/* * Copyright (C) 2013 NVIDIA Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/clk.h> #include <linux/debugfs.h> #include <linux/host1x.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/reset.h> #include <linux/regulator/consumer.h> #include <drm/drm_mipi_dsi.h> #include <drm/drm_panel.h> #include <video/mipi_display.h> #include "dc.h" #include "drm.h" #include "dsi.h" #include "mipi-phy.h" #define DSI_VIDEO_FIFO_DEPTH (1920 / 4) #define DSI_HOST_FIFO_DEPTH 64 struct tegra_dsi { struct host1x_client client; struct tegra_output output; struct device *dev; void __iomem *regs; struct reset_control *rst; struct clk *clk_parent; struct clk *clk_lp; struct clk *clk; struct drm_info_list *debugfs_files; struct drm_minor *minor; struct dentry *debugfs; unsigned long flags; enum mipi_dsi_pixel_format format; unsigned int lanes; struct tegra_mipi_device *mipi; struct mipi_dsi_host host; struct regulator *vdd; bool enabled; }; static inline struct tegra_dsi * host1x_client_to_dsi(struct host1x_client *client) { return container_of(client, struct tegra_dsi, client); } static inline struct tegra_dsi *host_to_tegra(struct mipi_dsi_host *host) { return container_of(host, struct tegra_dsi, host); } static inline struct tegra_dsi *to_dsi(struct tegra_output *output) { return container_of(output, struct tegra_dsi, output); } static inline unsigned long tegra_dsi_readl(struct tegra_dsi *dsi, unsigned long reg) { return readl(dsi->regs + (reg << 2)); } static inline void tegra_dsi_writel(struct tegra_dsi *dsi, unsigned long value, unsigned long reg) { writel(value, dsi->regs + (reg << 2)); } static int tegra_dsi_show_regs(struct seq_file *s, void *data) { struct drm_info_node *node = s->private; struct tegra_dsi *dsi = node->info_ent->data; #define DUMP_REG(name) \ seq_printf(s, "%-32s %#05x %08lx\n", #name, name, \ tegra_dsi_readl(dsi, name)) DUMP_REG(DSI_INCR_SYNCPT); DUMP_REG(DSI_INCR_SYNCPT_CONTROL); DUMP_REG(DSI_INCR_SYNCPT_ERROR); DUMP_REG(DSI_CTXSW); DUMP_REG(DSI_RD_DATA); DUMP_REG(DSI_WR_DATA); DUMP_REG(DSI_POWER_CONTROL); DUMP_REG(DSI_INT_ENABLE); DUMP_REG(DSI_INT_STATUS); DUMP_REG(DSI_INT_MASK); DUMP_REG(DSI_HOST_CONTROL); DUMP_REG(DSI_CONTROL); DUMP_REG(DSI_SOL_DELAY); DUMP_REG(DSI_MAX_THRESHOLD); DUMP_REG(DSI_TRIGGER); DUMP_REG(DSI_TX_CRC); DUMP_REG(DSI_STATUS); DUMP_REG(DSI_INIT_SEQ_CONTROL); DUMP_REG(DSI_INIT_SEQ_DATA_0); DUMP_REG(DSI_INIT_SEQ_DATA_1); DUMP_REG(DSI_INIT_SEQ_DATA_2); DUMP_REG(DSI_INIT_SEQ_DATA_3); DUMP_REG(DSI_INIT_SEQ_DATA_4); DUMP_REG(DSI_INIT_SEQ_DATA_5); DUMP_REG(DSI_INIT_SEQ_DATA_6); DUMP_REG(DSI_INIT_SEQ_DATA_7); DUMP_REG(DSI_PKT_SEQ_0_LO); DUMP_REG(DSI_PKT_SEQ_0_HI); DUMP_REG(DSI_PKT_SEQ_1_LO); DUMP_REG(DSI_PKT_SEQ_1_HI); DUMP_REG(DSI_PKT_SEQ_2_LO); DUMP_REG(DSI_PKT_SEQ_2_HI); DUMP_REG(DSI_PKT_SEQ_3_LO); DUMP_REG(DSI_PKT_SEQ_3_HI); DUMP_REG(DSI_PKT_SEQ_4_LO); DUMP_REG(DSI_PKT_SEQ_4_HI); DUMP_REG(DSI_PKT_SEQ_5_LO); DUMP_REG(DSI_PKT_SEQ_5_HI); DUMP_REG(DSI_DCS_CMDS); DUMP_REG(DSI_PKT_LEN_0_1); DUMP_REG(DSI_PKT_LEN_2_3); DUMP_REG(DSI_PKT_LEN_4_5); DUMP_REG(DSI_PKT_LEN_6_7); DUMP_REG(DSI_PHY_TIMING_0); DUMP_REG(DSI_PHY_TIMING_1); DUMP_REG(DSI_PHY_TIMING_2); DUMP_REG(DSI_BTA_TIMING); DUMP_REG(DSI_TIMEOUT_0); DUMP_REG(DSI_TIMEOUT_1); DUMP_REG(DSI_TO_TALLY); DUMP_REG(DSI_PAD_CONTROL_0); DUMP_REG(DSI_PAD_CONTROL_CD); DUMP_REG(DSI_PAD_CD_STATUS); DUMP_REG(DSI_VIDEO_MODE_CONTROL); DUMP_REG(DSI_PAD_CONTROL_1); DUMP_REG(DSI_PAD_CONTROL_2); DUMP_REG(DSI_PAD_CONTROL_3); DUMP_REG(DSI_PAD_CONTROL_4); DUMP_REG(DSI_GANGED_MODE_CONTROL); DUMP_REG(DSI_GANGED_MODE_START); DUMP_REG(DSI_GANGED_MODE_SIZE); DUMP_REG(DSI_RAW_DATA_BYTE_COUNT); DUMP_REG(DSI_ULTRA_LOW_POWER_CONTROL); DUMP_REG(DSI_INIT_SEQ_DATA_8); DUMP_REG(DSI_INIT_SEQ_DATA_9); DUMP_REG(DSI_INIT_SEQ_DATA_10); DUMP_REG(DSI_INIT_SEQ_DATA_11); DUMP_REG(DSI_INIT_SEQ_DATA_12); DUMP_REG(DSI_INIT_SEQ_DATA_13); DUMP_REG(DSI_INIT_SEQ_DATA_14); DUMP_REG(DSI_INIT_SEQ_DATA_15); #undef DUMP_REG return 0; } static struct drm_info_list debugfs_files[] = { { "regs", tegra_dsi_show_regs, 0, NULL }, }; static int tegra_dsi_debugfs_init(struct tegra_dsi *dsi, struct drm_minor *minor) { const char *name = dev_name(dsi->dev); unsigned int i; int err; dsi->debugfs = debugfs_create_dir(name, minor->debugfs_root); if (!dsi->debugfs) return -ENOMEM; dsi->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files), GFP_KERNEL); if (!dsi->debugfs_files) { err = -ENOMEM; goto remove; } for (i = 0; i < ARRAY_SIZE(debugfs_files); i++) dsi->debugfs_files[i].data = dsi; err = drm_debugfs_create_files(dsi->debugfs_files, ARRAY_SIZE(debugfs_files), dsi->debugfs, minor); if (err < 0) goto free; dsi->minor = minor; return 0; free: kfree(dsi->debugfs_files); dsi->debugfs_files = NULL; remove: debugfs_remove(dsi->debugfs); dsi->debugfs = NULL; return err; } static int tegra_dsi_debugfs_exit(struct tegra_dsi *dsi) { drm_debugfs_remove_files(dsi->debugfs_files, ARRAY_SIZE(debugfs_files), dsi->minor); dsi->minor = NULL; kfree(dsi->debugfs_files); dsi->debugfs_files = NULL; debugfs_remove(dsi->debugfs); dsi->debugfs = NULL; return 0; } #define PKT_ID0(id) ((((id) & 0x3f) << 3) | (1 << 9)) #define PKT_LEN0(len) (((len) & 0x07) << 0) #define PKT_ID1(id) ((((id) & 0x3f) << 13) | (1 << 19)) #define PKT_LEN1(len) (((len) & 0x07) << 10) #define PKT_ID2(id) ((((id) & 0x3f) << 23) | (1 << 29)) #define PKT_LEN2(len) (((len) & 0x07) << 20) #define PKT_LP (1 << 30) #define NUM_PKT_SEQ 12 /* * non-burst mode with sync pulses */ static const u32 pkt_seq_video_non_burst_sync_pulses[NUM_PKT_SEQ] = { [ 0] = PKT_ID0(MIPI_DSI_V_SYNC_START) | PKT_LEN0(0) | PKT_ID1(MIPI_DSI_BLANKING_PACKET) | PKT_LEN1(1) | PKT_ID2(MIPI_DSI_H_SYNC_END) | PKT_LEN2(0) | PKT_LP, [ 1] = 0, [ 2] = PKT_ID0(MIPI_DSI_V_SYNC_END) | PKT_LEN0(0) | PKT_ID1(MIPI_DSI_BLANKING_PACKET) | PKT_LEN1(1) | PKT_ID2(MIPI_DSI_H_SYNC_END) | PKT_LEN2(0) | PKT_LP, [ 3] = 0, [ 4] = PKT_ID0(MIPI_DSI_H_SYNC_START) | PKT_LEN0(0) | PKT_ID1(MIPI_DSI_BLANKING_PACKET) | PKT_LEN1(1) | PKT_ID2(MIPI_DSI_H_SYNC_END) | PKT_LEN2(0) | PKT_LP, [ 5] = 0, [ 6] = PKT_ID0(MIPI_DSI_H_SYNC_START) | PKT_LEN0(0) | PKT_ID1(MIPI_DSI_BLANKING_PACKET) | PKT_LEN1(1) | PKT_ID2(MIPI_DSI_H_SYNC_END) | PKT_LEN2(0), [ 7] = PKT_ID0(MIPI_DSI_BLANKING_PACKET) | PKT_LEN0(2) | PKT_ID1(MIPI_DSI_PACKED_PIXEL_STREAM_24) | PKT_LEN1(3) | PKT_ID2(MIPI_DSI_BLANKING_PACKET) | PKT_LEN2(4), [ 8] = PKT_ID0(MIPI_DSI_H_SYNC_START) | PKT_LEN0(0) | PKT_ID1(MIPI_DSI_BLANKING_PACKET) | PKT_LEN1(1) | PKT_ID2(MIPI_DSI_H_SYNC_END) | PKT_LEN2(0) | PKT_LP, [ 9] = 0, [10] = PKT_ID0(MIPI_DSI_H_SYNC_START) | PKT_LEN0(0) | PKT_ID1(MIPI_DSI_BLANKING_PACKET) | PKT_LEN1(1) | PKT_ID2(MIPI_DSI_H_SYNC_END) | PKT_LEN2(0), [11] = PKT_ID0(MIPI_DSI_BLANKING_PACKET) | PKT_LEN0(2) | PKT_ID1(MIPI_DSI_PACKED_PIXEL_STREAM_24) | PKT_LEN1(3) | PKT_ID2(MIPI_DSI_BLANKING_PACKET) | PKT_LEN2(4), }; /* * non-burst mode with sync events */ static const u32 pkt_seq_video_non_burst_sync_events[NUM_PKT_SEQ] = { [ 0] = PKT_ID0(MIPI_DSI_V_SYNC_START) | PKT_LEN0(0) | PKT_ID1(MIPI_DSI_END_OF_TRANSMISSION) | PKT_LEN1(7) | PKT_LP, [ 1] = 0, [ 2] = PKT_ID0(MIPI_DSI_H_SYNC_START) | PKT_LEN0(0) | PKT_ID1(MIPI_DSI_END_OF_TRANSMISSION) | PKT_LEN1(7) | PKT_LP, [ 3] = 0, [ 4] = PKT_ID0(MIPI_DSI_H_SYNC_START) | PKT_LEN0(0) | PKT_ID1(MIPI_DSI_END_OF_TRANSMISSION) | PKT_LEN1(7) | PKT_LP, [ 5] = 0, [ 6] = PKT_ID0(MIPI_DSI_H_SYNC_START) | PKT_LEN0(0) | PKT_ID1(MIPI_DSI_BLANKING_PACKET) | PKT_LEN1(2) | PKT_ID2(MIPI_DSI_PACKED_PIXEL_STREAM_24) | PKT_LEN2(3), [ 7] = PKT_ID0(MIPI_DSI_BLANKING_PACKET) | PKT_LEN0(4), [ 8] = PKT_ID0(MIPI_DSI_H_SYNC_START) | PKT_LEN0(0) | PKT_ID1(MIPI_DSI_END_OF_TRANSMISSION) | PKT_LEN1(7) | PKT_LP, [ 9] = 0, [10] = PKT_ID0(MIPI_DSI_H_SYNC_START) | PKT_LEN0(0) | PKT_ID1(MIPI_DSI_BLANKING_PACKET) | PKT_LEN1(2) | PKT_ID2(MIPI_DSI_PACKED_PIXEL_STREAM_24) | PKT_LEN2(3), [11] = PKT_ID0(MIPI_DSI_BLANKING_PACKET) | PKT_LEN0(4), }; static int tegra_dsi_set_phy_timing(struct tegra_dsi *dsi) { struct mipi_dphy_timing timing; unsigned long value, period; long rate; int err; rate = clk_get_rate(dsi->clk); if (rate < 0) return rate; period = DIV_ROUND_CLOSEST(1000000000UL, rate * 2); err = mipi_dphy_timing_get_default(&timing, period); if (err < 0) return err; err = mipi_dphy_timing_validate(&timing, period); if (err < 0) { dev_err(dsi->dev, "failed to validate D-PHY timing: %d\n", err); return err; } /* * The D-PHY timing fields below are expressed in byte-clock cycles, * so multiply the period by 8. */ period *= 8; value = DSI_TIMING_FIELD(timing.hsexit, period, 1) << 24 | DSI_TIMING_FIELD(timing.hstrail, period, 0) << 16 | DSI_TIMING_FIELD(timing.hszero, period, 3) << 8 | DSI_TIMING_FIELD(timing.hsprepare, period, 1); tegra_dsi_writel(dsi, value, DSI_PHY_TIMING_0); value = DSI_TIMING_FIELD(timing.clktrail, period, 1) << 24 | DSI_TIMING_FIELD(timing.clkpost, period, 1) << 16 | DSI_TIMING_FIELD(timing.clkzero, period, 1) << 8 | DSI_TIMING_FIELD(timing.lpx, period, 1); tegra_dsi_writel(dsi, value, DSI_PHY_TIMING_1); value = DSI_TIMING_FIELD(timing.clkprepare, period, 1) << 16 | DSI_TIMING_FIELD(timing.clkpre, period, 1) << 8 | DSI_TIMING_FIELD(0xff * period, period, 0) << 0; tegra_dsi_writel(dsi, value, DSI_PHY_TIMING_2); value = DSI_TIMING_FIELD(timing.taget, period, 1) << 16 | DSI_TIMING_FIELD(timing.tasure, period, 1) << 8 | DSI_TIMING_FIELD(timing.tago, period, 1); tegra_dsi_writel(dsi, value, DSI_BTA_TIMING); return 0; } static int tegra_dsi_get_muldiv(enum mipi_dsi_pixel_format format, unsigned int *mulp, unsigned int *divp) { switch (format) { case MIPI_DSI_FMT_RGB666_PACKED: case MIPI_DSI_FMT_RGB888: *mulp = 3; *divp = 1; break; case MIPI_DSI_FMT_RGB565: *mulp = 2; *divp = 1; break; case MIPI_DSI_FMT_RGB666: *mulp = 9; *divp = 4; break; default: return -EINVAL; } return 0; } static int tegra_dsi_get_format(enum mipi_dsi_pixel_format format, enum tegra_dsi_format *fmt) { switch (format) { case MIPI_DSI_FMT_RGB888: *fmt = TEGRA_DSI_FORMAT_24P; break; case MIPI_DSI_FMT_RGB666: *fmt = TEGRA_DSI_FORMAT_18NP; break; case MIPI_DSI_FMT_RGB666_PACKED: *fmt = TEGRA_DSI_FORMAT_18P; break; case MIPI_DSI_FMT_RGB565: *fmt = TEGRA_DSI_FORMAT_16P; break; default: return -EINVAL; } return 0; } static int tegra_output_dsi_enable(struct tegra_output *output) { struct tegra_dc *dc = to_tegra_dc(output->encoder.crtc); struct drm_display_mode *mode = &dc->base.mode; unsigned int hact, hsw, hbp, hfp, i, mul, div; struct tegra_dsi *dsi = to_dsi(output); enum tegra_dsi_format format; unsigned long value; const u32 *pkt_seq; int err; if (dsi->enabled) return 0; if (dsi->flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) { DRM_DEBUG_KMS("Non-burst video mode with sync pulses\n"); pkt_seq = pkt_seq_video_non_burst_sync_pulses; } else { DRM_DEBUG_KMS("Non-burst video mode with sync events\n"); pkt_seq = pkt_seq_video_non_burst_sync_events; } err = tegra_dsi_get_muldiv(dsi->format, &mul, &div); if (err < 0) return err; err = tegra_dsi_get_format(dsi->format, &format); if (err < 0) return err; err = clk_enable(dsi->clk); if (err < 0) return err; reset_control_deassert(dsi->rst); value = DSI_CONTROL_CHANNEL(0) | DSI_CONTROL_FORMAT(format) | DSI_CONTROL_LANES(dsi->lanes - 1) | DSI_CONTROL_SOURCE(dc->pipe); tegra_dsi_writel(dsi, value, DSI_CONTROL); tegra_dsi_writel(dsi, DSI_VIDEO_FIFO_DEPTH, DSI_MAX_THRESHOLD); value = DSI_HOST_CONTROL_HS | DSI_HOST_CONTROL_CS | DSI_HOST_CONTROL_ECC; tegra_dsi_writel(dsi, value, DSI_HOST_CONTROL); value = tegra_dsi_readl(dsi, DSI_CONTROL); if (dsi->flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) value |= DSI_CONTROL_HS_CLK_CTRL; value &= ~DSI_CONTROL_TX_TRIG(3); value &= ~DSI_CONTROL_DCS_ENABLE; value |= DSI_CONTROL_VIDEO_ENABLE; value &= ~DSI_CONTROL_HOST_ENABLE; tegra_dsi_writel(dsi, value, DSI_CONTROL); err = tegra_dsi_set_phy_timing(dsi); if (err < 0) return err; for (i = 0; i < NUM_PKT_SEQ; i++) tegra_dsi_writel(dsi, pkt_seq[i], DSI_PKT_SEQ_0_LO + i); /* horizontal active pixels */ hact = mode->hdisplay * mul / div; /* horizontal sync width */ hsw = (mode->hsync_end - mode->hsync_start) * mul / div; hsw -= 10; /* horizontal back porch */ hbp = (mode->htotal - mode->hsync_end) * mul / div; hbp -= 14; /* horizontal front porch */ hfp = (mode->hsync_start - mode->hdisplay) * mul / div; hfp -= 8; tegra_dsi_writel(dsi, hsw << 16 | 0, DSI_PKT_LEN_0_1); tegra_dsi_writel(dsi, hact << 16 | hbp, DSI_PKT_LEN_2_3); tegra_dsi_writel(dsi, hfp, DSI_PKT_LEN_4_5); tegra_dsi_writel(dsi, 0x0f0f << 16, DSI_PKT_LEN_6_7); /* set SOL delay */ tegra_dsi_writel(dsi, 8 * mul / div, DSI_SOL_DELAY); /* enable display controller */ value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS); value |= DSI_ENABLE; tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS); value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND); value &= ~DISP_CTRL_MODE_MASK; value |= DISP_CTRL_MODE_C_DISPLAY; tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND); value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL); value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE | PW4_ENABLE | PM0_ENABLE | PM1_ENABLE; tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL); tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL); tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL); /* enable DSI controller */ value = tegra_dsi_readl(dsi, DSI_POWER_CONTROL); value |= DSI_POWER_CONTROL_ENABLE; tegra_dsi_writel(dsi, value, DSI_POWER_CONTROL); dsi->enabled = true; return 0; } static int tegra_output_dsi_disable(struct tegra_output *output) { struct tegra_dc *dc = to_tegra_dc(output->encoder.crtc); struct tegra_dsi *dsi = to_dsi(output); unsigned long value; if (!dsi->enabled) return 0; /* disable DSI controller */ value = tegra_dsi_readl(dsi, DSI_POWER_CONTROL); value &= ~DSI_POWER_CONTROL_ENABLE; tegra_dsi_writel(dsi, value, DSI_POWER_CONTROL); /* * The following accesses registers of the display controller, so make * sure it's only executed when the output is attached to one. */ if (dc) { value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL); value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE | PW4_ENABLE | PM0_ENABLE | PM1_ENABLE); tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL); value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND); value &= ~DISP_CTRL_MODE_MASK; tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND); value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS); value &= ~DSI_ENABLE; tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS); tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL); tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL); } clk_disable(dsi->clk); dsi->enabled = false; return 0; } static int tegra_output_dsi_setup_clock(struct tegra_output *output, struct clk *clk, unsigned long pclk, unsigned int *divp) { struct tegra_dc *dc = to_tegra_dc(output->encoder.crtc); struct drm_display_mode *mode = &dc->base.mode; unsigned int timeout, mul, div, vrefresh; struct tegra_dsi *dsi = to_dsi(output); unsigned long bclk, plld, value; int err; err = tegra_dsi_get_muldiv(dsi->format, &mul, &div); if (err < 0) return err; DRM_DEBUG_KMS("mul: %u, div: %u, lanes: %u\n", mul, div, dsi->lanes); vrefresh = drm_mode_vrefresh(mode); DRM_DEBUG_KMS("vrefresh: %u\n", vrefresh); /* compute byte clock */ bclk = (pclk * mul) / (div * dsi->lanes); /* * Compute bit clock and round up to the next MHz. */ plld = DIV_ROUND_UP(bclk * 8, 1000000) * 1000000; /* * We divide the frequency by two here, but we make up for that by * setting the shift clock divider (further below) to half of the * correct value. */ plld /= 2; err = clk_set_parent(clk, dsi->clk_parent); if (err < 0) { dev_err(dsi->dev, "failed to set parent clock: %d\n", err); return err; } err = clk_set_rate(dsi->clk_parent, plld); if (err < 0) { dev_err(dsi->dev, "failed to set base clock rate to %lu Hz\n", plld); return err; } /* * Derive pixel clock from bit clock using the shift clock divider. * Note that this is only half of what we would expect, but we need * that to make up for the fact that we divided the bit clock by a * factor of two above. * * It's not clear exactly why this is necessary, but the display is * not working properly otherwise. Perhaps the PLLs cannot generate * frequencies sufficiently high. */ *divp = ((8 * mul) / (div * dsi->lanes)) - 2; /* * XXX: Move the below somewhere else so that we don't need to have * access to the vrefresh in this function? */ /* one frame high-speed transmission timeout */ timeout = (bclk / vrefresh) / 512; value = DSI_TIMEOUT_LRX(0x2000) | DSI_TIMEOUT_HTX(timeout); tegra_dsi_writel(dsi, value, DSI_TIMEOUT_0); /* 2 ms peripheral timeout for panel */ timeout = 2 * bclk / 512 * 1000; value = DSI_TIMEOUT_PR(timeout) | DSI_TIMEOUT_TA(0x2000); tegra_dsi_writel(dsi, value, DSI_TIMEOUT_1); value = DSI_TALLY_TA(0) | DSI_TALLY_LRX(0) | DSI_TALLY_HTX(0); tegra_dsi_writel(dsi, value, DSI_TO_TALLY); return 0; } static int tegra_output_dsi_check_mode(struct tegra_output *output, struct drm_display_mode *mode, enum drm_mode_status *status) { /* * FIXME: For now, always assume that the mode is okay. */ *status = MODE_OK; return 0; } static const struct tegra_output_ops dsi_ops = { .enable = tegra_output_dsi_enable, .disable = tegra_output_dsi_disable, .setup_clock = tegra_output_dsi_setup_clock, .check_mode = tegra_output_dsi_check_mode, }; static int tegra_dsi_pad_enable(struct tegra_dsi *dsi) { unsigned long value; value = DSI_PAD_CONTROL_VS1_PULLDN(0) | DSI_PAD_CONTROL_VS1_PDIO(0); tegra_dsi_writel(dsi, value, DSI_PAD_CONTROL_0); return 0; } static int tegra_dsi_pad_calibrate(struct tegra_dsi *dsi) { unsigned long value; tegra_dsi_writel(dsi, 0, DSI_PAD_CONTROL_0); tegra_dsi_writel(dsi, 0, DSI_PAD_CONTROL_1); tegra_dsi_writel(dsi, 0, DSI_PAD_CONTROL_2); tegra_dsi_writel(dsi, 0, DSI_PAD_CONTROL_3); tegra_dsi_writel(dsi, 0, DSI_PAD_CONTROL_4); /* start calibration */ tegra_dsi_pad_enable(dsi); value = DSI_PAD_SLEW_UP(0x7) | DSI_PAD_SLEW_DN(0x7) | DSI_PAD_LP_UP(0x1) | DSI_PAD_LP_DN(0x1) | DSI_PAD_OUT_CLK(0x0); tegra_dsi_writel(dsi, value, DSI_PAD_CONTROL_2); return tegra_mipi_calibrate(dsi->mipi); } static int tegra_dsi_init(struct host1x_client *client) { struct drm_device *drm = dev_get_drvdata(client->parent); struct tegra_dsi *dsi = host1x_client_to_dsi(client); int err; dsi->output.type = TEGRA_OUTPUT_DSI; dsi->output.dev = client->dev; dsi->output.ops = &dsi_ops; err = tegra_output_init(drm, &dsi->output); if (err < 0) { dev_err(client->dev, "output setup failed: %d\n", err); return err; } if (IS_ENABLED(CONFIG_DEBUG_FS)) { err = tegra_dsi_debugfs_init(dsi, drm->primary); if (err < 0) dev_err(dsi->dev, "debugfs setup failed: %d\n", err); } err = tegra_dsi_pad_calibrate(dsi); if (err < 0) { dev_err(dsi->dev, "MIPI calibration failed: %d\n", err); return err; } return 0; } static int tegra_dsi_exit(struct host1x_client *client) { struct tegra_dsi *dsi = host1x_client_to_dsi(client); int err; if (IS_ENABLED(CONFIG_DEBUG_FS)) { err = tegra_dsi_debugfs_exit(dsi); if (err < 0) dev_err(dsi->dev, "debugfs cleanup failed: %d\n", err); } err = tegra_output_disable(&dsi->output); if (err < 0) { dev_err(client->dev, "output failed to disable: %d\n", err); return err; } err = tegra_output_exit(&dsi->output); if (err < 0) { dev_err(client->dev, "output cleanup failed: %d\n", err); return err; } return 0; } static const struct host1x_client_ops dsi_client_ops = { .init = tegra_dsi_init, .exit = tegra_dsi_exit, }; static int tegra_dsi_setup_clocks(struct tegra_dsi *dsi) { struct clk *parent; int err; parent = clk_get_parent(dsi->clk); if (!parent) return -EINVAL; err = clk_set_parent(parent, dsi->clk_parent); if (err < 0) return err; return 0; } static int tegra_dsi_host_attach(struct mipi_dsi_host *host, struct mipi_dsi_device *device) { struct tegra_dsi *dsi = host_to_tegra(host); struct tegra_output *output = &dsi->output; dsi->flags = device->mode_flags; dsi->format = device->format; dsi->lanes = device->lanes; output->panel = of_drm_find_panel(device->dev.of_node); if (output->panel) { if (output->connector.dev) drm_helper_hpd_irq_event(output->connector.dev); } return 0; } static int tegra_dsi_host_detach(struct mipi_dsi_host *host, struct mipi_dsi_device *device) { struct tegra_dsi *dsi = host_to_tegra(host); struct tegra_output *output = &dsi->output; if (output->panel && &device->dev == output->panel->dev) { if (output->connector.dev) drm_helper_hpd_irq_event(output->connector.dev); output->panel = NULL; } return 0; } static const struct mipi_dsi_host_ops tegra_dsi_host_ops = { .attach = tegra_dsi_host_attach, .detach = tegra_dsi_host_detach, }; static int tegra_dsi_probe(struct platform_device *pdev) { struct tegra_dsi *dsi; struct resource *regs; int err; dsi = devm_kzalloc(&pdev->dev, sizeof(*dsi), GFP_KERNEL); if (!dsi) return -ENOMEM; dsi->output.dev = dsi->dev = &pdev->dev; err = tegra_output_probe(&dsi->output); if (err < 0) return err; /* * Assume these values by default. When a DSI peripheral driver * attaches to the DSI host, the parameters will be taken from * the attached device. */ dsi->flags = MIPI_DSI_MODE_VIDEO; dsi->format = MIPI_DSI_FMT_RGB888; dsi->lanes = 4; dsi->rst = devm_reset_control_get(&pdev->dev, "dsi"); if (IS_ERR(dsi->rst)) return PTR_ERR(dsi->rst); dsi->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(dsi->clk)) { dev_err(&pdev->dev, "cannot get DSI clock\n"); return PTR_ERR(dsi->clk); } err = clk_prepare_enable(dsi->clk); if (err < 0) { dev_err(&pdev->dev, "cannot enable DSI clock\n"); return err; } dsi->clk_lp = devm_clk_get(&pdev->dev, "lp"); if (IS_ERR(dsi->clk_lp)) { dev_err(&pdev->dev, "cannot get low-power clock\n"); return PTR_ERR(dsi->clk_lp); } err = clk_prepare_enable(dsi->clk_lp); if (err < 0) { dev_err(&pdev->dev, "cannot enable low-power clock\n"); return err; } dsi->clk_parent = devm_clk_get(&pdev->dev, "parent"); if (IS_ERR(dsi->clk_parent)) { dev_err(&pdev->dev, "cannot get parent clock\n"); return PTR_ERR(dsi->clk_parent); } err = clk_prepare_enable(dsi->clk_parent); if (err < 0) { dev_err(&pdev->dev, "cannot enable parent clock\n"); return err; } dsi->vdd = devm_regulator_get(&pdev->dev, "avdd-dsi-csi"); if (IS_ERR(dsi->vdd)) { dev_err(&pdev->dev, "cannot get VDD supply\n"); return PTR_ERR(dsi->vdd); } err = regulator_enable(dsi->vdd); if (err < 0) { dev_err(&pdev->dev, "cannot enable VDD supply\n"); return err; } err = tegra_dsi_setup_clocks(dsi); if (err < 0) { dev_err(&pdev->dev, "cannot setup clocks\n"); return err; } regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); dsi->regs = devm_ioremap_resource(&pdev->dev, regs); if (IS_ERR(dsi->regs)) return PTR_ERR(dsi->regs); dsi->mipi = tegra_mipi_request(&pdev->dev); if (IS_ERR(dsi->mipi)) return PTR_ERR(dsi->mipi); dsi->host.ops = &tegra_dsi_host_ops; dsi->host.dev = &pdev->dev; err = mipi_dsi_host_register(&dsi->host); if (err < 0) { dev_err(&pdev->dev, "failed to register DSI host: %d\n", err); return err; } INIT_LIST_HEAD(&dsi->client.list); dsi->client.ops = &dsi_client_ops; dsi->client.dev = &pdev->dev; err = host1x_client_register(&dsi->client); if (err < 0) { dev_err(&pdev->dev, "failed to register host1x client: %d\n", err); return err; } platform_set_drvdata(pdev, dsi); return 0; } static int tegra_dsi_remove(struct platform_device *pdev) { struct tegra_dsi *dsi = platform_get_drvdata(pdev); int err; err = host1x_client_unregister(&dsi->client); if (err < 0) { dev_err(&pdev->dev, "failed to unregister host1x client: %d\n", err); return err; } mipi_dsi_host_unregister(&dsi->host); tegra_mipi_free(dsi->mipi); regulator_disable(dsi->vdd); clk_disable_unprepare(dsi->clk_parent); clk_disable_unprepare(dsi->clk_lp); clk_disable_unprepare(dsi->clk); reset_control_assert(dsi->rst); err = tegra_output_remove(&dsi->output); if (err < 0) { dev_err(&pdev->dev, "failed to remove output: %d\n", err); return err; } return 0; } static const struct of_device_id tegra_dsi_of_match[] = { { .compatible = "nvidia,tegra114-dsi", }, { }, }; MODULE_DEVICE_TABLE(of, tegra_dsi_of_match); struct platform_driver tegra_dsi_driver = { .driver = { .name = "tegra-dsi", .of_match_table = tegra_dsi_of_match, }, .probe = tegra_dsi_probe, .remove = tegra_dsi_remove, };