYMBOL(hpsb_update_config_rom_image); /** ieee1394_core.c **/ EXPORT_SYMBOL(hpsb_speedto_str); EXPORT_SYMBOL(hpsb_protocol_class); EXPORT_SYMBOL(hpsb_set_packet_complete_task); EXPORT_SYMBOL(hpsb_alloc_packet); EXPORT_SYMBOL(hpsb_free_packet); EXPORT_SYMBOL(hpsb_send_packet); EXPORT_SYMBOL(hpsb_reset_bus); EXPORT_SYMBOL(hpsb_bus_reset); EXPORT_SYMBOL(hpsb_selfid_received); EXPORT_SYMBOL(hpsb_selfid_complete); EXPORT_SYMBOL(hpsb_packet_sent); EXPORT_SYMBOL(hpsb_packet_received); EXPORT_SYMBOL_GPL(hpsb_disable_irm); #ifdef CONFIG_IEEE1394_EXPORT_FULL_API EXPORT_SYMBOL(hpsb_send_phy_config); EXPORT_SYMBOL(hpsb_send_packet_and_wait); #endif /** ieee1394_transactions.c **/ EXPORT_SYMBOL(hpsb_get_tlabel); EXPORT_SYMBOL(hpsb_free_tlabel); EXPORT_SYMBOL(hpsb_make_readpacket); EXPORT_SYMBOL(hpsb_make_writepacket); EXPORT_SYMBOL(hpsb_make_streampacket); EXPORT_SYMBOL(hpsb_make_lockpacket); EXPORT_SYMBOL(hpsb_make_lock64packet); EXPORT_SYMBOL(hpsb_make_phypacket); EXPORT_SYMBOL(hpsb_make_isopacket); EXPORT_SYMBOL(hpsb_read); EXPORT_SYMBOL(hpsb_write); EXPORT_SYMBOL(hpsb_packet_success); /** highlevel.c **/ EXPORT_SYMBOL(hpsb_register_highlevel); EXPORT_SYMBOL(hpsb_unregister_highlevel); EXPORT_SYMBOL(hpsb_register_addrspace); EXPORT_SYMBOL(hpsb_unregister_addrspace); EXPORT_SYMBOL(hpsb_allocate_and_register_addrspace); EXPORT_SYMBOL(hpsb_listen_channel); EXPORT_SYMBOL(hpsb_unlisten_channel); EXPORT_SYMBOL(hpsb_get_hostinfo); EXPORT_SYMBOL(hpsb_create_hostinfo); EXPORT_SYMBOL(hpsb_destroy_hostinfo); EXPORT_SYMBOL(hpsb_set_hostinfo_key); EXPORT_SYMBOL(hpsb_get_hostinfo_bykey); EXPORT_SYMBOL(hpsb_set_hostinfo); EXPORT_SYMBOL(highlevel_host_reset); #ifdef CONFIG_IEEE1394_EXPORT_FULL_API EXPORT_SYMBOL(highlevel_add_host); EXPORT_SYMBOL(highlevel_remove_host); #endif /** nodemgr.c **/ EXPORT_SYMBOL(hpsb_node_fill_packet); EXPORT_SYMBOL(hpsb_node_write); EXPORT_SYMBOL(__hpsb_register_protocol); EXPORT_SYMBOL(hpsb_unregister_protocol); #ifdef CONFIG_IEEE1394_EXPORT_FULL_API EXPORT_SYMBOL(nodemgr_for_each_host); #endif /** csr.c **/ EXPORT_SYMBOL(hpsb_update_config_rom); /** dma.c **/ EXPORT_SYMBOL(dma_prog_region_init); EXPORT_SYMBOL(dma_prog_region_alloc); EXPORT_SYMBOL(dma_prog_region_free); EXPORT_SYMBOL(dma_region_init); EXPORT_SYMBOL(dma_region_alloc); EXPORT_SYMBOL(dma_region_free); EXPORT_SYMBOL(dma_region_sync_for_cpu); EXPORT_SYMBOL(dma_region_sync_for_device); EXPORT_SYMBOL(dma_region_mmap); EXPORT_SYMBOL(dma_region_offset_to_bus); /** iso.c **/ EXPORT_SYMBOL(hpsb_iso_xmit_init); EXPORT_SYMBOL(hpsb_iso_recv_init); EXPORT_SYMBOL(hpsb_iso_xmit_start); EXPORT_SYMBOL(hpsb_iso_recv_start); EXPORT_SYMBOL(hpsb_iso_recv_listen_channel); EXPORT_SYMBOL(hpsb_iso_recv_unlisten_channel); EXPORT_SYMBOL(hpsb_iso_recv_set_channel_mask); EXPORT_SYMBOL(hpsb_iso_stop); EXPORT_SYMBOL(hpsb_iso_shutdown); EXPORT_SYMBOL(hpsb_iso_xmit_queue_packet); EXPORT_SYMBOL(hpsb_iso_xmit_sync); EXPORT_SYMBOL(hpsb_iso_recv_release_packets); EXPORT_SYMBOL(hpsb_iso_n_ready); EXPORT_SYMBOL(hpsb_iso_packet_sent); EXPORT_SYMBOL(hpsb_iso_packet_received); EXPORT_SYMBOL(hpsb_iso_wake); EXPORT_SYMBOL(hpsb_iso_recv_flush); /** csr1212.c **/ EXPORT_SYMBOL(csr1212_new_directory); EXPORT_SYMBOL(csr1212_attach_keyval_to_directory); EXPORT_SYMBOL(csr1212_detach_keyval_from_directory); EXPORT_SYMBOL(csr1212_release_keyval); EXPORT_SYMBOL(csr1212_read); EXPORT_SYMBOL(csr1212_parse_keyval); EXPORT_SYMBOL(_csr1212_read_keyval); EXPORT_SYMBOL(_csr1212_destroy_keyval); #ifdef CONFIG_IEEE1394_EXPORT_FULL_API EXPORT_SYMBOL(csr1212_create_csr); EXPORT_SYMBOL(csr1212_init_local_csr); EXPORT_SYMBOL(csr1212_new_immediate); EXPORT_SYMBOL(csr1212_associate_keyval); EXPORT_SYMBOL(csr1212_new_string_descriptor_leaf); EXPORT_SYMBOL(csr1212_destroy_csr); EXPORT_SYMBOL(csr1212_generate_csr_image); EXPORT_SYMBOL(csr1212_parse_csr); #endif