/* * Renesas SuperH DMA Engine support * * base is drivers/dma/flsdma.c * * Copyright (C) 2009 Nobuhiro Iwamatsu * Copyright (C) 2009 Renesas Solutions, Inc. All rights reserved. * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved. * * This is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * - DMA of SuperH does not have Hardware DMA chain mode. * - MAX DMA size is 16MB. * */ #include #include #include #include #include #include #include #include #include #include "shdma.h" /* DMA descriptor control */ enum sh_dmae_desc_status { DESC_IDLE, DESC_PREPARED, DESC_SUBMITTED, DESC_COMPLETED, /* completed, have to call callback */ DESC_WAITING, /* callback called, waiting for ack / re-submit */ }; #define NR_DESCS_PER_CHANNEL 32 /* * Define the default configuration for dual address memory-memory transfer. * The 0x400 value represents auto-request, external->external. * * And this driver set 4byte burst mode. * If you want to change mode, you need to change RS_DEFAULT of value. * (ex 1byte burst mode -> (RS_DUAL & ~TS_32) */ #define RS_DEFAULT (RS_DUAL) static void sh_dmae_chan_ld_cleanup(struct sh_dmae_chan *sh_chan, bool all); #define SH_DMAC_CHAN_BASE(id) (dma_base_addr[id]) static void sh_dmae_writel(struct sh_dmae_chan *sh_dc, u32 data, u32 reg) { ctrl_outl(data, (SH_DMAC_CHAN_BASE(sh_dc->id) + reg)); } static u32 sh_dmae_readl(struct sh_dmae_chan *sh_dc, u32 reg) { return ctrl_inl((SH_DMAC_CHAN_BASE(sh_dc->id) + reg)); } static void dmae_init(struct sh_dmae_chan *sh_chan) { u32 chcr = RS_DEFAULT; /* default is DUAL mode */ sh_dmae_writel(sh_chan, chcr, CHCR); } /* * Reset DMA controller * * SH7780 has two DMAOR register */ static void sh_dmae_ctl_stop(int id) { unsigned short dmaor = dmaor_read_reg(id); dmaor &= ~(DMAOR_NMIF | DMAOR_AE); dmaor_write_reg(id, dmaor); } static int sh_dmae_rst(int id) { unsigned short dmaor; sh_dmae_ctl_stop(id); dmaor = dmaor_read_reg(id) | DMAOR_INIT; dmaor_write_reg(id, dmaor); if (dmaor_read_reg(id) & (DMAOR_AE | DMAOR_NMIF)) { pr_warning(KERN_ERR "dma-sh: Can't initialize DMAOR.\n"); return -EINVAL; } return 0; } static int dmae_is_busy(struct sh_dmae_chan *sh_chan) { u32 chcr = sh_dmae_readl(sh_chan, CHCR); if (chcr & CHCR_DE) { if (!(chcr & CHCR_TE)) return -EBUSY; /* working */ } return 0; /* waiting */ } static inline unsigned int calc_xmit_shift(struct sh_dmae_chan *sh_chan) { u32 chcr = sh_dmae_readl(sh_chan, CHCR); return ts_shift[(chcr & CHCR_TS_MASK) >> CHCR_TS_SHIFT]; } static void dmae_set_reg(struct sh_dmae_chan *sh_chan, struct sh_dmae_regs *hw) { sh_dmae_writel(sh_chan, hw->sar, SAR); sh_dmae_writel(sh_chan, hw->dar, DAR); sh_dmae_writel(sh_chan, hw->tcr >> calc_xmit_shift(sh_chan), TCR); } static void dmae_start(struct sh_dmae_chan *sh_chan) { u32 chcr = sh_dmae_readl(sh_chan, CHCR); chcr |= CHCR_DE | CHCR_IE; sh_dmae_writel(sh_chan, chcr, CHCR); } static void dmae_halt(struct sh_dmae_chan *sh_chan) { u32 chcr = sh_dmae_readl(sh_chan, CHCR); chcr &= ~(CHCR_DE | CHCR_TE | CHCR_IE); sh_dmae_writel(sh_chan, chcr, CHCR); } static int dmae_set_chcr(struct sh_dmae_chan *sh_chan, u32 val) { int ret = dmae_is_busy(sh_chan); /* When DMA was working, can not set data to CHCR */ if (ret) return ret; sh_dmae_writel(sh_chan, val, CHCR); return 0; } #define DMARS1_ADDR 0x04 #define DMARS2_ADDR 0x08 #define DMARS_SHIFT 8 #define DMARS_CHAN_MSK 0x01 static int dmae_set_dmars(struct sh_dmae_chan *sh_chan, u16 val) { u32 addr; int shift = 0; int ret = dmae_is_busy(sh_chan); if (ret) return ret; if (sh_chan->id & DMARS_CHAN_MSK) shift = DMARS_SHIFT; switch (sh_chan->id) { /* DMARS0 */ case 0: case 1: addr = SH_DMARS_BASE; break; /* DMARS1 */ case 2: case 3: addr = (SH_DMARS_BASE + DMARS1_ADDR); break; /* DMARS2 */ case 4: case 5: addr = (SH_DMARS_BASE + DMARS2_ADDR); break; default: return -EINVAL; } ctrl_outw((val << shift) | (ctrl_inw(addr) & (shift ? 0xFF00 : 0x00FF)), addr); return 0; } static dma_cookie_t sh_dmae_tx_submit(struct dma_async_tx_descriptor *tx) { struct sh_desc *desc = tx_to_sh_desc(tx), *chunk, *last = desc, *c; struct sh_dmae_chan *sh_chan = to_sh_chan(tx->chan); dma_async_tx_callback callback = tx->callback; dma_cookie_t cookie; spin_lock_bh(&sh_chan->desc_lock); cookie = sh_chan->common.cookie; cookie++; if (cookie < 0) cookie = 1; sh_chan->common.cookie = cookie; tx->cookie = cookie; /* Mark all chunks of this descriptor as submitted, move to the queue */ list_for_each_entry_safe(chunk, c, desc->node.prev, node) { /* * All chunks are on the global ld_free, so, we have to find * the end of the chain ourselves */ if (chunk != desc && (chunk->mark == DESC_IDLE || chunk->async_tx.cookie > 0 || chunk->async_tx.cookie == -EBUSY || &chunk->node == &sh_chan->ld_free)) break; chunk->mark = DESC_SUBMITTED; /* Callback goes to the last chunk */ chunk->async_tx.callback = NULL; chunk->cookie = cookie; list_move_tail(&chunk->node, &sh_chan->ld_queue); last = chunk; } last->async_tx.callback = callback; last->async_tx.callback_param = tx->callback_param; dev_dbg(sh_chan->dev, "submit #%d@%p on %d: %x[%d] -> %x\n", tx->cookie, &last->async_tx, sh_chan->id, desc->hw.sar, desc->hw.tcr, desc->hw.dar); spin_unlock_bh(&sh_chan->desc_lock); return cookie; } /* Called with desc_lock held */ static struct sh_desc *sh_dmae_get_desc(struct sh_dmae_chan *sh_chan) { struct sh_desc *desc; list_for_each_entry(desc, &sh_chan->ld_free, node) if (desc->mark != DESC_PREPARED) { BUG_ON(desc->mark != DESC_IDLE); list_del(&desc->node); return desc; } return NULL; } static int sh_dmae_alloc_chan_resources(struct dma_chan *chan) { struct sh_dmae_chan *sh_chan = to_sh_chan(chan); struct sh_desc *desc; spin_lock_bh(&sh_chan->desc_lock); while (sh_chan->descs_allocated < NR_DESCS_PER_CHANNEL) { spin_unlock_bh(&sh_chan->desc_lock); desc = kzalloc(sizeof(struct sh_desc), GFP_KERNEL); if (!desc) { spin_lock_bh(&sh_chan->desc_lock); break; } dma_async_tx_descriptor_init(&desc->async_tx, &sh_chan->common); desc->async_tx.tx_submit = sh_dmae_tx_submit; desc->mark = DESC_IDLE; spin_lock_bh(&sh_chan->desc_lock); list_add(&desc->node, &sh_chan->ld_free); sh_chan->descs_allocated++; } spin_unlock_bh(&sh_chan->desc_lock); return sh_chan->descs_allocated; } /* * sh_dma_free_chan_resources - Free all resources of the channel. */ static void sh_dmae_free_chan_resources(struct dma_chan *chan) { struct sh_dmae_chan *sh_chan = to_sh_chan(chan); struct sh_desc *desc, *_desc; LIST_HEAD(list); /* Prepared and not submitted descriptors can still be on the queue */ if (!list_empty(&sh_chan->ld_queue)) sh_dmae_chan_ld_cleanup(sh_chan, true); spin_lock_bh(&sh_chan->desc_lock); list_splice_init(&sh_chan->ld_free, &list); sh_chan->descs_allocated = 0; spin_unlock_bh(&sh_chan->desc_lock); list_for_each_entry_safe(desc, _desc, &list, node) kfree(desc); } static struct dma_async_tx_descriptor *sh_dmae_prep_memcpy( struct dma_chan *chan, dma_addr_t dma_dest, dma_addr_t dma_src, size_t len, unsigned long flags) { struct sh_dmae_chan *sh_chan; struct sh_desc *first = NULL, *prev = NULL, *new; size_t copy_size; LIST_HEAD(tx_list); int chunks = (len + SH_DMA_TCR_MAX) / (SH_DMA_TCR_MAX + 1); if (!chan) return NULL; if (!len) return NULL; sh_chan = to_sh_chan(chan); /* Have to lock the whole loop to protect against concurrent release */ spin_lock_bh(&sh_chan->desc_lock); /* * Chaining: * first descriptor is what user is dealing with in all API calls, its * cookie is at first set to -EBUSY, at tx-submit to a positive * number * if more than one chunk is needed further chunks have cookie = -EINVAL * the last chunk, if not equal to the first, has cookie = -ENOSPC * all chunks are linked onto the tx_list head with their .node heads * only during this function, then they are immediately spliced * back onto the free list in form of a chain */ do { /* Allocate the link descriptor from the free list */ new = sh_dmae_get_desc(sh_chan); if (!new) { dev_err(sh_chan->dev, "No free memory for link descriptor\n"); list_for_each_entry(new, &tx_list, node) new->mark = DESC_IDLE; list_splice(&tx_list, &sh_chan->ld_free); spin_unlock_bh(&sh_chan->desc_lock); return NULL; } copy_size = min(len, (size_t)SH_DMA_TCR_MAX + 1); new->hw.sar = dma_src; new->hw.dar = dma_dest; new->hw.tcr = copy_size; if (!first) { /* First desc */ new->async_tx.cookie = -EBUSY; first = new; } else { /* Other desc - invisible to the user */ new->async_tx.cookie = -EINVAL; } dev_dbg(sh_chan->dev, "chaining %u of %u with %p, dst %x, cookie %d\n", copy_size, len, &new->async_tx, dma_dest, new->async_tx.cookie); new->mark = DESC_PREPARED; new->async_tx.flags = flags; new->chunks = chunks--; prev = new; len -= copy_size; dma_src += copy_size; dma_dest += copy_size; /* Insert the link descriptor to the LD ring */ list_add_tail(&new->node, &tx_list); } while (len); if (new != first) new->async_tx.cookie = -ENOSPC; /* Put them back on the free list, so, they don't get lost */ list_splice_tail(&tx_list, &sh_chan->ld_free); spin_unlock_bh(&sh_chan->desc_lock); return &first->async_tx; } static dma_async_tx_callback __ld_cleanup(struct sh_dmae_chan *sh_chan, bool all) { struct sh_desc *desc, *_desc; /* Is the "exposed" head of a chain acked? */ bool head_acked = false; dma_cookie_t cookie = 0; dma_async_tx_callback callback = NULL; void *param = NULL; spin_lock_bh(&sh_chan->desc_lock); list_for_each_entry_safe(desc, _desc, &sh_chan->ld_queue, node) { struct dma_async_tx_descriptor *tx = &desc->async_tx; BUG_ON(tx->cookie > 0 && tx->cookie != desc->cookie); BUG_ON(desc->mark != DESC_SUBMITTED && desc->mark != DESC_COMPLETED && desc->mark != DESC_WAITING); /* * queue is ordered, and we use this loop to (1) clean up all * completed descriptors, and to (2) update descriptor flags of * any chunks in a (partially) completed chain */ if (!all && desc->mark == DESC_SUBMITTED && desc->cookie != cookie) break; if (tx->cookie > 0) cookie = tx->cookie; if (desc->mark == DESC_COMPLETED && desc->chunks == 1) { BUG_ON(sh_chan->completed_cookie != desc->cookie - 1); sh_chan->completed_cookie = desc->cookie; } /* Call callback on the last chunk */ if (desc->mark == DESC_COMPLETED && tx->callback) { desc->mark = DESC_WAITING; callback = tx->callback; param = tx->callback_param; dev_dbg(sh_chan->dev, "descriptor #%d@%p on %d callback\n", tx->cookie, tx, sh_chan->id); BUG_ON(desc->chunks != 1); break; } if (tx->cookie > 0 || tx->cookie == -EBUSY) { if (desc->mark == DESC_COMPLETED) { BUG_ON(tx->cookie < 0); desc->mark = DESC_WAITING; } head_acked = async_tx_test_ack(tx); } else { switch (desc->mark) { case DESC_COMPLETED: desc->mark = DESC_WAITING; /* Fall through */ case DESC_WAITING: if (head_acked) async_tx_ack(&desc->async_tx); } } dev_dbg(sh_chan->dev, "descriptor %p #%d completed.\n", tx, tx->cookie); if (((desc->mark == DESC_COMPLETED || desc->mark == DESC_WAITING) && async_tx_test_ack(&desc->async_tx)) || all) { /* Remove from ld_queue list */ desc->mark = DESC_IDLE; list_move(&desc->node, &sh_chan->ld_free); } } spin_unlock_bh(&sh_chan->desc_lock); if (callback) callback(param); return callback; } /* * sh_chan_ld_cleanup - Clean up link descriptors * * This function cleans up the ld_queue of DMA channel. */ static void sh_dmae_chan_ld_cleanup(struct sh_dmae_chan *sh_chan, bool all) { while (__ld_cleanup(sh_chan, all)) ; } static void sh_chan_xfer_ld_queue(struct sh_dmae_chan *sh_chan) { struct sh_desc *sd; spin_lock_bh(&sh_chan->desc_lock); /* DMA work check */ if (dmae_is_busy(sh_chan)) { spin_unlock_bh(&sh_chan->desc_lock); return; } /* Find the first un-transfer desciptor */ list_for_each_entry(sd, &sh_chan->ld_queue, node) if (sd->mark == DESC_SUBMITTED) { /* Get the ld start address from ld_queue */ dmae_set_reg(sh_chan, &sd->hw); dmae_start(sh_chan); break; } spin_unlock_bh(&sh_chan->desc_lock); } static void sh_dmae_memcpy_issue_pending(struct dma_chan *chan) { struct sh_dmae_chan *sh_chan = to_sh_chan(chan); sh_chan_xfer_ld_queue(sh_chan); } static enum dma_status sh_dmae_is_complete(struct dma_chan *chan, dma_cookie_t cookie, dma_cookie_t *done, dma_cookie_t *used) { struct sh_dmae_chan *sh_chan = to_sh_chan(chan); dma_cookie_t last_used; dma_cookie_t last_complete; sh_dmae_chan_ld_cleanup(sh_chan, false); last_used = chan->cookie; last_complete = sh_chan->completed_cookie; BUG_ON(last_complete < 0); if (done) *done = last_complete; if (used) *used = last_used; return dma_async_is_complete(cookie, last_complete, last_used); } static irqreturn_t sh_dmae_interrupt(int irq, void *data) { irqreturn_t ret = IRQ_NONE; struct sh_dmae_chan *sh_chan = (struct sh_dmae_chan *)data; u32 chcr = sh_dmae_readl(sh_chan, CHCR); if (chcr & CHCR_TE) { /* DMA stop */ dmae_halt(sh_chan); ret = IRQ_HANDLED; tasklet_schedule(&sh_chan->tasklet); } return ret; } #if defined(CONFIG_CPU_SH4) static irqreturn_t sh_dmae_err(int irq, void *data) { int err = 0; struct sh_dmae_device *shdev = (struct sh_dmae_device *)data; /* IRQ Multi */ if (shdev->pdata.mode & SHDMA_MIX_IRQ) { int cnt = 0; switch (irq) { #if defined(DMTE6_IRQ) && defined(DMAE1_IRQ) case DMTE6_IRQ: cnt++; #endif case DMTE0_IRQ: if (dmaor_read_reg(cnt) & (DMAOR_NMIF | DMAOR_AE)) { disable_irq(irq); return IRQ_HANDLED; } default: return IRQ_NONE; } } else { /* reset dma controller */ err = sh_dmae_rst(0); if (err) return err; #ifdef SH_DMAC_BASE1 if (shdev->pdata.mode & SHDMA_DMAOR1) { err = sh_dmae_rst(1); if (err) return err; } #endif disable_irq(irq); return IRQ_HANDLED; } } #endif static void dmae_do_tasklet(unsigned long data) { struct sh_dmae_chan *sh_chan = (struct sh_dmae_chan *)data; struct sh_desc *desc; u32 sar_buf = sh_dmae_readl(sh_chan, SAR); spin_lock(&sh_chan->desc_lock); list_for_each_entry(desc, &sh_chan->ld_queue, node) { if ((desc->hw.sar + desc->hw.tcr) == sar_buf && desc->mark == DESC_SUBMITTED) { dev_dbg(sh_chan->dev, "done #%d@%p dst %u\n", desc->async_tx.cookie, &desc->async_tx, desc->hw.dar); desc->mark = DESC_COMPLETED; break; } } spin_unlock(&sh_chan->desc_lock); /* Next desc */ sh_chan_xfer_ld_queue(sh_chan); sh_dmae_chan_ld_cleanup(sh_chan, false); } static unsigned int get_dmae_irq(unsigned int id) { unsigned int irq = 0; if (id < ARRAY_SIZE(dmte_irq_map)) irq = dmte_irq_map[id]; return irq; } static int __devinit sh_dmae_chan_probe(struct sh_dmae_device *shdev, int id) { int err; unsigned int irq = get_dmae_irq(id); unsigned long irqflags = IRQF_DISABLED; struct sh_dmae_chan *new_sh_chan; /* alloc channel */ new_sh_chan = kzalloc(sizeof(struct sh_dmae_chan), GFP_KERNEL); if (!new_sh_chan) { dev_err(shdev->common.dev, "No free memory for allocating dma channels!\n"); return -ENOMEM; } new_sh_chan->dev = shdev->common.dev; new_sh_chan->id = id; /* Init DMA tasklet */ tasklet_init(&new_sh_chan->tasklet, dmae_do_tasklet, (unsigned long)new_sh_chan); /* Init the channel */ dmae_init(new_sh_chan); spin_lock_init(&new_sh_chan->desc_lock); /* Init descripter manage list */ INIT_LIST_HEAD(&new_sh_chan->ld_queue); INIT_LIST_HEAD(&new_sh_chan->ld_free); /* copy struct dma_device */ new_sh_chan->common.device = &shdev->common; /* Add the channel to DMA device channel list */ list_add_tail(&new_sh_chan->common.device_node, &shdev->common.channels); shdev->common.chancnt++; if (shdev->pdata.mode & SHDMA_MIX_IRQ) { irqflags = IRQF_SHARED; #if defined(DMTE6_IRQ) if (irq >= DMTE6_IRQ) irq = DMTE6_IRQ; else #endif irq = DMTE0_IRQ; } snprintf(new_sh_chan->dev_id, sizeof(new_sh_chan->dev_id), "sh-dmae%d", new_sh_chan->id); /* set up channel irq */ err = request_irq(irq, &sh_dmae_interrupt, irqflags, new_sh_chan->dev_id, new_sh_chan); if (err) { dev_err(shdev->common.dev, "DMA channel %d request_irq error " "with return %d\n", id, err); goto err_no_irq; } /* CHCR register control function */ new_sh_chan->set_chcr = dmae_set_chcr; /* DMARS register control function */ new_sh_chan->set_dmars = dmae_set_dmars; shdev->chan[id] = new_sh_chan; return 0; err_no_irq: /* remove from dmaengine device node */ list_del(&new_sh_chan->common.device_node); kfree(new_sh_chan); return err; } static void sh_dmae_chan_remove(struct sh_dmae_device *shdev) { int i; for (i = shdev->common.chancnt - 1 ; i >= 0 ; i--) { if (shdev->chan[i]) { struct sh_dmae_chan *shchan = shdev->chan[i]; if (!(shdev->pdata.mode & SHDMA_MIX_IRQ)) free_irq(dmte_irq_map[i], shchan); list_del(&shchan->common.device_node); kfree(shchan); shdev->chan[i] = NULL; } } shdev->common.chancnt = 0; } static int __init sh_dmae_probe(struct platform_device *pdev) { int err = 0, cnt, ecnt; unsigned long irqflags = IRQF_DISABLED; #if defined(CONFIG_CPU_SH4) int eirq[] = { DMAE0_IRQ, #if defined(DMAE1_IRQ) DMAE1_IRQ #endif }; #endif struct sh_dmae_device *shdev; shdev = kzalloc(sizeof(struct sh_dmae_device), GFP_KERNEL); if (!shdev) { dev_err(&pdev->dev, "No enough memory\n"); err = -ENOMEM; goto shdev_err; } /* get platform data */ if (!pdev->dev.platform_data) goto shdev_err; /* platform data */ memcpy(&shdev->pdata, pdev->dev.platform_data, sizeof(struct sh_dmae_pdata)); /* reset dma controller */ err = sh_dmae_rst(0); if (err) goto rst_err; /* SH7780/85/23 has DMAOR1 */ if (shdev->pdata.mode & SHDMA_DMAOR1) { err = sh_dmae_rst(1); if (err) goto rst_err; } INIT_LIST_HEAD(&shdev->common.channels); dma_cap_set(DMA_MEMCPY, shdev->common.cap_mask); shdev->common.device_alloc_chan_resources = sh_dmae_alloc_chan_resources; shdev->common.device_free_chan_resources = sh_dmae_free_chan_resources; shdev->common.device_prep_dma_memcpy = sh_dmae_prep_memcpy; shdev->common.device_is_tx_complete = sh_dmae_is_complete; shdev->common.device_issue_pending = sh_dmae_memcpy_issue_pending; shdev->common.dev = &pdev->dev; /* Default transfer size of 32 bytes requires 32-byte alignment */ shdev->common.copy_align = 5; #if defined(CONFIG_CPU_SH4) /* Non Mix IRQ mode SH7722/SH7730 etc... */ if (shdev->pdata.mode & SHDMA_MIX_IRQ) { irqflags = IRQF_SHARED; eirq[0] = DMTE0_IRQ; #if defined(DMTE6_IRQ) && defined(DMAE1_IRQ) eirq[1] = DMTE6_IRQ; #endif } for (ecnt = 0 ; ecnt < ARRAY_SIZE(eirq); ecnt++) { err = request_irq(eirq[ecnt], sh_dmae_err, irqflags, "DMAC Address Error", shdev); if (err) { dev_err(&pdev->dev, "DMA device request_irq" "error (irq %d) with return %d\n", eirq[ecnt], err); goto eirq_err; } } #endif /* CONFIG_CPU_SH4 */ /* Create DMA Channel */ for (cnt = 0 ; cnt < MAX_DMA_CHANNELS ; cnt++) { err = sh_dmae_chan_probe(shdev, cnt); if (err) goto chan_probe_err; } platform_set_drvdata(pdev, shdev); dma_async_device_register(&shdev->common); return err; chan_probe_err: sh_dmae_chan_remove(shdev); eirq_err: for (ecnt-- ; ecnt >= 0; ecnt--) free_irq(eirq[ecnt], shdev); rst_err: kfree(shdev); shdev_err: return err; } static int __exit sh_dmae_remove(struct platform_device *pdev) { struct sh_dmae_device *shdev = platform_get_drvdata(pdev); dma_async_device_unregister(&shdev->common); if (shdev->pdata.mode & SHDMA_MIX_IRQ) { free_irq(DMTE0_IRQ, shdev); #if defined(DMTE6_IRQ) free_irq(DMTE6_IRQ, shdev); #endif } /* channel data remove */ sh_dmae_chan_remove(shdev); if (!(shdev->pdata.mode & SHDMA_MIX_IRQ)) { free_irq(DMAE0_IRQ, shdev); #if defined(DMAE1_IRQ) free_irq(DMAE1_IRQ, shdev); #endif } kfree(shdev); return 0; } static void sh_dmae_shutdown(struct platform_device *pdev) { struct sh_dmae_device *shdev = platform_get_drvdata(pdev); sh_dmae_ctl_stop(0); if (shdev->pdata.mode & SHDMA_DMAOR1) sh_dmae_ctl_stop(1); } static struct platform_driver sh_dmae_driver = { .remove = __exit_p(sh_dmae_remove), .shutdown = sh_dmae_shutdown, .driver = { .name = "sh-dma-engine", }, }; static int __init sh_dmae_init(void) { return platform_driver_probe(&sh_dmae_driver, sh_dmae_probe); } module_init(sh_dmae_init); static void __exit sh_dmae_exit(void) { platform_driver_unregister(&sh_dmae_driver); } module_exit(sh_dmae_exit); MODULE_AUTHOR("Nobuhiro Iwamatsu "); MODULE_DESCRIPTION("Renesas SH DMA Engine driver"); MODULE_LICENSE("GPL");