/*************************************************************************** * Copyright (C) 2010 by Bruno Prémont * * * * Based on Logitech G13 driver (v0.4) * * Copyright (C) 2009 by Rick L. Vinyard, Jr. * * * * This program is free software: you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation, version 2 of the License. * * * * This driver is distributed in the hope that it will be useful, but * * WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * * General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this software. If not see . * ***************************************************************************/ #include #include #include #include "hid-ids.h" #include "usbhid/usbhid.h" #include #include #include #include #include #include #include #include #include #include #define PICOLCD_NAME "PicoLCD (graphic)" /* Report numbers */ #define REPORT_ERROR_CODE 0x10 /* LCD: IN[16] */ #define ERR_SUCCESS 0x00 #define ERR_PARAMETER_MISSING 0x01 #define ERR_DATA_MISSING 0x02 #define ERR_BLOCK_READ_ONLY 0x03 #define ERR_BLOCK_NOT_ERASABLE 0x04 #define ERR_BLOCK_TOO_BIG 0x05 #define ERR_SECTION_OVERFLOW 0x06 #define ERR_INVALID_CMD_LEN 0x07 #define ERR_INVALID_DATA_LEN 0x08 #define REPORT_KEY_STATE 0x11 /* LCD: IN[2] */ #define REPORT_IR_DATA 0x21 /* LCD: IN[63] */ #define REPORT_EE_DATA 0x32 /* LCD: IN[63] */ #define REPORT_MEMORY 0x41 /* LCD: IN[63] */ #define REPORT_LED_STATE 0x81 /* LCD: OUT[1] */ #define REPORT_BRIGHTNESS 0x91 /* LCD: OUT[1] */ #define REPORT_CONTRAST 0x92 /* LCD: OUT[1] */ #define REPORT_RESET 0x93 /* LCD: OUT[2] */ #define REPORT_LCD_CMD 0x94 /* LCD: OUT[63] */ #define REPORT_LCD_DATA 0x95 /* LCD: OUT[63] */ #define REPORT_LCD_CMD_DATA 0x96 /* LCD: OUT[63] */ #define REPORT_EE_READ 0xa3 /* LCD: OUT[63] */ #define REPORT_EE_WRITE 0xa4 /* LCD: OUT[63] */ #define REPORT_ERASE_MEMORY 0xb2 /* LCD: OUT[2] */ #define REPORT_READ_MEMORY 0xb3 /* LCD: OUT[3] */ #define REPORT_WRITE_MEMORY 0xb4 /* LCD: OUT[63] */ #define REPORT_SPLASH_RESTART 0xc1 /* LCD: OUT[1] */ #define REPORT_EXIT_KEYBOARD 0xef /* LCD: OUT[2] */ #define REPORT_VERSION 0xf1 /* LCD: IN[2],OUT[1] Bootloader: IN[2],OUT[1] */ #define REPORT_BL_ERASE_MEMORY 0xf2 /* Bootloader: IN[36],OUT[4] */ #define REPORT_BL_READ_MEMORY 0xf3 /* Bootloader: IN[36],OUT[4] */ #define REPORT_BL_WRITE_MEMORY 0xf4 /* Bootloader: IN[36],OUT[36] */ #define REPORT_DEVID 0xf5 /* LCD: IN[5], OUT[1] Bootloader: IN[5],OUT[1] */ #define REPORT_SPLASH_SIZE 0xf6 /* LCD: IN[4], OUT[1] */ #define REPORT_HOOK_VERSION 0xf7 /* LCD: IN[2], OUT[1] */ #define REPORT_EXIT_FLASHER 0xff /* Bootloader: OUT[2] */ #ifdef CONFIG_HID_PICOLCD_FB /* Framebuffer * * The PicoLCD use a Topway LCD module of 256x64 pixel * This display area is tiled over 4 controllers with 8 tiles * each. Each tile has 8x64 pixel, each data byte representing * a 1-bit wide vertical line of the tile. * * The display can be updated at a tile granularity. * * Chip 1 Chip 2 Chip 3 Chip 4 * +----------------+----------------+----------------+----------------+ * | Tile 1 | Tile 1 | Tile 1 | Tile 1 | * +----------------+----------------+----------------+----------------+ * | Tile 2 | Tile 2 | Tile 2 | Tile 2 | * +----------------+----------------+----------------+----------------+ * ... * +----------------+----------------+----------------+----------------+ * | Tile 8 | Tile 8 | Tile 8 | Tile 8 | * +----------------+----------------+----------------+----------------+ */ #define PICOLCDFB_NAME "picolcdfb" #define PICOLCDFB_WIDTH (256) #define PICOLCDFB_HEIGHT (64) #define PICOLCDFB_SIZE (PICOLCDFB_WIDTH * PICOLCDFB_HEIGHT / 8) #define PICOLCDFB_UPDATE_RATE_LIMIT 10 #define PICOLCDFB_UPDATE_RATE_DEFAULT 2 /* Framebuffer visual structures */ static const struct fb_fix_screeninfo picolcdfb_fix = { .id = PICOLCDFB_NAME, .type = FB_TYPE_PACKED_PIXELS, .visual = FB_VISUAL_MONO01, .xpanstep = 0, .ypanstep = 0, .ywrapstep = 0, .line_length = PICOLCDFB_WIDTH / 8, .accel = FB_ACCEL_NONE, }; static const struct fb_var_screeninfo picolcdfb_var = { .xres = PICOLCDFB_WIDTH, .yres = PICOLCDFB_HEIGHT, .xres_virtual = PICOLCDFB_WIDTH, .yres_virtual = PICOLCDFB_HEIGHT, .width = 103, .height = 26, .bits_per_pixel = 1, .grayscale = 1, .red = { .offset = 0, .length = 1, .msb_right = 0, }, .green = { .offset = 0, .length = 1, .msb_right = 0, }, .blue = { .offset = 0, .length = 1, .msb_right = 0, }, .transp = { .offset = 0, .length = 0, .msb_right = 0, }, }; #endif /* CONFIG_HID_PICOLCD_FB */ /* Input device * * The PicoLCD has an IR receiver header, a built-in keypad with 5 keys * and header for 4x4 key matrix. The built-in keys are part of the matrix. */ static const unsigned short def_keymap[] = { KEY_RESERVED, /* none */ KEY_BACK, /* col 4 + row 1 */ KEY_HOMEPAGE, /* col 3 + row 1 */ KEY_RESERVED, /* col 2 + row 1 */ KEY_RESERVED, /* col 1 + row 1 */ KEY_SCROLLUP, /* col 4 + row 2 */ KEY_OK, /* col 3 + row 2 */ KEY_SCROLLDOWN, /* col 2 + row 2 */ KEY_RESERVED, /* col 1 + row 2 */ KEY_RESERVED, /* col 4 + row 3 */ KEY_RESERVED, /* col 3 + row 3 */ KEY_RESERVED, /* col 2 + row 3 */ KEY_RESERVED, /* col 1 + row 3 */ KEY_RESERVED, /* col 4 + row 4 */ KEY_RESERVED, /* col 3 + row 4 */ KEY_RESERVED, /* col 2 + row 4 */ KEY_RESERVED, /* col 1 + row 4 */ }; #define PICOLCD_KEYS ARRAY_SIZE(def_keymap) /* Description of in-progress IO operation, used for operations * that trigger response from device */ struct picolcd_pending { struct hid_report *out_report; struct hid_report *in_report; struct completion ready; int raw_size; u8 raw_data[64]; }; /* Per device data structure */ struct picolcd_data { struct hid_device *hdev; #ifdef CONFIG_DEBUG_FS struct dentry *debug_reset; struct dentry *debug_eeprom; struct dentry *debug_flash; struct mutex mutex_flash; int addr_sz; #endif u8 version[2]; unsigned short opmode_delay; /* input stuff */ u8 pressed_keys[2]; struct input_dev *input_keys; struct input_dev *input_cir; unsigned short keycode[PICOLCD_KEYS]; #ifdef CONFIG_HID_PICOLCD_FB /* Framebuffer stuff */ u8 fb_update_rate; u8 fb_bpp; u8 fb_force; u8 *fb_vbitmap; /* local copy of what was sent to PicoLCD */ u8 *fb_bitmap; /* framebuffer */ struct fb_info *fb_info; struct fb_deferred_io fb_defio; #endif /* CONFIG_HID_PICOLCD_FB */ #ifdef CONFIG_HID_PICOLCD_LCD struct lcd_device *lcd; u8 lcd_contrast; #endif /* CONFIG_HID_PICOLCD_LCD */ #ifdef CONFIG_HID_PICOLCD_BACKLIGHT struct backlight_device *backlight; u8 lcd_brightness; u8 lcd_power; #endif /* CONFIG_HID_PICOLCD_BACKLIGHT */ #ifdef CONFIG_HID_PICOLCD_LEDS /* LED stuff */ u8 led_state; struct led_classdev *led[8]; #endif /* CONFIG_HID_PICOLCD_LEDS */ /* Housekeeping stuff */ spinlock_t lock; struct mutex mutex; struct picolcd_pending *pending; int status; #define PICOLCD_BOOTLOADER 1 #define PICOLCD_FAILED 2 #define PICOLCD_READY_FB 4 }; /* Find a given report */ #define picolcd_in_report(id, dev) picolcd_report(id, dev, HID_INPUT_REPORT) #define picolcd_out_report(id, dev) picolcd_report(id, dev, HID_OUTPUT_REPORT) static struct hid_report *picolcd_report(int id, struct hid_device *hdev, int dir) { struct list_head *feature_report_list = &hdev->report_enum[dir].report_list; struct hid_report *report = NULL; list_for_each_entry(report, feature_report_list, list) { if (report->id == id) return report; } hid_warn(hdev, "No report with id 0x%x found\n", id); return NULL; } #ifdef CONFIG_DEBUG_FS static void picolcd_debug_out_report(struct picolcd_data *data, struct hid_device *hdev, struct hid_report *report); #define usbhid_submit_report(a, b, c) \ do { \ picolcd_debug_out_report(hid_get_drvdata(a), a, b); \ usbhid_submit_report(a, b, c); \ } while (0) #endif /* Submit a report and wait for a reply from device - if device fades away * or does not respond in time, return NULL */ static struct picolcd_pending *picolcd_send_and_wait(struct hid_device *hdev, int report_id, const u8 *raw_data, int size) { struct picolcd_data *data = hid_get_drvdata(hdev); struct picolcd_pending *work; struct hid_report *report = picolcd_out_report(report_id, hdev); unsigned long flags; int i, j, k; if (!report || !data) return NULL; if (data->status & PICOLCD_FAILED) return NULL; work = kzalloc(sizeof(*work), GFP_KERNEL); if (!work) return NULL; init_completion(&work->ready); work->out_report = report; work->in_report = NULL; work->raw_size = 0; mutex_lock(&data->mutex); spin_lock_irqsave(&data->lock, flags); for (i = k = 0; i < report->maxfield; i++) for (j = 0; j < report->field[i]->report_count; j++) { hid_set_field(report->field[i], j, k < size ? raw_data[k] : 0); k++; } data->pending = work; usbhid_submit_report(data->hdev, report, USB_DIR_OUT); spin_unlock_irqrestore(&data->lock, flags); wait_for_completion_interruptible_timeout(&work->ready, HZ*2); spin_lock_irqsave(&data->lock, flags); data->pending = NULL; spin_unlock_irqrestore(&data->lock, flags); mutex_unlock(&data->mutex); return work; } #ifdef CONFIG_HID_PICOLCD_FB /* Send a given tile to PicoLCD */ static int picolcd_fb_send_tile(struct hid_device *hdev, int chip, int tile) { struct picolcd_data *data = hid_get_drvdata(hdev); struct hid_report *report1 = picolcd_out_report(REPORT_LCD_CMD_DATA, hdev); struct hid_report *report2 = picolcd_out_report(REPORT_LCD_DATA, hdev); unsigned long flags; u8 *tdata; int i; if (!report1 || report1->maxfield != 1 || !report2 || report2->maxfield != 1) return -ENODEV; spin_lock_irqsave(&data->lock, flags); hid_set_field(report1->field[0], 0, chip << 2); hid_set_field(report1->field[0], 1, 0x02); hid_set_field(report1->field[0], 2, 0x00); hid_set_field(report1->field[0], 3, 0x00); hid_set_field(report1->field[0], 4, 0xb8 | tile); hid_set_field(report1->field[0], 5, 0x00); hid_set_field(report1->field[0], 6, 0x00); hid_set_field(report1->field[0], 7, 0x40); hid_set_field(report1->field[0], 8, 0x00); hid_set_field(report1->field[0], 9, 0x00); hid_set_field(report1->field[0], 10, 32); hid_set_field(report2->field[0], 0, (chip << 2) | 0x01); hid_set_field(report2->field[0], 1, 0x00); hid_set_field(report2->field[0], 2, 0x00); hid_set_field(report2->field[0], 3, 32); tdata = data->fb_vbitmap + (tile * 4 + chip) * 64; for (i = 0; i < 64; i++) if (i < 32) hid_set_field(report1->field[0], 11 + i, tdata[i]); else hid_set_field(report2->field[0], 4 + i - 32, tdata[i]); usbhid_submit_report(data->hdev, report1, USB_DIR_OUT); usbhid_submit_report(data->hdev, report2, USB_DIR_OUT); spin_unlock_irqrestore(&data->lock, flags); return 0; } /* Translate a single tile*/ static int picolcd_fb_update_tile(u8 *vbitmap, const u8 *bitmap, int bpp, int chip, int tile) { int i, b, changed = 0; u8 tdata[64]; u8 *vdata = vbitmap + (tile * 4 + chip) * 64; if (bpp == 1) { for (b = 7; b >= 0; b--) { const u8 *bdata = bitmap + tile * 256 + chip * 8 + b * 32; for (i = 0; i < 64; i++) { tdata[i] <<= 1; tdata[i] |= (bdata[i/8] >> (i % 8)) & 0x01; } } } else if (bpp == 8) { for (b = 7; b >= 0; b--) { const u8 *bdata = bitmap + (tile * 256 + chip * 8 + b * 32) * 8; for (i = 0; i < 64; i++) { tdata[i] <<= 1; tdata[i] |= (bdata[i] & 0x80) ? 0x01 : 0x00; } } } else { /* Oops, we should never get here! */ WARN_ON(1); return 0; } for (i = 0; i < 64; i++) if (tdata[i] != vdata[i]) { changed = 1; vdata[i] = tdata[i]; } return changed; } /* Reconfigure LCD display */ static int picolcd_fb_reset(struct picolcd_data *data, int clear) { struct hid_report *report = picolcd_out_report(REPORT_LCD_CMD, data->hdev); int i, j; unsigned long flags; static const u8 mapcmd[8] = { 0x00, 0x02, 0x00, 0x64, 0x3f, 0x00, 0x64, 0xc0 }; if (!report || report->maxfield != 1) return -ENODEV; spin_lock_irqsave(&data->lock, flags); for (i = 0; i < 4; i++) { for (j = 0; j < report->field[0]->maxusage; j++) if (j == 0) hid_set_field(report->field[0], j, i << 2); else if (j < sizeof(mapcmd)) hid_set_field(report->field[0], j, mapcmd[j]); else hid_set_field(report->field[0], j, 0); usbhid_submit_report(data->hdev, report, USB_DIR_OUT); } data->status |= PICOLCD_READY_FB; spin_unlock_irqrestore(&data->lock, flags); if (data->fb_bitmap) { if (clear) { memset(data->fb_vbitmap, 0, PICOLCDFB_SIZE); memset(data->fb_bitmap, 0, PICOLCDFB_SIZE*data->fb_bpp); } data->fb_force = 1; } /* schedule first output of framebuffer */ if (data->fb_info) schedule_delayed_work(&data->fb_info->deferred_work, 0); return 0; } /* Update fb_vbitmap from the screen_base and send changed tiles to device */ static void picolcd_fb_update(struct picolcd_data *data) { int chip, tile, n; unsigned long flags; if (!data) return; spin_lock_irqsave(&data->lock, flags); if (!(data->status & PICOLCD_READY_FB)) { spin_unlock_irqrestore(&data->lock, flags); picolcd_fb_reset(data, 0); } else { spin_unlock_irqrestore(&data->lock, flags); } /* * Translate the framebuffer into the format needed by the PicoLCD. * See display layout above. * Do this one tile after the other and push those tiles that changed. * * Wait for our IO to complete as otherwise we might flood the queue! */ n = 0; for (chip = 0; chip < 4; chip++) for (tile = 0; tile < 8; tile++) if (picolcd_fb_update_tile(data->fb_vbitmap, data->fb_bitmap, data->fb_bpp, chip, tile) || data->fb_force) { n += 2; if (!data->fb_info->par) return; /* device lost! */ if (n >= HID_OUTPUT_FIFO_SIZE / 2) { usbhid_wait_io(data->hdev); n = 0; } picolcd_fb_send_tile(data->hdev, chip, tile); } data->fb_force = false; if (n) usbhid_wait_io(data->hdev); } /* Stub to call the system default and update the image on the picoLCD */ static void picolcd_fb_fillrect(struct fb_info *info, const struct fb_fillrect *rect) { if (!info->par) return; sys_fillrect(info, rect); schedule_delayed_work(&info->deferred_work, 0); } /* Stub to call the system default and update the image on the picoLCD */ static void picolcd_fb_copyarea(struct fb_info *info, const struct fb_copyarea *area) { if (!info->par) return; sys_copyarea(info, area); schedule_delayed_work(&info->deferred_work, 0); } /* Stub to call the system default and update the image on the picoLCD */ static void picolcd_fb_imageblit(struct fb_info *info, const struct fb_image *image) { if (!info->par) return; sys_imageblit(info, image); schedule_delayed_work(&info->deferred_work, 0); } /* * this is the slow path from userspace. they can seek and write to * the fb. it's inefficient to do anything less than a full screen draw */ static ssize_t picolcd_fb_write(struct fb_info *info, const char __user *buf, size_t count, loff_t *ppos) { ssize_t ret; if (!info->par) return -ENODEV; ret = fb_sys_write(info, buf, count, ppos); if (ret >= 0) schedule_delayed_work(&info->deferred_work, 0); return ret; } static int picolcd_fb_blank(int blank, struct fb_info *info) { if (!info->par) return -ENODEV; /* We let fb notification do this for us via lcd/backlight device */ return 0; } static void picolcd_fb_destroy(struct fb_info *info) { struct picolcd_data *data = info->par; u32 *ref_cnt = info->pseudo_palette; int may_release; info->par = NULL; if (data) data->fb_info = NULL; fb_deferred_io_cleanup(info); ref_cnt--; mutex_lock(&info->lock); (*ref_cnt)--; may_release = !*ref_cnt; mutex_unlock(&info->lock); if (may_release) { vfree((u8 *)info->fix.smem_start); framebuffer_release(info); } } static int picolcd_fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info) { __u32 bpp = var->bits_per_pixel; __u32 activate = var->activate; /* only allow 1/8 bit depth (8-bit is grayscale) */ *var = picolcdfb_var; var->activate = activate; if (bpp >= 8) { var->bits_per_pixel = 8; var->red.length = 8; var->green.length = 8; var->blue.length = 8; } else { var->bits_per_pixel = 1; var->red.length = 1; var->green.length = 1; var->blue.length = 1; } return 0; } static int picolcd_set_par(struct fb_info *info) { struct picolcd_data *data = info->par; u8 *tmp_fb, *o_fb; if (!data) return -ENODEV; if (info->var.bits_per_pixel == data->fb_bpp) return 0; /* switch between 1/8 bit depths */ if (info->var.bits_per_pixel != 1 && info->var.bits_per_pixel != 8) return -EINVAL; o_fb = data->fb_bitmap; tmp_fb = kmalloc(PICOLCDFB_SIZE*info->var.bits_per_pixel, GFP_KERNEL); if (!tmp_fb) return -ENOMEM; /* translate FB content to new bits-per-pixel */ if (info->var.bits_per_pixel == 1) { int i, b; for (i = 0; i < PICOLCDFB_SIZE; i++) { u8 p = 0; for (b = 0; b < 8; b++) { p <<= 1; p |= o_fb[i*8+b] ? 0x01 : 0x00; } tmp_fb[i] = p; } memcpy(o_fb, tmp_fb, PICOLCDFB_SIZE); info->fix.visual = FB_VISUAL_MONO01; info->fix.line_length = PICOLCDFB_WIDTH / 8; } else { int i; memcpy(tmp_fb, o_fb, PICOLCDFB_SIZE); for (i = 0; i < PICOLCDFB_SIZE * 8; i++) o_fb[i] = tmp_fb[i/8] & (0x01 << (7 - i % 8)) ? 0xff : 0x00; info->fix.visual = FB_VISUAL_DIRECTCOLOR; info->fix.line_length = PICOLCDFB_WIDTH; } kfree(tmp_fb); data->fb_bpp = info->var.bits_per_pixel; return 0; } /* Do refcounting on our FB and cleanup per worker if FB is * closed after unplug of our device * (fb_release holds info->lock and still touches info after * we return so we can't release it immediately. */ struct picolcd_fb_cleanup_item { struct fb_info *info; struct picolcd_fb_cleanup_item *next; }; static struct picolcd_fb_cleanup_item *fb_pending; static DEFINE_SPINLOCK(fb_pending_lock); static void picolcd_fb_do_cleanup(struct work_struct *data) { struct picolcd_fb_cleanup_item *item; unsigned long flags; do { spin_lock_irqsave(&fb_pending_lock, flags); item = fb_pending; fb_pending = item ? item->next : NULL; spin_unlock_irqrestore(&fb_pending_lock, flags); if (item) { u8 *fb = (u8 *)item->info->fix.smem_start; /* make sure we do not race against fb core when * releasing */ mutex_lock(&item->info->lock); mutex_unlock(&item->info->lock); framebuffer_release(item->info); vfree(fb); } } while (item); } static DECLARE_WORK(picolcd_fb_cleanup, picolcd_fb_do_cleanup); static int picolcd_fb_open(struct fb_info *info, int u) { u32 *ref_cnt = info->pseudo_palette; ref_cnt--; (*ref_cnt)++; return 0; } static int picolcd_fb_release(struct fb_info *info, int u) { u32 *ref_cnt = info->pseudo_palette; ref_cnt--; (*ref_cnt)++; if (!*ref_cnt) { unsigned long flags; struct picolcd_fb_cleanup_item *item = (struct picolcd_fb_cleanup_item *)ref_cnt; item--; spin_lock_irqsave(&fb_pending_lock, flags); item->next = fb_pending; fb_pending = item; spin_unlock_irqrestore(&fb_pending_lock, flags); schedule_work(&picolcd_fb_cleanup); } return 0; } /* Note this can't be const because of struct fb_info definition */ static struct fb_ops picolcdfb_ops = { .owner = THIS_MODULE, .fb_destroy = picolcd_fb_destroy, .fb_open = picolcd_fb_open, .fb_release = picolcd_fb_release, .fb_read = fb_sys_read, .fb_write = picolcd_fb_write, .fb_blank = picolcd_fb_blank, .fb_fillrect = picolcd_fb_fillrect, .fb_copyarea = picolcd_fb_copyarea, .fb_imageblit = picolcd_fb_imageblit, .fb_check_var = picolcd_fb_check_var, .fb_set_par = picolcd_set_par, }; /* Callback from deferred IO workqueue */ static void picolcd_fb_deferred_io(struct fb_info *info, struct list_head *pagelist) { picolcd_fb_update(info->par); } static const struct fb_deferred_io picolcd_fb_defio = { .delay = HZ / PICOLCDFB_UPDATE_RATE_DEFAULT, .deferred_io = picolcd_fb_deferred_io, }; /* * The "fb_update_rate" sysfs attribute */ static ssize_t picolcd_fb_update_rate_show(struct device *dev, struct device_attribute *attr, char *buf) { struct picolcd_data *data = dev_get_drvdata(dev); unsigned i, fb_update_rate = data->fb_update_rate; size_t ret = 0; for (i = 1; i <= PICOLCDFB_UPDATE_RATE_LIMIT; i++) if (ret >= PAGE_SIZE) break; else if (i == fb_update_rate) ret += snprintf(buf+ret, PAGE_SIZE-ret, "[%u] ", i); else ret += snprintf(buf+ret, PAGE_SIZE-ret, "%u ", i); if (ret > 0) buf[min(ret, (size_t)PAGE_SIZE)-1] = '\n'; return ret; } static ssize_t picolcd_fb_update_rate_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct picolcd_data *data = dev_get_drvdata(dev); int i; unsigned u; if (count < 1 || count > 10) return -EINVAL; i = sscanf(buf, "%u", &u); if (i != 1) return -EINVAL; if (u > PICOLCDFB_UPDATE_RATE_LIMIT) return -ERANGE; else if (u == 0) u = PICOLCDFB_UPDATE_RATE_DEFAULT; data->fb_update_rate = u; data->fb_defio.delay = HZ / data->fb_update_rate; return count; } static DEVICE_ATTR(fb_update_rate, 0666, picolcd_fb_update_rate_show, picolcd_fb_update_rate_store); /* initialize Framebuffer device */ static int picolcd_init_framebuffer(struct picolcd_data *data) { struct device *dev = &data->hdev->dev; struct fb_info *info = NULL; int i, error = -ENOMEM; u8 *fb_vbitmap = NULL; u8 *fb_bitmap = NULL; u32 *palette; fb_bitmap = vmalloc(PICOLCDFB_SIZE*8); if (fb_bitmap == NULL) { dev_err(dev, "can't get a free page for framebuffer\n"); goto err_nomem; } fb_vbitmap = kmalloc(PICOLCDFB_SIZE, GFP_KERNEL); if (fb_vbitmap == NULL) { dev_err(dev, "can't alloc vbitmap image buffer\n"); goto err_nomem; } data->fb_update_rate = PICOLCDFB_UPDATE_RATE_DEFAULT; data->fb_defio = picolcd_fb_defio; /* The extra memory is: * - struct picolcd_fb_cleanup_item * - u32 for ref_count * - 256*u32 for pseudo_palette */ info = framebuffer_alloc(257 * sizeof(u32) + sizeof(struct picolcd_fb_cleanup_item), dev); if (info == NULL) { dev_err(dev, "failed to allocate a framebuffer\n"); goto err_nomem; } palette = info->par + sizeof(struct picolcd_fb_cleanup_item); *palette = 1; palette++; for (i = 0; i < 256; i++) palette[i] = i > 0 && i < 16 ? 0xff : 0; info->pseudo_palette = palette; info->fbdefio = &data->fb_defio; info->screen_base = (char __force __iomem *)fb_bitmap; info->fbops = &picolcdfb_ops; info->var = picolcdfb_var; info->fix = picolcdfb_fix; info->fix.smem_len = PICOLCDFB_SIZE*8; info->fix.smem_start = (unsigned long)fb_bitmap; info->par = data; info->flags = FBINFO_FLAG_DEFAULT; data->fb_vbitmap = fb_vbitmap; data->fb_bitmap = fb_bitmap; data->fb_bpp = picolcdfb_var.bits_per_pixel; error = picolcd_fb_reset(data, 1); if (error) { dev_err(dev, "failed to configure display\n"); goto err_cleanup; } error = device_create_file(dev, &dev_attr_fb_update_rate); if (error) { dev_err(dev, "failed to create sysfs attributes\n"); goto err_cleanup; } fb_deferred_io_init(info); data->fb_info = info; error = register_framebuffer(info); if (error) { dev_err(dev, "failed to register framebuffer\n"); goto err_sysfs; } /* schedule first output of framebuffer */ data->fb_force = 1; schedule_delayed_work(&info->deferred_work, 0); return 0; err_sysfs: fb_deferred_io_cleanup(info); device_remove_file(dev, &dev_attr_fb_update_rate); err_cleanup: data->fb_vbitmap = NULL; data->fb_bitmap = NULL; data->fb_bpp = 0; data->fb_info = NULL; err_nomem: framebuffer_release(info); vfree(fb_bitmap); kfree(fb_vbitmap); return error; } static void picolcd_exit_framebuffer(struct picolcd_data *data) { struct fb_info *info = data->fb_info; u8 *fb_vbitmap = data->fb_vbitmap; if (!info) return; info->par = NULL; device_remove_file(&data->hdev->dev, &dev_attr_fb_update_rate); unregister_framebuffer(info); data->fb_vbitmap = NULL; data->fb_bitmap = NULL; data->fb_bpp = 0; data->fb_info = NULL; kfree(fb_vbitmap); } #define picolcd_fbinfo(d) ((d)->fb_info) #else static inline int picolcd_fb_reset(struct picolcd_data *data, int clear) { return 0; } static inline int picolcd_init_framebuffer(struct picolcd_data *data) { return 0; } static inline void picolcd_exit_framebuffer(struct picolcd_data *data) { } #define picolcd_fbinfo(d) NULL #endif /* CONFIG_HID_PICOLCD_FB */ #ifdef CONFIG_HID_PICOLCD_BACKLIGHT /* * backlight class device */ static int picolcd_get_brightness(struct backlight_device *bdev) { struct picolcd_data *data = bl_get_data(bdev); return data->lcd_brightness; } static int picolcd_set_brightness(struct backlight_device *bdev) { struct picolcd_data *data = bl_get_data(bdev); struct hid_report *report = picolcd_out_report(REPORT_BRIGHTNESS, data->hdev); unsigned long flags; if (!report || report->maxfield != 1 || report->field[0]->report_count != 1) return -ENODEV; data->lcd_brightness = bdev->props.brightness & 0x0ff; data->lcd_power = bdev->props.power; spin_lock_irqsave(&data->lock, flags); hid_set_field(report->field[0], 0, data->lcd_power == FB_BLANK_UNBLANK ? data->lcd_brightness : 0); usbhid_submit_report(data->hdev, report, USB_DIR_OUT); spin_unlock_irqrestore(&data->lock, flags); return 0; } static int picolcd_check_bl_fb(struct backlight_device *bdev, struct fb_info *fb) { return fb && fb == picolcd_fbinfo((struct picolcd_data *)bl_get_data(bdev)); } static const struct backlight_ops picolcd_blops = { .update_status = picolcd_set_brightness, .get_brightness = picolcd_get_brightness, .check_fb = picolcd_check_bl_fb, }; static int picolcd_init_backlight(struct picolcd_data *data, struct hid_report *report) { struct device *dev = &data->hdev->dev; struct backlight_device *bdev; struct backlight_properties props; if (!report) return -ENODEV; if (report->maxfield != 1 || report->field[0]->report_count != 1 || report->field[0]->report_size != 8) { dev_err(dev, "unsupported BRIGHTNESS report"); return -EINVAL; } memset(&props, 0, sizeof(props)); props.type = BACKLIGHT_RAW; props.max_brightness = 0xff; bdev = backlight_device_register(dev_name(dev), dev, data, &picolcd_blops, &props); if (IS_ERR(bdev)) { dev_err(dev, "failed to register backlight\n"); return PTR_ERR(bdev); } bdev->props.brightness = 0xff; data->lcd_brightness = 0xff; data->backlight = bdev; picolcd_set_brightness(bdev); return 0; } static void picolcd_exit_backlight(struct picolcd_data *data) { struct backlight_device *bdev = data->backlight; data->backlight = NULL; if (bdev) backlight_device_unregister(bdev); } static inline int picolcd_resume_backlight(struct picolcd_data *data) { if (!data->backlight) return 0; return picolcd_set_brightness(data->backlight); } #ifdef CONFIG_PM static void picolcd_suspend_backlight(struct picolcd_data *data) { int bl_power = data->lcd_power; if (!data->backlight) return; data->backlight->props.power = FB_BLANK_POWERDOWN; picolcd_set_brightness(data->backlight); data->lcd_power = data->backlight->props.power = bl_power; } #endif /* CONFIG_PM */ #else static inline int picolcd_init_backlight(struct picolcd_data *data, struct hid_report *report) { return 0; } static inline void picolcd_exit_backlight(struct picolcd_data *data) { } static inline int picolcd_resume_backlight(struct picolcd_data *data) { return 0; } static inline void picolcd_suspend_backlight(struct picolcd_data *data) { } #endif /* CONFIG_HID_PICOLCD_BACKLIGHT */ #ifdef CONFIG_HID_PICOLCD_LCD /* * lcd class device */ static int picolcd_get_contrast(struct lcd_device *ldev) { struct picolcd_data *data = lcd_get_data(ldev); return data->lcd_contrast; } static int picolcd_set_contrast(struct lcd_device *ldev, int contrast) { struct picolcd_data *data = lcd_get_data(ldev); struct hid_report *report = picolcd_out_report(REPORT_CONTRAST, data->hdev); unsigned long flags; if (!report || report->maxfield != 1 || report->field[0]->report_count != 1) return -ENODEV; data->lcd_contrast = contrast & 0x0ff; spin_lock_irqsave(&data->lock, flags); hid_set_field(report->field[0], 0, data->lcd_contrast); usbhid_submit_report(data->hdev, report, USB_DIR_OUT); spin_unlock_irqrestore(&data->lock, flags); return 0; } static int picolcd_check_lcd_fb(struct lcd_device *ldev, struct fb_info *fb) { return fb && fb == picolcd_fbinfo((struct picolcd_data *)lcd_get_data(ldev)); } static struct lcd_ops picolcd_lcdops = { .get_contrast = picolcd_get_contrast, .set_contrast = picolcd_set_contrast, .check_fb = picolcd_check_lcd_fb, }; static int picolcd_init_lcd(struct picolcd_data *data, struct hid_report *report) { struct device *dev = &data->hdev->dev; struct lcd_device *ldev; if (!report) return -ENODEV; if (report->maxfield != 1 || report->field[0]->report_count != 1 || report->field[0]->report_size != 8) { dev_err(dev, "unsupported CONTRAST report"); return -EINVAL; } ldev = lcd_device_register(dev_name(dev), dev, data, &picolcd_lcdops); if (IS_ERR(ldev)) { dev_err(dev, "failed to register LCD\n"); return PTR_ERR(ldev); } ldev->props.max_contrast = 0x0ff; data->lcd_contrast = 0xe5; data->lcd = ldev; picolcd_set_contrast(ldev, 0xe5); return 0; } static void picolcd_exit_lcd(struct picolcd_data *data) { struct lcd_device *ldev = data->lcd; data->lcd = NULL; if (ldev) lcd_device_unregister(ldev); } static inline int picolcd_resume_lcd(struct picolcd_data *data) { if (!data->lcd) return 0; return picolcd_set_contrast(data->lcd, data->lcd_contrast); } #else static inline int picolcd_init_lcd(struct picolcd_data *data, struct hid_report *report) { return 0; } static inline void picolcd_exit_lcd(struct picolcd_data *data) { } static inline int picolcd_resume_lcd(struct picolcd_data *data) { return 0; } #endif /* CONFIG_HID_PICOLCD_LCD */ #ifdef CONFIG_HID_PICOLCD_LEDS /** * LED class device */ static void picolcd_leds_set(struct picolcd_data *data) { struct hid_report *report; unsigned long flags; if (!data->led[0]) return; report = picolcd_out_report(REPORT_LED_STATE, data->hdev); if (!report || report->maxfield != 1 || report->field[0]->report_count != 1) return; spin_lock_irqsave(&data->lock, flags); hid_set_field(report->field[0], 0, data->led_state); usbhid_submit_report(data->hdev, report, USB_DIR_OUT); spin_unlock_irqrestore(&data->lock, flags); } static void picolcd_led_set_brightness(struct led_classdev *led_cdev, enum led_brightness value) { struct device *dev; struct hid_device *hdev; struct picolcd_data *data; int i, state = 0; dev = led_cdev->dev->parent; hdev = container_of(dev, struct hid_device, dev); data = hid_get_drvdata(hdev); for (i = 0; i < 8; i++) { if (led_cdev != data->led[i]) continue; state = (data->led_state >> i) & 1; if (value == LED_OFF && state) { data->led_state &= ~(1 << i); picolcd_leds_set(data); } else if (value != LED_OFF && !state) { data->led_state |= 1 << i; picolcd_leds_set(data); } break; } } static enum led_brightness picolcd_led_get_brightness(struct led_classdev *led_cdev) { struct device *dev; struct hid_device *hdev; struct picolcd_data *data; int i, value = 0; dev = led_cdev->dev->parent; hdev = container_of(dev, struct hid_device, dev); data = hid_get_drvdata(hdev); for (i = 0; i < 8; i++) if (led_cdev == data->led[i]) { value = (data->led_state >> i) & 1; break; } return value ? LED_FULL : LED_OFF; } static int picolcd_init_leds(struct picolcd_data *data, struct hid_report *report) { struct device *dev = &data->hdev->dev; struct led_classdev *led; size_t name_sz = strlen(dev_name(dev)) + 8; char *name; int i, ret = 0; if (!report) return -ENODEV; if (report->maxfield != 1 || report->field[0]->report_count != 1 || report->field[0]->report_size != 8) { dev_err(dev, "unsupported LED_STATE report"); return -EINVAL; } for (i = 0; i < 8; i++) { led = kzalloc(sizeof(struct led_classdev)+name_sz, GFP_KERNEL); if (!led) { dev_err(dev, "can't allocate memory for LED %d\n", i); ret = -ENOMEM; goto err; } name = (void *)(&led[1]); snprintf(name, name_sz, "%s::GPO%d", dev_name(dev), i); led->name = name; led->brightness = 0; led->max_brightness = 1; led->brightness_get = picolcd_led_get_brightness; led->brightness_set = picolcd_led_set_brightness; data->led[i] = led; ret = led_classdev_register(dev, data->led[i]); if (ret) { data->led[i] = NULL; kfree(led); dev_err(dev, "can't register LED %d\n", i); goto err; } } return 0; err: for (i = 0; i < 8; i++) if (data->led[i]) { led = data->led[i]; data->led[i] = NULL; led_classdev_unregister(led); kfree(led); } return ret; } static void picolcd_exit_leds(struct picolcd_data *data) { struct led_classdev *led; int i; for (i = 0; i < 8; i++) { led = data->led[i]; data->led[i] = NULL; if (!led) continue; led_classdev_unregister(led); kfree(led); } } #else static inline int picolcd_init_leds(struct picolcd_data *data, struct hid_report *report) { return 0; } static inline void picolcd_exit_leds(struct picolcd_data *data) { } static inline int picolcd_leds_set(struct picolcd_data *data) { return 0; } #endif /* CONFIG_HID_PICOLCD_LEDS */ /* * input class device */ static int picolcd_raw_keypad(struct picolcd_data *data, struct hid_report *report, u8 *raw_data, int size) { /* * Keypad event * First and second data bytes list currently pressed keys, * 0x00 means no key and at most 2 keys may be pressed at same time */ int i, j; /* determine newly pressed keys */ for (i = 0; i < size; i++) { unsigned int key_code; if (raw_data[i] == 0) continue; for (j = 0; j < sizeof(data->pressed_keys); j++) if (data->pressed_keys[j] == raw_data[i]) goto key_already_down; for (j = 0; j < sizeof(data->pressed_keys); j++) if (data->pressed_keys[j] == 0) { data->pressed_keys[j] = raw_data[i]; break; } input_event(data->input_keys, EV_MSC, MSC_SCAN, raw_data[i]); if (raw_data[i] < PICOLCD_KEYS) key_code = data->keycode[raw_data[i]]; else key_code = KEY_UNKNOWN; if (key_code != KEY_UNKNOWN) { dbg_hid(PICOLCD_NAME " got key press for %u:%d", raw_data[i], key_code); input_report_key(data->input_keys, key_code, 1); } input_sync(data->input_keys); key_already_down: continue; } /* determine newly released keys */ for (j = 0; j < sizeof(data->pressed_keys); j++) { unsigned int key_code; if (data->pressed_keys[j] == 0) continue; for (i = 0; i < size; i++) if (data->pressed_keys[j] == raw_data[i]) goto key_still_down; input_event(data->input_keys, EV_MSC, MSC_SCAN, data->pressed_keys[j]); if (data->pressed_keys[j] < PICOLCD_KEYS) key_code = data->keycode[data->pressed_keys[j]]; else key_code = KEY_UNKNOWN; if (key_code != KEY_UNKNOWN) { dbg_hid(PICOLCD_NAME " got key release for %u:%d", data->pressed_keys[j], key_code); input_report_key(data->input_keys, key_code, 0); } input_sync(data->input_keys); data->pressed_keys[j] = 0; key_still_down: continue; } return 1; } static int picolcd_raw_cir(struct picolcd_data *data, struct hid_report *report, u8 *raw_data, int size) { /* Need understanding of CIR data format to implement ... */ return 1; } static int picolcd_check_version(struct hid_device *hdev) { struct picolcd_data *data = hid_get_drvdata(hdev); struct picolcd_pending *verinfo; int ret = 0; if (!data) return -ENODEV; verinfo = picolcd_send_and_wait(hdev, REPORT_VERSION, NULL, 0); if (!verinfo) { hid_err(hdev, "no version response from PicoLCD\n"); return -ENODEV; } if (verinfo->raw_size == 2) { data->version[0] = verinfo->raw_data[1]; data->version[1] = verinfo->raw_data[0]; if (data->status & PICOLCD_BOOTLOADER) { hid_info(hdev, "PicoLCD, bootloader version %d.%d\n", verinfo->raw_data[1], verinfo->raw_data[0]); } else { hid_info(hdev, "PicoLCD, firmware version %d.%d\n", verinfo->raw_data[1], verinfo->raw_data[0]); } } else { hid_err(hdev, "confused, got unexpected version response from PicoLCD\n"); ret = -EINVAL; } kfree(verinfo); return ret; } /* * Reset our device and wait for answer to VERSION request */ static int picolcd_reset(struct hid_device *hdev) { struct picolcd_data *data = hid_get_drvdata(hdev); struct hid_report *report = picolcd_out_report(REPORT_RESET, hdev); unsigned long flags; int error; if (!data || !report || report->maxfield != 1) return -ENODEV; spin_lock_irqsave(&data->lock, flags); if (hdev->product == USB_DEVICE_ID_PICOLCD_BOOTLOADER) data->status |= PICOLCD_BOOTLOADER; /* perform the reset */ hid_set_field(report->field[0], 0, 1); usbhid_submit_report(hdev, report, USB_DIR_OUT); spin_unlock_irqrestore(&data->lock, flags); error = picolcd_check_version(hdev); if (error) return error; picolcd_resume_lcd(data); picolcd_resume_backlight(data); #ifdef CONFIG_HID_PICOLCD_FB if (data->fb_info) schedule_delayed_work(&data->fb_info->deferred_work, 0); #endif /* CONFIG_HID_PICOLCD_FB */ picolcd_leds_set(data); return 0; } /* * The "operation_mode" sysfs attribute */ static ssize_t picolcd_operation_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct picolcd_data *data = dev_get_drvdata(dev); if (data->status & PICOLCD_BOOTLOADER) return snprintf(buf, PAGE_SIZE, "[bootloader] lcd\n"); else return snprintf(buf, PAGE_SIZE, "bootloader [lcd]\n"); } static ssize_t picolcd_operation_mode_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct picolcd_data *data = dev_get_drvdata(dev); struct hid_report *report = NULL; size_t cnt = count; int timeout = data->opmode_delay; unsigned long flags; if (cnt >= 3 && strncmp("lcd", buf, 3) == 0) { if (data->status & PICOLCD_BOOTLOADER) report = picolcd_out_report(REPORT_EXIT_FLASHER, data->hdev); buf += 3; cnt -= 3; } else if (cnt >= 10 && strncmp("bootloader", buf, 10) == 0) { if (!(data->status & PICOLCD_BOOTLOADER)) report = picolcd_out_report(REPORT_EXIT_KEYBOARD, data->hdev); buf += 10; cnt -= 10; } if (!report) return -EINVAL; while (cnt > 0 && (buf[cnt-1] == '\n' || buf[cnt-1] == '\r')) cnt--; if (cnt != 0) return -EINVAL; spin_lock_irqsave(&data->lock, flags); hid_set_field(report->field[0], 0, timeout & 0xff); hid_set_field(report->field[0], 1, (timeout >> 8) & 0xff); usbhid_submit_report(data->hdev, report, USB_DIR_OUT); spin_unlock_irqrestore(&data->lock, flags); return count; } static DEVICE_ATTR(operation_mode, 0644, picolcd_operation_mode_show, picolcd_operation_mode_store); /* * The "operation_mode_delay" sysfs attribute */ static ssize_t picolcd_operation_mode_delay_show(struct device *dev, struct device_attribute *attr, char *buf) { struct picolcd_data *data = dev_get_drvdata(dev); return snprintf(buf, PAGE_SIZE, "%hu\n", data->opmode_delay); } static ssize_t picolcd_operation_mode_delay_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct picolcd_data *data = dev_get_drvdata(dev); unsigned u; if (sscanf(buf, "%u", &u) != 1) return -EINVAL; if (u > 30000) return -EINVAL; else data->opmode_delay = u; return count; } static DEVICE_ATTR(operation_mode_delay, 0644, picolcd_operation_mode_delay_show, picolcd_operation_mode_delay_store); #ifdef CONFIG_DEBUG_FS /* * The "reset" file */ static int picolcd_debug_reset_show(struct seq_file *f, void *p) { if (picolcd_fbinfo((struct picolcd_data *)f->private)) seq_printf(f, "all fb\n"); else seq_printf(f, "all\n"); return 0; } static int picolcd_debug_reset_open(struct inode *inode, struct file *f) { return single_open(f, picolcd_debug_reset_show, inode->i_private); } static ssize_t picolcd_debug_reset_write(struct file *f, const char __user *user_buf, size_t count, loff_t *ppos) { struct picolcd_data *data = ((struct seq_file *)f->private_data)->private; char buf[32]; size_t cnt = min(count, sizeof(buf)-1); if (copy_from_user(buf, user_buf, cnt)) return -EFAULT; while (cnt > 0 && (buf[cnt-1] == ' ' || buf[cnt-1] == '\n')) cnt--; buf[cnt] = '\0'; if (strcmp(buf, "all") == 0) { picolcd_reset(data->hdev); picolcd_fb_reset(data, 1); } else if (strcmp(buf, "fb") == 0) { picolcd_fb_reset(data, 1); } else { return -EINVAL; } return count; } static const struct file_operations picolcd_debug_reset_fops = { .owner = THIS_MODULE, .open = picolcd_debug_reset_open, .read = seq_read, .llseek = seq_lseek, .write = picolcd_debug_reset_write, .release = single_release, }; /* * The "eeprom" file */ static int picolcd_debug_eeprom_open(struct inode *i, struct file *f) { f->private_data = i->i_private; return 0; } static ssize_t picolcd_debug_eeprom_read(struct file *f, char __user *u, size_t s, loff_t *off) { struct picolcd_data *data = f->private_data; struct picolcd_pending *resp; u8 raw_data[3]; ssize_t ret = -EIO; if (s == 0) return -EINVAL; if (*off > 0x0ff) return 0; /* prepare buffer with info about what we want to read (addr & len) */ raw_data[0] = *off & 0xff; raw_data[1] = (*off >> 8) & 0xff; raw_data[2] = s < 20 ? s : 20; if (*off + raw_data[2] > 0xff) raw_data[2] = 0x100 - *off; resp = picolcd_send_and_wait(data->hdev, REPORT_EE_READ, raw_data, sizeof(raw_data)); if (!resp) return -EIO; if (resp->in_report && resp->in_report->id == REPORT_EE_DATA) { /* successful read :) */ ret = resp->raw_data[2]; if (ret > s) ret = s; if (copy_to_user(u, resp->raw_data+3, ret)) ret = -EFAULT; else *off += ret; } /* anything else is some kind of IO error */ kfree(resp); return ret; } static ssize_t picolcd_debug_eeprom_write(struct file *f, const char __user *u, size_t s, loff_t *off) { struct picolcd_data *data = f->private_data; struct picolcd_pending *resp; ssize_t ret = -EIO; u8 raw_data[23]; if (s == 0) return -EINVAL; if (*off > 0x0ff) return -ENOSPC; memset(raw_data, 0, sizeof(raw_data)); raw_data[0] = *off & 0xff; raw_data[1] = (*off >> 8) & 0xff; raw_data[2] = min((size_t)20, s); if (*off + raw_data[2] > 0xff) raw_data[2] = 0x100 - *off; if (copy_from_user(raw_data+3, u, min((u8)20, raw_data[2]))) return -EFAULT; resp = picolcd_send_and_wait(data->hdev, REPORT_EE_WRITE, raw_data, sizeof(raw_data)); if (!resp) return -EIO; if (resp->in_report && resp->in_report->id == REPORT_EE_DATA) { /* check if written data matches */ if (memcmp(raw_data, resp->raw_data, 3+raw_data[2]) == 0) { *off += raw_data[2]; ret = raw_data[2]; } } kfree(resp); return ret; } /* * Notes: * - read/write happens in chunks of at most 20 bytes, it's up to userspace * to loop in order to get more data. * - on write errors on otherwise correct write request the bytes * that should have been written are in undefined state. */ static const struct file_operations picolcd_debug_eeprom_fops = { .owner = THIS_MODULE, .open = picolcd_debug_eeprom_open, .read = picolcd_debug_eeprom_read, .write = picolcd_debug_eeprom_write, .llseek = generic_file_llseek, }; /* * The "flash" file */ static int picolcd_debug_flash_open(struct inode *i, struct file *f) { f->private_data = i->i_private; return 0; } /* record a flash address to buf (bounds check to be done by caller) */ static int _picolcd_flash_setaddr(struct picolcd_data *data, u8 *buf, long off) { buf[0] = off & 0xff; buf[1] = (off >> 8) & 0xff; if (data->addr_sz == 3) buf[2] = (off >> 16) & 0xff; return data->addr_sz == 2 ? 2 : 3; } /* read a given size of data (bounds check to be done by caller) */ static ssize_t _picolcd_flash_read(struct picolcd_data *data, int report_id, char __user *u, size_t s, loff_t *off) { struct picolcd_pending *resp; u8 raw_data[4]; ssize_t ret = 0; int len_off, err = -EIO; while (s > 0) { err = -EIO; len_off = _picolcd_flash_setaddr(data, raw_data, *off); raw_data[len_off] = s > 32 ? 32 : s; resp = picolcd_send_and_wait(data->hdev, report_id, raw_data, len_off+1); if (!resp || !resp->in_report) goto skip; if (resp->in_report->id == REPORT_MEMORY || resp->in_report->id == REPORT_BL_READ_MEMORY) { if (memcmp(raw_data, resp->raw_data, len_off+1) != 0) goto skip; if (copy_to_user(u+ret, resp->raw_data+len_off+1, raw_data[len_off])) { err = -EFAULT; goto skip; } *off += raw_data[len_off]; s -= raw_data[len_off]; ret += raw_data[len_off]; err = 0; } skip: kfree(resp); if (err) return ret > 0 ? ret : err; } return ret; } static ssize_t picolcd_debug_flash_read(struct file *f, char __user *u, size_t s, loff_t *off) { struct picolcd_data *data = f->private_data; if (s == 0) return -EINVAL; if (*off > 0x05fff) return 0; if (*off + s > 0x05fff) s = 0x06000 - *off; if (data->status & PICOLCD_BOOTLOADER) return _picolcd_flash_read(data, REPORT_BL_READ_MEMORY, u, s, off); else return _picolcd_flash_read(data, REPORT_READ_MEMORY, u, s, off); } /* erase block aligned to 64bytes boundary */ static ssize_t _picolcd_flash_erase64(struct picolcd_data *data, int report_id, loff_t *off) { struct picolcd_pending *resp; u8 raw_data[3]; int len_off; ssize_t ret = -EIO; if (*off & 0x3f) return -EINVAL; len_off = _picolcd_flash_setaddr(data, raw_data, *off); resp = picolcd_send_and_wait(data->hdev, report_id, raw_data, len_off); if (!resp || !resp->in_report) goto skip; if (resp->in_report->id == REPORT_MEMORY || resp->in_report->id == REPORT_BL_ERASE_MEMORY) { if (memcmp(raw_data, resp->raw_data, len_off) != 0) goto skip; ret = 0; } skip: kfree(resp); return ret; } /* write a given size of data (bounds check to be done by caller) */ static ssize_t _picolcd_flash_write(struct picolcd_data *data, int report_id, const char __user *u, size_t s, loff_t *off) { struct picolcd_pending *resp; u8 raw_data[36]; ssize_t ret = 0; int len_off, err = -EIO; while (s > 0) { err = -EIO; len_off = _picolcd_flash_setaddr(data, raw_data, *off); raw_data[len_off] = s > 32 ? 32 : s; if (copy_from_user(raw_data+len_off+1, u, raw_data[len_off])) { err = -EFAULT; break; } resp = picolcd_send_and_wait(data->hdev, report_id, raw_data, len_off+1+raw_data[len_off]); if (!resp || !resp->in_report) goto skip; if (resp->in_report->id == REPORT_MEMORY || resp->in_report->id == REPORT_BL_WRITE_MEMORY) { if (memcmp(raw_data, resp->raw_data, len_off+1+raw_data[len_off]) != 0) goto skip; *off += raw_data[len_off]; s -= raw_data[len_off]; ret += raw_data[len_off]; err = 0; } skip: kfree(resp); if (err) break; } return ret > 0 ? ret : err; } static ssize_t picolcd_debug_flash_write(struct file *f, const char __user *u, size_t s, loff_t *off) { struct picolcd_data *data = f->private_data; ssize_t err, ret = 0; int report_erase, report_write; if (s == 0) return -EINVAL; if (*off > 0x5fff) return -ENOSPC; if (s & 0x3f) return -EINVAL; if (*off & 0x3f) return -EINVAL; if (data->status & PICOLCD_BOOTLOADER) { report_erase = REPORT_BL_ERASE_MEMORY; report_write = REPORT_BL_WRITE_MEMORY; } else { report_erase = REPORT_ERASE_MEMORY; report_write = REPORT_WRITE_MEMORY; } mutex_lock(&data->mutex_flash); while (s > 0) { err = _picolcd_flash_erase64(data, report_erase, off); if (err) break; err = _picolcd_flash_write(data, report_write, u, 64, off); if (err < 0) break; ret += err; *off += err; s -= err; if (err != 64) break; } mutex_unlock(&data->mutex_flash); return ret > 0 ? ret : err; } /* * Notes: * - concurrent writing is prevented by mutex and all writes must be * n*64 bytes and 64-byte aligned, each write being preceded by an * ERASE which erases a 64byte block. * If less than requested was written or an error is returned for an * otherwise correct write request the next 64-byte block which should * have been written is in undefined state (mostly: original, erased, * (half-)written with write error) * - reading can happen without special restriction */ static const struct file_operations picolcd_debug_flash_fops = { .owner = THIS_MODULE, .open = picolcd_debug_flash_open, .read = picolcd_debug_flash_read, .write = picolcd_debug_flash_write, .llseek = generic_file_llseek, }; /* * Helper code for HID report level dumping/debugging */ static const char *error_codes[] = { "success", "parameter missing", "data_missing", "block readonly", "block not erasable", "block too big", "section overflow", "invalid command length", "invalid data length", }; static void dump_buff_as_hex(char *dst, size_t dst_sz, const u8 *data, const size_t data_len) { int i, j; for (i = j = 0; i < data_len && j + 3 < dst_sz; i++) { dst[j++] = hex_asc[(data[i] >> 4) & 0x0f]; dst[j++] = hex_asc[data[i] & 0x0f]; dst[j++] = ' '; } if (j < dst_sz) { dst[j--] = '\0'; dst[j] = '\n'; } else dst[j] = '\0'; } static void picolcd_debug_out_report(struct picolcd_data *data, struct hid_device *hdev, struct hid_report *report) { u8 raw_data[70]; int raw_size = (report->size >> 3) + 1; char *buff; #define BUFF_SZ 256 /* Avoid unnecessary overhead if debugfs is disabled */ if (!hdev->debug_events) return; buff = kmalloc(BUFF_SZ, GFP_ATOMIC); if (!buff) return; snprintf(buff, BUFF_SZ, "\nout report %d (size %d) = ", report->id, raw_size); hid_debug_event(hdev, buff); if (raw_size + 5 > sizeof(raw_data)) { kfree(buff); hid_debug_event(hdev, " TOO BIG\n"); return; } else { raw_data[0] = report->id; hid_output_report(report, raw_data); dump_buff_as_hex(buff, BUFF_SZ, raw_data, raw_size); hid_debug_event(hdev, buff); } switch (report->id) { case REPORT_LED_STATE: /* 1 data byte with GPO state */ snprintf(buff, BUFF_SZ, "out report %s (%d, size=%d)\n", "REPORT_LED_STATE", report->id, raw_size-1); hid_debug_event(hdev, buff); snprintf(buff, BUFF_SZ, "\tGPO state: 0x%02x\n", raw_data[1]); hid_debug_event(hdev, buff); break; case REPORT_BRIGHTNESS: /* 1 data byte with brightness */ snprintf(buff, BUFF_SZ, "out report %s (%d, size=%d)\n", "REPORT_BRIGHTNESS", report->id, raw_size-1); hid_debug_event(hdev, buff); snprintf(buff, BUFF_SZ, "\tBrightness: 0x%02x\n", raw_data[1]); hid_debug_event(hdev, buff); break; case REPORT_CONTRAST: /* 1 data byte with contrast */ snprintf(buff, BUFF_SZ, "out report %s (%d, size=%d)\n", "REPORT_CONTRAST", report->id, raw_size-1); hid_debug_event(hdev, buff); snprintf(buff, BUFF_SZ, "\tContrast: 0x%02x\n", raw_data[1]); hid_debug_event(hdev, buff); break; case REPORT_RESET: /* 2 data bytes with reset duration in ms */ snprintf(buff, BUFF_SZ, "out report %s (%d, size=%d)\n", "REPORT_RESET", report->id, raw_size-1); hid_debug_event(hdev, buff); snprintf(buff, BUFF_SZ, "\tDuration: 0x%02x%02x (%dms)\n", raw_data[2], raw_data[1], raw_data[2] << 8 | raw_data[1]); hid_debug_event(hdev, buff); break; case REPORT_LCD_CMD: /* 63 data bytes with LCD commands */ snprintf(buff, BUFF_SZ, "out report %s (%d, size=%d)\n", "REPORT_LCD_CMD", report->id, raw_size-1); hid_debug_event(hdev, buff); /* TODO: format decoding */ break; case REPORT_LCD_DATA: /* 63 data bytes with LCD data */ snprintf(buff, BUFF_SZ, "out report %s (%d, size=%d)\n", "REPORT_LCD_CMD", report->id, raw_size-1); /* TODO: format decoding */ hid_debug_event(hdev, buff); break; case REPORT_LCD_CMD_DATA: /* 63 data bytes with LCD commands and data */ snprintf(buff, BUFF_SZ, "out report %s (%d, size=%d)\n", "REPORT_LCD_CMD", report->id, raw_size-1); /* TODO: format decoding */ hid_debug_event(hdev, buff); break; case REPORT_EE_READ: /* 3 data bytes with read area description */ snprintf(buff, BUFF_SZ, "out report %s (%d, size=%d)\n", "REPORT_EE_READ", report->id, raw_size-1); hid_debug_event(hdev, buff); snprintf(buff, BUFF_SZ, "\tData address: 0x%02x%02x\n", raw_data[2], raw_data[1]); hid_debug_event(hdev, buff); snprintf(buff, BUFF_SZ, "\tData length: %d\n", raw_data[3]); hid_debug_event(hdev, buff); break; case REPORT_EE_WRITE: /* 3+1..20 data bytes with write area description */ snprintf(buff, BUFF_SZ, "out report %s (%d, size=%d)\n", "REPORT_EE_WRITE", report->id, raw_size-1); hid_debug_event(hdev, buff); snprintf(buff, BUFF_SZ, "\tData address: 0x%02x%02x\n", raw_data[2], raw_data[1]); hid_debug_event(hdev, buff); snprintf(buff, BUFF_SZ, "\tData length: %d\n", raw_data[3]); hid_debug_event(hdev, buff); if (raw_data[3] == 0) { snprintf(buff, BUFF_SZ, "\tNo data\n"); } else if (raw_data[3] + 4 <= raw_size) { snprintf(buff, BUFF_SZ, "\tData: "); hid_debug_event(hdev, buff); dump_buff_as_hex(buff, BUFF_SZ, raw_data+4, raw_data[3]); } else { snprintf(buff, BUFF_SZ, "\tData overflowed\n"); } hid_debug_event(hdev, buff); break; case REPORT_ERASE_MEMORY: case REPORT_BL_ERASE_MEMORY: /* 3 data bytes with pointer inside erase block */ snprintf(buff, BUFF_SZ, "out report %s (%d, size=%d)\n", "REPORT_ERASE_MEMORY", report->id, raw_size-1); hid_debug_event(hdev, buff); switch (data->addr_sz) { case 2: snprintf(buff, BUFF_SZ, "\tAddress inside 64 byte block: 0x%02x%02x\n", raw_data[2], raw_data[1]); break; case 3: snprintf(buff, BUFF_SZ, "\tAddress inside 64 byte block: 0x%02x%02x%02x\n", raw_data[3], raw_data[2], raw_data[1]); break; default: snprintf(buff, BUFF_SZ, "\tNot supported\n"); } hid_debug_event(hdev, buff); break; case REPORT_READ_MEMORY: case REPORT_BL_READ_MEMORY: /* 4 data bytes with read area description */ snprintf(buff, BUFF_SZ, "out report %s (%d, size=%d)\n", "REPORT_READ_MEMORY", report->id, raw_size-1); hid_debug_event(hdev, buff); switch (data->addr_sz) { case 2: snprintf(buff, BUFF_SZ, "\tData address: 0x%02x%02x\n", raw_data[2], raw_data[1]); hid_debug_event(hdev, buff); snprintf(buff, BUFF_SZ, "\tData length: %d\n", raw_data[3]); break; case 3: snprintf(buff, BUFF_SZ, "\tData address: 0x%02x%02x%02x\n", raw_data[3], raw_data[2], raw_data[1]); hid_debug_event(hdev, buff); snprintf(buff, BUFF_SZ, "\tData length: %d\n", raw_data[4]); break; default: snprintf(buff, BUFF_SZ, "\tNot supported\n"); } hid_debug_event(hdev, buff); break; case REPORT_WRITE_MEMORY: case REPORT_BL_WRITE_MEMORY: /* 4+1..32 data bytes with write adrea description */ snprintf(buff, BUFF_SZ, "out report %s (%d, size=%d)\n", "REPORT_WRITE_MEMORY", report->id, raw_size-1); hid_debug_event(hdev, buff); switch (data->addr_sz) { case 2: snprintf(buff, BUFF_SZ, "\tData address: 0x%02x%02x\n", raw_data[2], raw_data[1]); hid_debug_event(hdev, buff); snprintf(buff, BUFF_SZ, "\tData length: %d\n", raw_data[3]); hid_debug_event(hdev, buff); if (raw_data[3] == 0) { snprintf(buff, BUFF_SZ, "\tNo data\n"); } else if (raw_data[3] + 4 <= raw_size) { snprintf(buff, BUFF_SZ, "\tData: "); hid_debug_event(hdev, buff); dump_buff_as_hex(buff, BUFF_SZ, raw_data+4, raw_data[3]); } else { snprintf(buff, BUFF_SZ, "\tData overflowed\n"); } break; case 3: snprintf(buff, BUFF_SZ, "\tData address: 0x%02x%02x%02x\n", raw_data[3], raw_data[2], raw_data[1]); hid_debug_event(hdev, buff); snprintf(buff, BUFF_SZ, "\tData length: %d\n", raw_data[4]); hid_debug_event(hdev, buff); if (raw_data[4] == 0) { snprintf(buff, BUFF_SZ, "\tNo data\n"); } else if (raw_data[4] + 5 <= raw_size) { snprintf(buff, BUFF_SZ, "\tData: "); hid_debug_event(hdev, buff); dump_buff_as_hex(buff, BUFF_SZ, raw_data+5, raw_data[4]); } else { snprintf(buff, BUFF_SZ, "\tData overflowed\n"); } break; default: snprintf(buff, BUFF_SZ, "\tNot supported\n"); } hid_debug_event(hdev, buff); break; case REPORT_SPLASH_RESTART: /* TODO */ break; case REPORT_EXIT_KEYBOARD: snprintf(buff, BUFF_SZ, "out report %s (%d, size=%d)\n", "REPORT_EXIT_KEYBOARD", report->id, raw_size-1); hid_debug_event(hdev, buff); snprintf(buff, BUFF_SZ, "\tRestart delay: %dms (0x%02x%02x)\n", raw_data[1] | (raw_data[2] << 8), raw_data[2], raw_data[1]); hid_debug_event(hdev, buff); break; case REPORT_VERSION: snprintf(buff, BUFF_SZ, "out report %s (%d, size=%d)\n", "REPORT_VERSION", report->id, raw_size-1); hid_debug_event(hdev, buff); break; case REPORT_DEVID: snprintf(buff, BUFF_SZ, "out report %s (%d, size=%d)\n", "REPORT_DEVID", report->id, raw_size-1); hid_debug_event(hdev, buff); break; case REPORT_SPLASH_SIZE: snprintf(buff, BUFF_SZ, "out report %s (%d, size=%d)\n", "REPORT_SPLASH_SIZE", report->id, raw_size-1); hid_debug_event(hdev, buff); break; case REPORT_HOOK_VERSION: snprintf(buff, BUFF_SZ, "out report %s (%d, size=%d)\n", "REPORT_HOOK_VERSION", report->id, raw_size-1); hid_debug_event(hdev, buff); break; case REPORT_EXIT_FLASHER: snprintf(buff, BUFF_SZ, "out report %s (%d, size=%d)\n", "REPORT_VERSION", report->id, raw_size-1); hid_debug_event(hdev, buff); snprintf(buff, BUFF_SZ, "\tRestart delay: %dms (0x%02x%02x)\n", raw_data[1] | (raw_data[2] << 8), raw_data[2], raw_data[1]); hid_debug_event(hdev, buff); break; default: snprintf(buff, BUFF_SZ, "out report %s (%d, size=%d)\n", "", report->id, raw_size-1); hid_debug_event(hdev, buff); break; } wake_up_interruptible(&hdev->debug_wait); kfree(buff); } static void picolcd_debug_raw_event(struct picolcd_data *data, struct hid_device *hdev, struct hid_report *report, u8 *raw_data, int size) { char *buff; #define BUFF_SZ 256 /* Avoid unnecessary overhead if debugfs is disabled */ if (!hdev->debug_events) return; buff = kmalloc(BUFF_SZ, GFP_ATOMIC); if (!buff) return; switch (report->id) { case REPORT_ERROR_CODE: /* 2 data bytes with affected report and error code */ snprintf(buff, BUFF_SZ, "report %s (%d, size=%d)\n", "REPORT_ERROR_CODE", report->id, size-1); hid_debug_event(hdev, buff); if (raw_data[2] < ARRAY_SIZE(error_codes)) snprintf(buff, BUFF_SZ, "\tError code 0x%02x (%s) in reply to report 0x%02x\n", raw_data[2], error_codes[raw_data[2]], raw_data[1]); else snprintf(buff, BUFF_SZ, "\tError code 0x%02x in reply to report 0x%02x\n", raw_data[2], raw_data[1]); hid_debug_event(hdev, buff); break; case REPORT_KEY_STATE: /* 2 data bytes with key state */ snprintf(buff, BUFF_SZ, "report %s (%d, size=%d)\n", "REPORT_KEY_STATE", report->id, size-1); hid_debug_event(hdev, buff); if (raw_data[1] == 0) snprintf(buff, BUFF_SZ, "\tNo key pressed\n"); else if (raw_data[2] == 0) snprintf(buff, BUFF_SZ, "\tOne key pressed: 0x%02x (%d)\n", raw_data[1], raw_data[1]); else snprintf(buff, BUFF_SZ, "\tTwo keys pressed: 0x%02x (%d), 0x%02x (%d)\n", raw_data[1], raw_data[1], raw_data[2], raw_data[2]); hid_debug_event(hdev, buff); break; case REPORT_IR_DATA: /* Up to 20 byes of IR scancode data */ snprintf(buff, BUFF_SZ, "report %s (%d, size=%d)\n", "REPORT_IR_DATA", report->id, size-1); hid_debug_event(hdev, buff); if (raw_data[1] == 0) { snprintf(buff, BUFF_SZ, "\tUnexpectedly 0 data length\n"); hid_debug_event(hdev, buff); } else if (raw_data[1] + 1 <= size) { snprintf(buff, BUFF_SZ, "\tData length: %d\n\tIR Data: ", raw_data[1]-1); hid_debug_event(hdev, buff); dump_buff_as_hex(buff, BUFF_SZ, raw_data+2, raw_data[1]-1); hid_debug_event(hdev, buff); } else { snprintf(buff, BUFF_SZ, "\tOverflowing data length: %d\n", raw_data[1]-1); hid_debug_event(hdev, buff); } break; case REPORT_EE_DATA: /* Data buffer in response to REPORT_EE_READ or REPORT_EE_WRITE */ snprintf(buff, BUFF_SZ, "report %s (%d, size=%d)\n", "REPORT_EE_DATA", report->id, size-1); hid_debug_event(hdev, buff); snprintf(buff, BUFF_SZ, "\tData address: 0x%02x%02x\n", raw_data[2], raw_data[1]); hid_debug_event(hdev, buff); snprintf(buff, BUFF_SZ, "\tData length: %d\n", raw_data[3]); hid_debug_event(hdev, buff); if (raw_data[3] == 0) { snprintf(buff, BUFF_SZ, "\tNo data\n"); hid_debug_event(hdev, buff); } else if (raw_data[3] + 4 <= size) { snprintf(buff, BUFF_SZ, "\tData: "); hid_debug_event(hdev, buff); dump_buff_as_hex(buff, BUFF_SZ, raw_data+4, raw_data[3]); hid_debug_event(hdev, buff); } else { snprintf(buff, BUFF_SZ, "\tData overflowed\n"); hid_debug_event(hdev, buff); } break; case REPORT_MEMORY: /* Data buffer in response to REPORT_READ_MEMORY or REPORT_WRTIE_MEMORY */ snprintf(buff, BUFF_SZ, "report %s (%d, size=%d)\n", "REPORT_MEMORY", report->id, size-1); hid_debug_event(hdev, buff); switch (data->addr_sz) { case 2: snprintf(buff, BUFF_SZ, "\tData address: 0x%02x%02x\n", raw_data[2], raw_data[1]); hid_debug_event(hdev, buff); snprintf(buff, BUFF_SZ, "\tData length: %d\n", raw_data[3]); hid_debug_event(hdev, buff); if (raw_data[3] == 0) { snprintf(buff, BUFF_SZ, "\tNo data\n"); } else if (raw_data[3] + 4 <= size) { snprintf(buff, BUFF_SZ, "\tData: "); hid_debug_event(hdev, buff); dump_buff_as_hex(buff, BUFF_SZ, raw_data+4, raw_data[3]); } else { snprintf(buff, BUFF_SZ, "\tData overflowed\n"); } break; case 3: snprintf(buff, BUFF_SZ, "\tData address: 0x%02x%02x%02x\n", raw_data[3], raw_data[2], raw_data[1]); hid_debug_event(hdev, buff); snprintf(buff, BUFF_SZ, "\tData length: %d\n", raw_data[4]); hid_debug_event(hdev, buff); if (raw_data[4] == 0) { snprintf(buff, BUFF_SZ, "\tNo data\n"); } else if (raw_data[4] + 5 <= size) { snprintf(buff, BUFF_SZ, "\tData: "); hid_debug_event(hdev, buff); dump_buff_as_hex(buff, BUFF_SZ, raw_data+5, raw_data[4]); } else { snprintf(buff, BUFF_SZ, "\tData overflowed\n"); } break; default: snprintf(buff, BUFF_SZ, "\tNot supported\n"); } hid_debug_event(hdev, buff); break; case REPORT_VERSION: snprintf(buff, BUFF_SZ, "report %s (%d, size=%d)\n", "REPORT_VERSION", report->id, size-1); hid_debug_event(hdev, buff); snprintf(buff, BUFF_SZ, "\tFirmware version: %d.%d\n", raw_data[2], raw_data[1]); hid_debug_event(hdev, buff); break; case REPORT_BL_ERASE_MEMORY: snprintf(buff, BUFF_SZ, "report %s (%d, size=%d)\n", "REPORT_BL_ERASE_MEMORY", report->id, size-1); hid_debug_event(hdev, buff); /* TODO */ break; case REPORT_BL_READ_MEMORY: snprintf(buff, BUFF_SZ, "report %s (%d, size=%d)\n", "REPORT_BL_READ_MEMORY", report->id, size-1); hid_debug_event(hdev, buff); /* TODO */ break; case REPORT_BL_WRITE_MEMORY: snprintf(buff, BUFF_SZ, "report %s (%d, size=%d)\n", "REPORT_BL_WRITE_MEMORY", report->id, size-1); hid_debug_event(hdev, buff); /* TODO */ break; case REPORT_DEVID: snprintf(buff, BUFF_SZ, "report %s (%d, size=%d)\n", "REPORT_DEVID", report->id, size-1); hid_debug_event(hdev, buff); snprintf(buff, BUFF_SZ, "\tSerial: 0x%02x%02x%02x%02x\n", raw_data[1], raw_data[2], raw_data[3], raw_data[4]); hid_debug_event(hdev, buff); snprintf(buff, BUFF_SZ, "\tType: 0x%02x\n", raw_data[5]); hid_debug_event(hdev, buff); break; case REPORT_SPLASH_SIZE: snprintf(buff, BUFF_SZ, "report %s (%d, size=%d)\n", "REPORT_SPLASH_SIZE", report->id, size-1); hid_debug_event(hdev, buff); snprintf(buff, BUFF_SZ, "\tTotal splash space: %d\n", (raw_data[2] << 8) | raw_data[1]); hid_debug_event(hdev, buff); snprintf(buff, BUFF_SZ, "\tUsed splash space: %d\n", (raw_data[4] << 8) | raw_data[3]); hid_debug_event(hdev, buff); break; case REPORT_HOOK_VERSION: snprintf(buff, BUFF_SZ, "report %s (%d, size=%d)\n", "REPORT_HOOK_VERSION", report->id, size-1); hid_debug_event(hdev, buff); snprintf(buff, BUFF_SZ, "\tFirmware version: %d.%d\n", raw_data[1], raw_data[2]); hid_debug_event(hdev, buff); break; default: snprintf(buff, BUFF_SZ, "report %s (%d, size=%d)\n", "", report->id, size-1); hid_debug_event(hdev, buff); break; } wake_up_interruptible(&hdev->debug_wait); kfree(buff); } static void picolcd_init_devfs(struct picolcd_data *data, struct hid_report *eeprom_r, struct hid_report *eeprom_w, struct hid_report *flash_r, struct hid_report *flash_w, struct hid_report *reset) { struct hid_device *hdev = data->hdev; mutex_init(&data->mutex_flash); /* reset */ if (reset) data->debug_reset = debugfs_create_file("reset", 0600, hdev->debug_dir, data, &picolcd_debug_reset_fops); /* eeprom */ if (eeprom_r || eeprom_w) data->debug_eeprom = debugfs_create_file("eeprom", (eeprom_w ? S_IWUSR : 0) | (eeprom_r ? S_IRUSR : 0), hdev->debug_dir, data, &picolcd_debug_eeprom_fops); /* flash */ if (flash_r && flash_r->maxfield == 1 && flash_r->field[0]->report_size == 8) data->addr_sz = flash_r->field[0]->report_count - 1; else data->addr_sz = -1; if (data->addr_sz == 2 || data->addr_sz == 3) { data->debug_flash = debugfs_create_file("flash", (flash_w ? S_IWUSR : 0) | (flash_r ? S_IRUSR : 0), hdev->debug_dir, data, &picolcd_debug_flash_fops); } else if (flash_r || flash_w) hid_warn(hdev, "Unexpected FLASH access reports, please submit rdesc for review\n"); } static void picolcd_exit_devfs(struct picolcd_data *data) { struct dentry *dent; dent = data->debug_reset; data->debug_reset = NULL; if (dent) debugfs_remove(dent); dent = data->debug_eeprom; data->debug_eeprom = NULL; if (dent) debugfs_remove(dent); dent = data->debug_flash; data->debug_flash = NULL; if (dent) debugfs_remove(dent); mutex_destroy(&data->mutex_flash); } #else static inline void picolcd_debug_raw_event(struct picolcd_data *data, struct hid_device *hdev, struct hid_report *report, u8 *raw_data, int size) { } static inline void picolcd_init_devfs(struct picolcd_data *data, struct hid_report *eeprom_r, struct hid_report *eeprom_w, struct hid_report *flash_r, struct hid_report *flash_w, struct hid_report *reset) { } static inline void picolcd_exit_devfs(struct picolcd_data *data) { } #endif /* CONFIG_DEBUG_FS */ /* * Handle raw report as sent by device */ static int picolcd_raw_event(struct hid_device *hdev, struct hid_report *report, u8 *raw_data, int size) { struct picolcd_data *data = hid_get_drvdata(hdev); unsigned long flags; int ret = 0; if (!data) return 1; if (report->id == REPORT_KEY_STATE) { if (data->input_keys) ret = picolcd_raw_keypad(data, report, raw_data+1, size-1); } else if (report->id == REPORT_IR_DATA) { if (data->input_cir) ret = picolcd_raw_cir(data, report, raw_data+1, size-1); } else { spin_lock_irqsave(&data->lock, flags); /* * We let the caller of picolcd_send_and_wait() check if the * report we got is one of the expected ones or not. */ if (data->pending) { memcpy(data->pending->raw_data, raw_data+1, size-1); data->pending->raw_size = size-1; data->pending->in_report = report; complete(&data->pending->ready); } spin_unlock_irqrestore(&data->lock, flags); } picolcd_debug_raw_event(data, hdev, report, raw_data, size); return 1; } #ifdef CONFIG_PM static int picolcd_suspend(struct hid_device *hdev, pm_message_t message) { if (PMSG_IS_AUTO(message)) return 0; picolcd_suspend_backlight(hid_get_drvdata(hdev)); dbg_hid(PICOLCD_NAME " device ready for suspend\n"); return 0; } static int picolcd_resume(struct hid_device *hdev) { int ret; ret = picolcd_resume_backlight(hid_get_drvdata(hdev)); if (ret) dbg_hid(PICOLCD_NAME " restoring backlight failed: %d\n", ret); return 0; } static int picolcd_reset_resume(struct hid_device *hdev) { int ret; ret = picolcd_reset(hdev); if (ret) dbg_hid(PICOLCD_NAME " resetting our device failed: %d\n", ret); ret = picolcd_fb_reset(hid_get_drvdata(hdev), 0); if (ret) dbg_hid(PICOLCD_NAME " restoring framebuffer content failed: %d\n", ret); ret = picolcd_resume_lcd(hid_get_drvdata(hdev)); if (ret) dbg_hid(PICOLCD_NAME " restoring lcd failed: %d\n", ret); ret = picolcd_resume_backlight(hid_get_drvdata(hdev)); if (ret) dbg_hid(PICOLCD_NAME " restoring backlight failed: %d\n", ret); picolcd_leds_set(hid_get_drvdata(hdev)); return 0; } #endif /* initialize keypad input device */ static int picolcd_init_keys(struct picolcd_data *data, struct hid_report *report) { struct hid_device *hdev = data->hdev; struct input_dev *idev; int error, i; if (!report) return -ENODEV; if (report->maxfield != 1 || report->field[0]->report_count != 2 || report->field[0]->report_size != 8) { hid_err(hdev, "unsupported KEY_STATE report\n"); return -EINVAL; } idev = input_allocate_device(); if (idev == NULL) { hid_err(hdev, "failed to allocate input device\n"); return -ENOMEM; } input_set_drvdata(idev, hdev); memcpy(data->keycode, def_keymap, sizeof(def_keymap)); idev->name = hdev->name; idev->phys = hdev->phys; idev->uniq = hdev->uniq; idev->id.bustype = hdev->bus; idev->id.vendor = hdev->vendor; idev->id.product = hdev->product; idev->id.version = hdev->version; idev->dev.parent = hdev->dev.parent; idev->keycode = &data->keycode; idev->keycodemax = PICOLCD_KEYS; idev->keycodesize = sizeof(data->keycode[0]); input_set_capability(idev, EV_MSC, MSC_SCAN); set_bit(EV_REP, idev->evbit); for (i = 0; i < PICOLCD_KEYS; i++) input_set_capability(idev, EV_KEY, data->keycode[i]); error = input_register_device(idev); if (error) { hid_err(hdev, "error registering the input device\n"); input_free_device(idev); return error; } data->input_keys = idev; return 0; } static void picolcd_exit_keys(struct picolcd_data *data) { struct input_dev *idev = data->input_keys; data->input_keys = NULL; if (idev) input_unregister_device(idev); } /* initialize CIR input device */ static inline int picolcd_init_cir(struct picolcd_data *data, struct hid_report *report) { /* support not implemented yet */ return 0; } static inline void picolcd_exit_cir(struct picolcd_data *data) { } static int picolcd_probe_lcd(struct hid_device *hdev, struct picolcd_data *data) { int error; error = picolcd_check_version(hdev); if (error) return error; if (data->version[0] != 0 && data->version[1] != 3) hid_info(hdev, "Device with untested firmware revision, please submit /sys/kernel/debug/hid/%s/rdesc for this device.\n", dev_name(&hdev->dev)); /* Setup keypad input device */ error = picolcd_init_keys(data, picolcd_in_report(REPORT_KEY_STATE, hdev)); if (error) goto err; /* Setup CIR input device */ error = picolcd_init_cir(data, picolcd_in_report(REPORT_IR_DATA, hdev)); if (error) goto err; /* Set up the framebuffer device */ error = picolcd_init_framebuffer(data); if (error) goto err; /* Setup lcd class device */ error = picolcd_init_lcd(data, picolcd_out_report(REPORT_CONTRAST, hdev)); if (error) goto err; /* Setup backlight class device */ error = picolcd_init_backlight(data, picolcd_out_report(REPORT_BRIGHTNESS, hdev)); if (error) goto err; /* Setup the LED class devices */ error = picolcd_init_leds(data, picolcd_out_report(REPORT_LED_STATE, hdev)); if (error) goto err; picolcd_init_devfs(data, picolcd_out_report(REPORT_EE_READ, hdev), picolcd_out_report(REPORT_EE_WRITE, hdev), picolcd_out_report(REPORT_READ_MEMORY, hdev), picolcd_out_report(REPORT_WRITE_MEMORY, hdev), picolcd_out_report(REPORT_RESET, hdev)); return 0; err: picolcd_exit_leds(data); picolcd_exit_backlight(data); picolcd_exit_lcd(data); picolcd_exit_framebuffer(data); picolcd_exit_cir(data); picolcd_exit_keys(data); return error; } static int picolcd_probe_bootloader(struct hid_device *hdev, struct picolcd_data *data) { int error; error = picolcd_check_version(hdev); if (error) return error; if (data->version[0] != 1 && data->version[1] != 0) hid_info(hdev, "Device with untested bootloader revision, please submit /sys/kernel/debug/hid/%s/rdesc for this device.\n", dev_name(&hdev->dev)); picolcd_init_devfs(data, NULL, NULL, picolcd_out_report(REPORT_BL_READ_MEMORY, hdev), picolcd_out_report(REPORT_BL_WRITE_MEMORY, hdev), NULL); return 0; } static int picolcd_probe(struct hid_device *hdev, const struct hid_device_id *id) { struct picolcd_data *data; int error = -ENOMEM; dbg_hid(PICOLCD_NAME " hardware probe...\n"); /* * Let's allocate the picolcd data structure, set some reasonable * defaults, and associate it with the device */ data = kzalloc(sizeof(struct picolcd_data), GFP_KERNEL); if (data == NULL) { hid_err(hdev, "can't allocate space for Minibox PicoLCD device data\n"); error = -ENOMEM; goto err_no_cleanup; } spin_lock_init(&data->lock); mutex_init(&data->mutex); data->hdev = hdev; data->opmode_delay = 5000; if (hdev->product == USB_DEVICE_ID_PICOLCD_BOOTLOADER) data->status |= PICOLCD_BOOTLOADER; hid_set_drvdata(hdev, data); /* Parse the device reports and start it up */ error = hid_parse(hdev); if (error) { hid_err(hdev, "device report parse failed\n"); goto err_cleanup_data; } /* We don't use hidinput but hid_hw_start() fails if nothing is * claimed. So spoof claimed input. */ hdev->claimed = HID_CLAIMED_INPUT; error = hid_hw_start(hdev, 0); hdev->claimed = 0; if (error) { hid_err(hdev, "hardware start failed\n"); goto err_cleanup_data; } error = hid_hw_open(hdev); if (error) { hid_err(hdev, "failed to open input interrupt pipe for key and IR events\n"); goto err_cleanup_hid_hw; } error = device_create_file(&hdev->dev, &dev_attr_operation_mode_delay); if (error) { hid_err(hdev, "failed to create sysfs attributes\n"); goto err_cleanup_hid_ll; } error = device_create_file(&hdev->dev, &dev_attr_operation_mode); if (error) { hid_err(hdev, "failed to create sysfs attributes\n"); goto err_cleanup_sysfs1; } if (data->status & PICOLCD_BOOTLOADER) error = picolcd_probe_bootloader(hdev, data); else error = picolcd_probe_lcd(hdev, data); if (error) goto err_cleanup_sysfs2; dbg_hid(PICOLCD_NAME " activated and initialized\n"); return 0; err_cleanup_sysfs2: device_remove_file(&hdev->dev, &dev_attr_operation_mode); err_cleanup_sysfs1: device_remove_file(&hdev->dev, &dev_attr_operation_mode_delay); err_cleanup_hid_ll: hid_hw_close(hdev); err_cleanup_hid_hw: hid_hw_stop(hdev); err_cleanup_data: kfree(data); err_no_cleanup: hid_set_drvdata(hdev, NULL); return error; } static void picolcd_remove(struct hid_device *hdev) { struct picolcd_data *data = hid_get_drvdata(hdev); unsigned long flags; dbg_hid(PICOLCD_NAME " hardware remove...\n"); spin_lock_irqsave(&data->lock, flags); data->status |= PICOLCD_FAILED; spin_unlock_irqrestore(&data->lock, flags); #ifdef CONFIG_HID_PICOLCD_FB /* short-circuit FB as early as possible in order to * avoid long delays if we host console. */ if (data->fb_info) data->fb_info->par = NULL; #endif picolcd_exit_devfs(data); device_remove_file(&hdev->dev, &dev_attr_operation_mode); device_remove_file(&hdev->dev, &dev_attr_operation_mode_delay); hid_hw_close(hdev); hid_hw_stop(hdev); hid_set_drvdata(hdev, NULL); /* Shortcut potential pending reply that will never arrive */ spin_lock_irqsave(&data->lock, flags); if (data->pending) complete(&data->pending->ready); spin_unlock_irqrestore(&data->lock, flags); /* Cleanup LED */ picolcd_exit_leds(data); /* Clean up the framebuffer */ picolcd_exit_backlight(data); picolcd_exit_lcd(data); picolcd_exit_framebuffer(data); /* Cleanup input */ picolcd_exit_cir(data); picolcd_exit_keys(data); mutex_destroy(&data->mutex); /* Finally, clean up the picolcd data itself */ kfree(data); } static const struct hid_device_id picolcd_devices[] = { { HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICOLCD) }, { HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICOLCD_BOOTLOADER) }, { } }; MODULE_DEVICE_TABLE(hid, picolcd_devices); static struct hid_driver picolcd_driver = { .name = "hid-picolcd", .id_table = picolcd_devices, .probe = picolcd_probe, .remove = picolcd_remove, .raw_event = picolcd_raw_event, #ifdef CONFIG_PM .suspend = picolcd_suspend, .resume = picolcd_resume, .reset_resume = picolcd_reset_resume, #endif }; static int __init picolcd_init(void) { return hid_register_driver(&picolcd_driver); } static void __exit picolcd_exit(void) { hid_unregister_driver(&picolcd_driver); #ifdef CONFIG_HID_PICOLCD_FB flush_work_sync(&picolcd_fb_cleanup); WARN_ON(fb_pending); #endif } module_init(picolcd_init); module_exit(picolcd_exit); MODULE_DESCRIPTION("Minibox graphics PicoLCD Driver"); MODULE_LICENSE("GPL v2");