/* * Copyright (C) 1998-2002 Andre Hedrick * Copyright (C) 2006-2007, 2009 MontaVista Software, Inc. * Copyright (C) 2007-2010 Bartlomiej Zolnierkiewicz * * Portions Copyright (C) 1999 Promise Technology, Inc. * Author: Frank Tiernan (frankt@promise.com) * Released under terms of General Public License */ #include #include #include #include #include #include #include #include #include #define DRV_NAME "pdc202xx_old" static void pdc202xx_set_mode(ide_hwif_t *hwif, ide_drive_t *drive) { struct pci_dev *dev = to_pci_dev(hwif->dev); u8 drive_pci = 0x60 + (drive->dn << 2); const u8 speed = drive->dma_mode; u8 AP = 0, BP = 0, CP = 0; u8 TA = 0, TB = 0, TC = 0; pci_read_config_byte(dev, drive_pci, &AP); pci_read_config_byte(dev, drive_pci + 1, &BP); pci_read_config_byte(dev, drive_pci + 2, &CP); switch(speed) { case XFER_UDMA_5: case XFER_UDMA_4: TB = 0x20; TC = 0x01; break; case XFER_UDMA_2: TB = 0x20; TC = 0x01; break; case XFER_UDMA_3: case XFER_UDMA_1: TB = 0x40; TC = 0x02; break; case XFER_UDMA_0: case XFER_MW_DMA_2: TB = 0x60; TC = 0x03; break; case XFER_MW_DMA_1: TB = 0x60; TC = 0x04; break; case XFER_MW_DMA_0: TB = 0xE0; TC = 0x0F; break; case XFER_PIO_4: TA = 0x01; TB = 0x04; break; case XFER_PIO_3: TA = 0x02; TB = 0x06; break; case XFER_PIO_2: TA = 0x03; TB = 0x08; break; case XFER_PIO_1: TA = 0x05; TB = 0x0C; break; case XFER_PIO_0: default: TA = 0x09; TB = 0x13; break; } if (speed < XFER_SW_DMA_0) { /* * preserve SYNC_INT / ERDDY_EN bits while clearing * Prefetch_EN / IORDY_EN / PA[3:0] bits of register A */ AP &= ~0x3f; if (ide_pio_need_iordy(drive, speed - XFER_PIO_0)) AP |= 0x20; /* set IORDY_EN bit */ if (drive->media == ide_disk) AP |= 0x10; /* set Prefetch_EN bit */ /* clear PB[4:0] bits of register B */ BP &= ~0x1f; pci_write_config_byte(dev, drive_pci, AP | TA); pci_write_config_byte(dev, drive_pci + 1, BP | TB); } else { /* clear MB[2:0] bits of register B */ BP &= ~0xe0; /* clear MC[3:0] bits of register C */ CP &= ~0x0f; pci_write_config_byte(dev, drive_pci + 1, BP | TB); pci_write_config_byte(dev, drive_pci + 2, CP | TC); } } static void pdc202xx_set_pio_mode(ide_hwif_t *hwif, ide_drive_t *drive) { drive->dma_mode = drive->pio_mode; pdc202xx_set_mode(hwif, drive); } static int pdc202xx_test_irq(ide_hwif_t *hwif) { struct pci_dev *dev = to_pci_dev(hwif->dev); unsigned long high_16 = pci_resource_start(dev, 4); u8 sc1d = inb(high_16 + 0x1d); if (hwif->channel) { /* * bit 7: error, bit 6: interrupting, * bit 5: FIFO full, bit 4: FIFO empty */ return (sc1d & 0x40) ? 1 : 0; } else { /* * bit 3: error, bit 2: interrupting, * bit 1: FIFO full, bit 0: FIFO empty */ return (sc1d & 0x04) ? 1 : 0; } } static u8 pdc2026x_cable_detect(ide_hwif_t *hwif) { struct pci_dev *dev = to_pci_dev(hwif->dev); u16 CIS, mask = hwif->channel ? (1 << 11) : (1 << 10); pci_read_config_word(dev, 0x50, &CIS); return (CIS & mask) ? ATA_CBL_PATA40 : ATA_CBL_PATA80; } /* * Set the control register to use the 66MHz system * clock for UDMA 3/4/5 mode operation when necessary. * * FIXME: this register is shared by both channels, some locking is needed * * It may also be possible to leave the 66MHz clock on * and readjust the timing parameters. */ static void pdc_old_enable_66MHz_clock(ide_hwif_t *hwif) { unsigned long clock_reg = hwif->extra_base + 0x01; u8 clock = inb(clock_reg); outb(clock | (hwif->channel ? 0x08 : 0x02), clock_reg); } static void pdc_old_disable_66MHz_clock(ide_hwif_t *hwif) { unsigned long clock_reg = hwif->extra_base + 0x01; u8 clock = inb(clock_reg); outb(clock & ~(hwif->channel ? 0x08 : 0x02), clock_reg); } static void pdc2026x_init_hwif(ide_hwif_t *hwif) { pdc_old_disable_66MHz_clock(hwif); } static void pdc202xx_dma_start(ide_drive_t *drive) { if (drive->current_speed > XFER_UDMA_2) pdc_old_enable_66MHz_clock(drive->hwif); if (drive->media != ide_disk || (drive->dev_flags & IDE_DFLAG_LBA48)) { ide_hwif_t *hwif = drive->hwif; struct request *rq = hwif->rq; unsigned long high_16 = hwif->extra_base - 16; unsigned long atapi_reg = high_16 + (hwif->channel ? 0x24 : 0x20); u32 word_count = 0; u8 clock = inb(high_16 + 0x11); outb(clock | (hwif->channel ? 0x08 : 0x02), high_16 + 0x11); word_count = (blk_rq_sectors(rq) << 8); word_count = (rq_data_dir(rq) == READ) ? word_count | 0x05000000 : word_count | 0x06000000; outl(word_count, atapi_reg); } ide_dma_start(drive); } static int pdc202xx_dma_end(ide_drive_t *drive) { if (drive->media != ide_disk || (drive->dev_flags & IDE_DFLAG_LBA48)) { ide_hwif_t *hwif = drive->hwif; unsigned long high_16 = hwif->extra_base - 16; unsigned long atapi_reg = high_16 + (hwif->channel ? 0x24 : 0x20); u8 clock = 0; outl(0, atapi_reg); /* zero out extra */ clock = inb(high_16 + 0x11); outb(clock & ~(hwif->channel ? 0x08:0x02), high_16 + 0x11); } if (drive->current_speed > XFER_UDMA_2) pdc_old_disable_66MHz_clock(drive->hwif); return ide_dma_end(drive); } static int init_chipset_pdc202xx(struct pci_dev *dev) { unsigned long dmabase = pci_resource_start(dev, 4); u8 udma_speed_flag = 0, primary_mode = 0, secondary_mode = 0; if (dmabase == 0) goto out; udma_speed_flag = inb(dmabase | 0x1f); primary_mode = inb(dmabase | 0x1a); secondary_mode = inb(dmabase | 0x1b); printk(KERN_INFO "%s: (U)DMA Burst Bit %sABLED " \ "Primary %s Mode " \ "Secondary %s Mode.\n", pci_name(dev), (udma_speed_flag & 1) ? "EN" : "DIS", (primary_mode & 1) ? "MASTER" : "PCI", (secondary_mode & 1) ? "MASTER" : "PCI" ); if (!(udma_speed_flag & 1)) { printk(KERN_INFO "%s: FORCING BURST BIT 0x%02x->0x%02x ", pci_name(dev), udma_speed_flag, (udma_speed_flag|1)); outb(udma_speed_flag | 1, dmabase | 0x1f); printk("%sACTIVE\n", (inb(dmabase | 0x1f) & 1) ? "" : "IN"); } out: return 0; } static void pdc202ata4_fixup_irq(struct pci_dev *dev, const char *name) { if ((dev->class >> 8) != PCI_CLASS_STORAGE_IDE) { u8 irq = 0, irq2 = 0; pci_read_config_byte(dev, PCI_INTERRUPT_LINE, &irq); /* 0xbc */ pci_read_config_byte(dev, (PCI_INTERRUPT_LINE)|0x80, &irq2); if (irq != irq2) { pci_write_config_byte(dev, (PCI_INTERRUPT_LINE)|0x80, irq); /* 0xbc */ printk(KERN_INFO "%s %s: PCI config space interrupt " "mirror fixed\n", name, pci_name(dev)); } } } #define IDE_HFLAGS_PDC202XX \ (IDE_HFLAG_ERROR_STOPS_FIFO | \ IDE_HFLAG_OFF_BOARD) static const struct ide_port_ops pdc20246_port_ops = { .set_pio_mode = pdc202xx_set_pio_mode, .set_dma_mode = pdc202xx_set_mode, .test_irq = pdc202xx_test_irq, }; static const struct ide_port_ops pdc2026x_port_ops = { .set_pio_mode = pdc202xx_set_pio_mode, .set_dma_mode = pdc202xx_set_mode, .test_irq = pdc202xx_test_irq, .cable_detect = pdc2026x_cable_detect, }; static const struct ide_dma_ops pdc2026x_dma_ops = { .dma_host_set = ide_dma_host_set, .dma_setup = ide_dma_setup, .dma_start = pdc202xx_dma_start, .dma_end = pdc202xx_dma_end, .dma_test_irq = ide_dma_test_irq, .dma_lost_irq = ide_dma_lost_irq, .dma_timer_expiry = ide_dma_sff_timer_expiry, .dma_sff_read_status = ide_dma_sff_read_status, }; #define DECLARE_PDC2026X_DEV(udma, sectors) \ { \ .name = DRV_NAME, \ .init_chipset = init_chipset_pdc202xx, \ .init_hwif = pdc2026x_init_hwif, \ .port_ops = &pdc2026x_port_ops, \ .dma_ops = &pdc2026x_dma_ops, \ .host_flags = IDE_HFLAGS_PDC202XX, \ .pio_mask = ATA_PIO4, \ .mwdma_mask = ATA_MWDMA2, \ .udma_mask = udma, \ .max_sectors = sectors, \ } static const struct ide_port_info pdc202xx_chipsets[] = { { /* 0: PDC20246 */ .name = DRV_NAME, .init_chipset = init_chipset_pdc202xx, .port_ops = &pdc20246_port_ops, .dma_ops = &sff_dma_ops, .host_flags = IDE_HFLAGS_PDC202XX, .pio_mask = ATA_PIO4, .mwdma_mask = ATA_MWDMA2, .udma_mask = ATA_UDMA2, }, /* 1: PDC2026{2,3} */ DECLARE_PDC2026X_DEV(ATA_UDMA4, 0), /* 2: PDC2026{5,7}: UDMA5, limit LBA48 requests to 256 sectors */ DECLARE_PDC2026X_DEV(ATA_UDMA5, 256), }; /** * pdc202xx_init_one - called when a PDC202xx is found * @dev: the pdc202xx device * @id: the matching pci id * * Called when the PCI registration layer (or the IDE initialization) * finds a device matching our IDE device tables. */ static int pdc202xx_init_one(struct pci_dev *dev, const struct pci_device_id *id) { const struct ide_port_info *d; u8 idx = id->driver_data; d = &pdc202xx_chipsets[idx]; if (idx < 2) pdc202ata4_fixup_irq(dev, d->name); if (dev->vendor == PCI_DEVICE_ID_PROMISE_20265) { struct pci_dev *bridge = dev->bus->self; if (bridge && bridge->vendor == PCI_VENDOR_ID_INTEL && (bridge->device == PCI_DEVICE_ID_INTEL_I960 || bridge->device == PCI_DEVICE_ID_INTEL_I960RM)) { printk(KERN_INFO DRV_NAME " %s: skipping Promise " "PDC20265 attached to I2O RAID controller\n", pci_name(dev)); return -ENODEV; } } return ide_pci_init_one(dev, d, NULL); } static const struct pci_device_id pdc202xx_pci_tbl[] = { { PCI_VDEVICE(PROMISE, PCI_DEVICE_ID_PROMISE_20246), 0 }, { PCI_VDEVICE(PROMISE, PCI_DEVICE_ID_PROMISE_20262), 1 }, { PCI_VDEVICE(PROMISE, PCI_DEVICE_ID_PROMISE_20263), 1 }, { PCI_VDEVICE(PROMISE, PCI_DEVICE_ID_PROMISE_20265), 2 }, { PCI_VDEVICE(PROMISE, PCI_DEVICE_ID_PROMISE_20267), 2 }, { 0, }, }; MODULE_DEVICE_TABLE(pci, pdc202xx_pci_tbl); static struct pci_driver pdc202xx_pci_driver = { .name = "Promise_Old_IDE", .id_table = pdc202xx_pci_tbl, .probe = pdc202xx_init_one, .remove = ide_pci_remove, .suspend = ide_pci_suspend, .resume = ide_pci_resume, }; static int __init pdc202xx_ide_init(void) { return ide_pci_register_driver(&pdc202xx_pci_driver); } static void __exit pdc202xx_ide_exit(void) { pci_unregister_driver(&pdc202xx_pci_driver); } module_init(pdc202xx_ide_init); module_exit(pdc202xx_ide_exit); MODULE_AUTHOR("Andre Hedrick, Frank Tiernan, Bartlomiej Zolnierkiewicz"); MODULE_DESCRIPTION("PCI driver module for older Promise IDE"); MODULE_LICENSE("GPL");