/************************************************************************** * * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * **************************************************************************/ /* * Generic simple memory manager implementation. Intended to be used as a base * class implementation for more advanced memory managers. * * Note that the algorithm used is quite simple and there might be substantial * performance gains if a smarter free list is implemented. Currently it is just an * unordered stack of free regions. This could easily be improved if an RB-tree * is used instead. At least if we expect heavy fragmentation. * * Aligned allocations can also see improvement. * * Authors: * Thomas Hellström */ #include "drmP.h" #include "drm_mm.h" #include #include #define MM_UNUSED_TARGET 4 static struct drm_mm_node *drm_mm_kmalloc(struct drm_mm *mm, int atomic) { struct drm_mm_node *child; if (atomic) child = kzalloc(sizeof(*child), GFP_ATOMIC); else child = kzalloc(sizeof(*child), GFP_KERNEL); if (unlikely(child == NULL)) { spin_lock(&mm->unused_lock); if (list_empty(&mm->unused_nodes)) child = NULL; else { child = list_entry(mm->unused_nodes.next, struct drm_mm_node, free_stack); list_del(&child->free_stack); --mm->num_unused; } spin_unlock(&mm->unused_lock); } return child; } /* drm_mm_pre_get() - pre allocate drm_mm_node structure * drm_mm: memory manager struct we are pre-allocating for * * Returns 0 on success or -ENOMEM if allocation fails. */ int drm_mm_pre_get(struct drm_mm *mm) { struct drm_mm_node *node; spin_lock(&mm->unused_lock); while (mm->num_unused < MM_UNUSED_TARGET) { spin_unlock(&mm->unused_lock); node = kzalloc(sizeof(*node), GFP_KERNEL); spin_lock(&mm->unused_lock); if (unlikely(node == NULL)) { int ret = (mm->num_unused < 2) ? -ENOMEM : 0; spin_unlock(&mm->unused_lock); return ret; } ++mm->num_unused; list_add_tail(&node->free_stack, &mm->unused_nodes); } spin_unlock(&mm->unused_lock); return 0; } EXPORT_SYMBOL(drm_mm_pre_get); static int drm_mm_create_tail_node(struct drm_mm *mm, unsigned long start, unsigned long size, int atomic) { struct drm_mm_node *child; child = drm_mm_kmalloc(mm, atomic); if (unlikely(child == NULL)) return -ENOMEM; child->free = 1; child->size = size; child->start = start; child->mm = mm; list_add_tail(&child->node_list, &mm->node_list); list_add_tail(&child->free_stack, &mm->free_stack); return 0; } static struct drm_mm_node *drm_mm_split_at_start(struct drm_mm_node *parent, unsigned long size, int atomic) { struct drm_mm_node *child; child = drm_mm_kmalloc(parent->mm, atomic); if (unlikely(child == NULL)) return NULL; INIT_LIST_HEAD(&child->free_stack); child->size = size; child->start = parent->start; child->mm = parent->mm; list_add_tail(&child->node_list, &parent->node_list); INIT_LIST_HEAD(&child->free_stack); parent->size -= size; parent->start += size; return child; } struct drm_mm_node *drm_mm_get_block_generic(struct drm_mm_node *node, unsigned long size, unsigned alignment, int atomic) { struct drm_mm_node *align_splitoff = NULL; unsigned tmp = 0; if (alignment) tmp = node->start % alignment; if (tmp) { align_splitoff = drm_mm_split_at_start(node, alignment - tmp, atomic); if (unlikely(align_splitoff == NULL)) return NULL; } if (node->size == size) { list_del_init(&node->free_stack); node->free = 0; } else { node = drm_mm_split_at_start(node, size, atomic); } if (align_splitoff) drm_mm_put_block(align_splitoff); return node; } EXPORT_SYMBOL(drm_mm_get_block_generic); struct drm_mm_node *drm_mm_get_block_range_generic(struct drm_mm_node *node, unsigned long size, unsigned alignment, unsigned long start, unsigned long end, int atomic) { struct drm_mm_node *align_splitoff = NULL; unsigned tmp = 0; unsigned wasted = 0; if (node->start < start) wasted += start - node->start; if (alignment) tmp = ((node->start + wasted) % alignment); if (tmp) wasted += alignment - tmp; if (wasted) { align_splitoff = drm_mm_split_at_start(node, wasted, atomic); if (unlikely(align_splitoff == NULL)) return NULL; } if (node->size == size) { list_del_init(&node->free_stack); node->free = 0; } else { node = drm_mm_split_at_start(node, size, atomic); } if (align_splitoff) drm_mm_put_block(align_splitoff); return node; } EXPORT_SYMBOL(drm_mm_get_block_range_generic); /* * Put a block. Merge with the previous and / or next block if they are free. * Otherwise add to the free stack. */ void drm_mm_put_block(struct drm_mm_node *cur) { struct drm_mm *mm = cur->mm; struct list_head *cur_head = &cur->node_list; struct list_head *root_head = &mm->node_list; struct drm_mm_node *prev_node = NULL; struct drm_mm_node *next_node; int merged = 0; BUG_ON(cur->scanned_block || cur->scanned_prev_free || cur->scanned_next_free); if (cur_head->prev != root_head) { prev_node = list_entry(cur_head->prev, struct drm_mm_node, node_list); if (prev_node->free) { prev_node->size += cur->size; merged = 1; } } if (cur_head->next != root_head) { next_node = list_entry(cur_head->next, struct drm_mm_node, node_list); if (next_node->free) { if (merged) { prev_node->size += next_node->size; list_del(&next_node->node_list); list_del(&next_node->free_stack); spin_lock(&mm->unused_lock); if (mm->num_unused < MM_UNUSED_TARGET) { list_add(&next_node->free_stack, &mm->unused_nodes); ++mm->num_unused; } else kfree(next_node); spin_unlock(&mm->unused_lock); } else { next_node->size += cur->size; next_node->start = cur->start; merged = 1; } } } if (!merged) { cur->free = 1; list_add(&cur->free_stack, &mm->free_stack); } else { list_del(&cur->node_list); spin_lock(&mm->unused_lock); if (mm->num_unused < MM_UNUSED_TARGET) { list_add(&cur->free_stack, &mm->unused_nodes); ++mm->num_unused; } else kfree(cur); spin_unlock(&mm->unused_lock); } } EXPORT_SYMBOL(drm_mm_put_block); static int check_free_hole(unsigned long start, unsigned long end, unsigned long size, unsigned alignment) { unsigned wasted = 0; if (end - start < size) return 0; if (alignment) { unsigned tmp = start % alignment; if (tmp) wasted = alignment - tmp; } if (end >= start + size + wasted) { return 1; } return 0; } struct drm_mm_node *drm_mm_search_free(const struct drm_mm *mm, unsigned long size, unsigned alignment, int best_match) { struct drm_mm_node *entry; struct drm_mm_node *best; unsigned long best_size; BUG_ON(mm->scanned_blocks); best = NULL; best_size = ~0UL; list_for_each_entry(entry, &mm->free_stack, free_stack) { if (!check_free_hole(entry->start, entry->start + entry->size, size, alignment)) continue; if (!best_match) return entry; if (entry->size < best_size) { best = entry; best_size = entry->size; } } return best; } EXPORT_SYMBOL(drm_mm_search_free); struct drm_mm_node *drm_mm_search_free_in_range(const struct drm_mm *mm, unsigned long size, unsigned alignment, unsigned long start, unsigned long end, int best_match) { struct drm_mm_node *entry; struct drm_mm_node *best; unsigned long best_size; BUG_ON(mm->scanned_blocks); best = NULL; best_size = ~0UL; list_for_each_entry(entry, &mm->free_stack, free_stack) { unsigned long adj_start = entry->start < start ? start : entry->start; unsigned long adj_end = entry->start + entry->size > end ? end : entry->start + entry->size; if (!check_free_hole(adj_start, adj_end, size, alignment)) continue; if (!best_match) return entry; if (entry->size < best_size) { best = entry; best_size = entry->size; } } return best; } EXPORT_SYMBOL(drm_mm_search_free_in_range); /** * Initializa lru scanning. * * This simply sets up the scanning routines with the parameters for the desired * hole. * * Warning: As long as the scan list is non-empty, no other operations than * adding/removing nodes to/from the scan list are allowed. */ void drm_mm_init_scan(struct drm_mm *mm, unsigned long size, unsigned alignment) { mm->scan_alignment = alignment; mm->scan_size = size; mm->scanned_blocks = 0; mm->scan_hit_start = 0; mm->scan_hit_size = 0; } EXPORT_SYMBOL(drm_mm_init_scan); /** * Add a node to the scan list that might be freed to make space for the desired * hole. * * Returns non-zero, if a hole has been found, zero otherwise. */ int drm_mm_scan_add_block(struct drm_mm_node *node) { struct drm_mm *mm = node->mm; struct list_head *prev_free, *next_free; struct drm_mm_node *prev_node, *next_node; mm->scanned_blocks++; prev_free = next_free = NULL; BUG_ON(node->free); node->scanned_block = 1; node->free = 1; if (node->node_list.prev != &mm->node_list) { prev_node = list_entry(node->node_list.prev, struct drm_mm_node, node_list); if (prev_node->free) { list_del(&prev_node->node_list); node->start = prev_node->start; node->size += prev_node->size; prev_node->scanned_prev_free = 1; prev_free = &prev_node->free_stack; } } if (node->node_list.next != &mm->node_list) { next_node = list_entry(node->node_list.next, struct drm_mm_node, node_list); if (next_node->free) { list_del(&next_node->node_list); node->size += next_node->size; next_node->scanned_next_free = 1; next_free = &next_node->free_stack; } } /* The free_stack list is not used for allocated objects, so these two * pointers can be abused (as long as no allocations in this memory * manager happens). */ node->free_stack.prev = prev_free; node->free_stack.next = next_free; if (check_free_hole(node->start, node->start + node->size, mm->scan_size, mm->scan_alignment)) { mm->scan_hit_start = node->start; mm->scan_hit_size = node->size; return 1; } return 0; } EXPORT_SYMBOL(drm_mm_scan_add_block); /** * Remove a node from the scan list. * * Nodes _must_ be removed in the exact same order from the scan list as they * have been added, otherwise the internal state of the memory manager will be * corrupted. * * When the scan list is empty, the selected memory nodes can be freed. An * immediatly following drm_mm_search_free with best_match = 0 will then return * the just freed block (because its at the top of the free_stack list). * * Returns one if this block should be evicted, zero otherwise. Will always * return zero when no hole has been found. */ int drm_mm_scan_remove_block(struct drm_mm_node *node) { struct drm_mm *mm = node->mm; struct drm_mm_node *prev_node, *next_node; mm->scanned_blocks--; BUG_ON(!node->scanned_block); node->scanned_block = 0; node->free = 0; prev_node = list_entry(node->free_stack.prev, struct drm_mm_node, free_stack); next_node = list_entry(node->free_stack.next, struct drm_mm_node, free_stack); if (prev_node) { BUG_ON(!prev_node->scanned_prev_free); prev_node->scanned_prev_free = 0; list_add_tail(&prev_node->node_list, &node->node_list); node->start = prev_node->start + prev_node->size; node->size -= prev_node->size; } if (next_node) { BUG_ON(!next_node->scanned_next_free); next_node->scanned_next_free = 0; list_add(&next_node->node_list, &node->node_list); node->size -= next_node->size; } INIT_LIST_HEAD(&node->free_stack); /* Only need to check for containement because start&size for the * complete resulting free block (not just the desired part) is * stored. */ if (node->start >= mm->scan_hit_start && node->start + node->size <= mm->scan_hit_start + mm->scan_hit_size) { return 1; } return 0; } EXPORT_SYMBOL(drm_mm_scan_remove_block); int drm_mm_clean(struct drm_mm * mm) { struct list_head *head = &mm->node_list; return (head->next->next == head); } EXPORT_SYMBOL(drm_mm_clean); int drm_mm_init(struct drm_mm * mm, unsigned long start, unsigned long size) { INIT_LIST_HEAD(&mm->node_list); INIT_LIST_HEAD(&mm->free_stack); INIT_LIST_HEAD(&mm->unused_nodes); mm->num_unused = 0; mm->scanned_blocks = 0; spin_lock_init(&mm->unused_lock); return drm_mm_create_tail_node(mm, start, size, 0); } EXPORT_SYMBOL(drm_mm_init); void drm_mm_takedown(struct drm_mm * mm) { struct list_head *bnode = mm->free_stack.next; struct drm_mm_node *entry; struct drm_mm_node *next; entry = list_entry(bnode, struct drm_mm_node, free_stack); if (entry->node_list.next != &mm->node_list || entry->free_stack.next != &mm->free_stack) { DRM_ERROR("Memory manager not clean. Delaying takedown\n"); return; } list_del(&entry->free_stack); list_del(&entry->node_list); kfree(entry); spin_lock(&mm->unused_lock); list_for_each_entry_safe(entry, next, &mm->unused_nodes, free_stack) { list_del(&entry->free_stack); kfree(entry); --mm->num_unused; } spin_unlock(&mm->unused_lock); BUG_ON(mm->num_unused != 0); } EXPORT_SYMBOL(drm_mm_takedown); void drm_mm_debug_table(struct drm_mm *mm, const char *prefix) { struct drm_mm_node *entry; int total_used = 0, total_free = 0, total = 0; list_for_each_entry(entry, &mm->node_list, node_list) { printk(KERN_DEBUG "%s 0x%08lx-0x%08lx: %8ld: %s\n", prefix, entry->start, entry->start + entry->size, entry->size, entry->free ? "free" : "used"); total += entry->size; if (entry->free) total_free += entry->size; else total_used += entry->size; } printk(KERN_DEBUG "%s total: %d, used %d free %d\n", prefix, total, total_used, total_free); } EXPORT_SYMBOL(drm_mm_debug_table); #if defined(CONFIG_DEBUG_FS) int drm_mm_dump_table(struct seq_file *m, struct drm_mm *mm) { struct drm_mm_node *entry; int total_used = 0, total_free = 0, total = 0; list_for_each_entry(entry, &mm->node_list, node_list) { seq_printf(m, "0x%08lx-0x%08lx: 0x%08lx: %s\n", entry->start, entry->start + entry->size, entry->size, entry->free ? "free" : "used"); total += entry->size; if (entry->free) total_free += entry->size; else total_used += entry->size; } seq_printf(m, "total: %d, used %d free %d\n", total, total_used, total_free); return 0; } EXPORT_SYMBOL(drm_mm_dump_table); #endif