/* * drivers/dma/fsl-edma.c * * Copyright 2013-2014 Freescale Semiconductor, Inc. * * Driver for the Freescale eDMA engine with flexible channel multiplexing * capability for DMA request sources. The eDMA block can be found on some * Vybrid and Layerscape SoCs. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "virt-dma.h" #define EDMA_CR 0x00 #define EDMA_ES 0x04 #define EDMA_ERQ 0x0C #define EDMA_EEI 0x14 #define EDMA_SERQ 0x1B #define EDMA_CERQ 0x1A #define EDMA_SEEI 0x19 #define EDMA_CEEI 0x18 #define EDMA_CINT 0x1F #define EDMA_CERR 0x1E #define EDMA_SSRT 0x1D #define EDMA_CDNE 0x1C #define EDMA_INTR 0x24 #define EDMA_ERR 0x2C #define EDMA_TCD_SADDR(x) (0x1000 + 32 * (x)) #define EDMA_TCD_SOFF(x) (0x1004 + 32 * (x)) #define EDMA_TCD_ATTR(x) (0x1006 + 32 * (x)) #define EDMA_TCD_NBYTES(x) (0x1008 + 32 * (x)) #define EDMA_TCD_SLAST(x) (0x100C + 32 * (x)) #define EDMA_TCD_DADDR(x) (0x1010 + 32 * (x)) #define EDMA_TCD_DOFF(x) (0x1014 + 32 * (x)) #define EDMA_TCD_CITER_ELINK(x) (0x1016 + 32 * (x)) #define EDMA_TCD_CITER(x) (0x1016 + 32 * (x)) #define EDMA_TCD_DLAST_SGA(x) (0x1018 + 32 * (x)) #define EDMA_TCD_CSR(x) (0x101C + 32 * (x)) #define EDMA_TCD_BITER_ELINK(x) (0x101E + 32 * (x)) #define EDMA_TCD_BITER(x) (0x101E + 32 * (x)) #define EDMA_CR_EDBG BIT(1) #define EDMA_CR_ERCA BIT(2) #define EDMA_CR_ERGA BIT(3) #define EDMA_CR_HOE BIT(4) #define EDMA_CR_HALT BIT(5) #define EDMA_CR_CLM BIT(6) #define EDMA_CR_EMLM BIT(7) #define EDMA_CR_ECX BIT(16) #define EDMA_CR_CX BIT(17) #define EDMA_SEEI_SEEI(x) ((x) & 0x1F) #define EDMA_CEEI_CEEI(x) ((x) & 0x1F) #define EDMA_CINT_CINT(x) ((x) & 0x1F) #define EDMA_CERR_CERR(x) ((x) & 0x1F) #define EDMA_TCD_ATTR_DSIZE(x) (((x) & 0x0007)) #define EDMA_TCD_ATTR_DMOD(x) (((x) & 0x001F) << 3) #define EDMA_TCD_ATTR_SSIZE(x) (((x) & 0x0007) << 8) #define EDMA_TCD_ATTR_SMOD(x) (((x) & 0x001F) << 11) #define EDMA_TCD_ATTR_SSIZE_8BIT (0x0000) #define EDMA_TCD_ATTR_SSIZE_16BIT (0x0100) #define EDMA_TCD_ATTR_SSIZE_32BIT (0x0200) #define EDMA_TCD_ATTR_SSIZE_64BIT (0x0300) #define EDMA_TCD_ATTR_SSIZE_32BYTE (0x0500) #define EDMA_TCD_ATTR_DSIZE_8BIT (0x0000) #define EDMA_TCD_ATTR_DSIZE_16BIT (0x0001) #define EDMA_TCD_ATTR_DSIZE_32BIT (0x0002) #define EDMA_TCD_ATTR_DSIZE_64BIT (0x0003) #define EDMA_TCD_ATTR_DSIZE_32BYTE (0x0005) #define EDMA_TCD_SOFF_SOFF(x) (x) #define EDMA_TCD_NBYTES_NBYTES(x) (x) #define EDMA_TCD_SLAST_SLAST(x) (x) #define EDMA_TCD_DADDR_DADDR(x) (x) #define EDMA_TCD_CITER_CITER(x) ((x) & 0x7FFF) #define EDMA_TCD_DOFF_DOFF(x) (x) #define EDMA_TCD_DLAST_SGA_DLAST_SGA(x) (x) #define EDMA_TCD_BITER_BITER(x) ((x) & 0x7FFF) #define EDMA_TCD_CSR_START BIT(0) #define EDMA_TCD_CSR_INT_MAJOR BIT(1) #define EDMA_TCD_CSR_INT_HALF BIT(2) #define EDMA_TCD_CSR_D_REQ BIT(3) #define EDMA_TCD_CSR_E_SG BIT(4) #define EDMA_TCD_CSR_E_LINK BIT(5) #define EDMA_TCD_CSR_ACTIVE BIT(6) #define EDMA_TCD_CSR_DONE BIT(7) #define EDMAMUX_CHCFG_DIS 0x0 #define EDMAMUX_CHCFG_ENBL 0x80 #define EDMAMUX_CHCFG_SOURCE(n) ((n) & 0x3F) #define DMAMUX_NR 2 #define FSL_EDMA_BUSWIDTHS BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \ BIT(DMA_SLAVE_BUSWIDTH_8_BYTES) struct fsl_edma_hw_tcd { __le32 saddr; __le16 soff; __le16 attr; __le32 nbytes; __le32 slast; __le32 daddr; __le16 doff; __le16 citer; __le32 dlast_sga; __le16 csr; __le16 biter; }; struct fsl_edma_sw_tcd { dma_addr_t ptcd; struct fsl_edma_hw_tcd *vtcd; }; struct fsl_edma_slave_config { enum dma_transfer_direction dir; enum dma_slave_buswidth addr_width; u32 dev_addr; u32 burst; u32 attr; }; struct fsl_edma_chan { struct virt_dma_chan vchan; enum dma_status status; struct fsl_edma_engine *edma; struct fsl_edma_desc *edesc; struct fsl_edma_slave_config fsc; struct dma_pool *tcd_pool; }; struct fsl_edma_desc { struct virt_dma_desc vdesc; struct fsl_edma_chan *echan; bool iscyclic; unsigned int n_tcds; struct fsl_edma_sw_tcd tcd[]; }; struct fsl_edma_engine { struct dma_device dma_dev; void __iomem *membase; void __iomem *muxbase[DMAMUX_NR]; struct clk *muxclk[DMAMUX_NR]; struct mutex fsl_edma_mutex; u32 n_chans; int txirq; int errirq; bool big_endian; struct fsl_edma_chan chans[]; }; /* * R/W functions for big- or little-endian registers: * The eDMA controller's endian is independent of the CPU core's endian. * For the big-endian IP module, the offset for 8-bit or 16-bit registers * should also be swapped opposite to that in little-endian IP. */ static u32 edma_readl(struct fsl_edma_engine *edma, void __iomem *addr) { if (edma->big_endian) return ioread32be(addr); else return ioread32(addr); } static void edma_writeb(struct fsl_edma_engine *edma, u8 val, void __iomem *addr) { /* swap the reg offset for these in big-endian mode */ if (edma->big_endian) iowrite8(val, (void __iomem *)((unsigned long)addr ^ 0x3)); else iowrite8(val, addr); } static void edma_writew(struct fsl_edma_engine *edma, u16 val, void __iomem *addr) { /* swap the reg offset for these in big-endian mode */ if (edma->big_endian) iowrite16be(val, (void __iomem *)((unsigned long)addr ^ 0x2)); else iowrite16(val, addr); } static void edma_writel(struct fsl_edma_engine *edma, u32 val, void __iomem *addr) { if (edma->big_endian) iowrite32be(val, addr); else iowrite32(val, addr); } static struct fsl_edma_chan *to_fsl_edma_chan(struct dma_chan *chan) { return container_of(chan, struct fsl_edma_chan, vchan.chan); } static struct fsl_edma_desc *to_fsl_edma_desc(struct virt_dma_desc *vd) { return container_of(vd, struct fsl_edma_desc, vdesc); } static void fsl_edma_enable_request(struct fsl_edma_chan *fsl_chan) { void __iomem *addr = fsl_chan->edma->membase; u32 ch = fsl_chan->vchan.chan.chan_id; edma_writeb(fsl_chan->edma, EDMA_SEEI_SEEI(ch), addr + EDMA_SEEI); edma_writeb(fsl_chan->edma, ch, addr + EDMA_SERQ); } static void fsl_edma_disable_request(struct fsl_edma_chan *fsl_chan) { void __iomem *addr = fsl_chan->edma->membase; u32 ch = fsl_chan->vchan.chan.chan_id; edma_writeb(fsl_chan->edma, ch, addr + EDMA_CERQ); edma_writeb(fsl_chan->edma, EDMA_CEEI_CEEI(ch), addr + EDMA_CEEI); } static void fsl_edma_chan_mux(struct fsl_edma_chan *fsl_chan, unsigned int slot, bool enable) { u32 ch = fsl_chan->vchan.chan.chan_id; void __iomem *muxaddr; unsigned chans_per_mux, ch_off; chans_per_mux = fsl_chan->edma->n_chans / DMAMUX_NR; ch_off = fsl_chan->vchan.chan.chan_id % chans_per_mux; muxaddr = fsl_chan->edma->muxbase[ch / chans_per_mux]; slot = EDMAMUX_CHCFG_SOURCE(slot); if (enable) iowrite8(EDMAMUX_CHCFG_ENBL | slot, muxaddr + ch_off); else iowrite8(EDMAMUX_CHCFG_DIS, muxaddr + ch_off); } static unsigned int fsl_edma_get_tcd_attr(enum dma_slave_buswidth addr_width) { switch (addr_width) { case 1: return EDMA_TCD_ATTR_SSIZE_8BIT | EDMA_TCD_ATTR_DSIZE_8BIT; case 2: return EDMA_TCD_ATTR_SSIZE_16BIT | EDMA_TCD_ATTR_DSIZE_16BIT; case 4: return EDMA_TCD_ATTR_SSIZE_32BIT | EDMA_TCD_ATTR_DSIZE_32BIT; case 8: return EDMA_TCD_ATTR_SSIZE_64BIT | EDMA_TCD_ATTR_DSIZE_64BIT; default: return EDMA_TCD_ATTR_SSIZE_32BIT | EDMA_TCD_ATTR_DSIZE_32BIT; } } static void fsl_edma_free_desc(struct virt_dma_desc *vdesc) { struct fsl_edma_desc *fsl_desc; int i; fsl_desc = to_fsl_edma_desc(vdesc); for (i = 0; i < fsl_desc->n_tcds; i++) dma_pool_free(fsl_desc->echan->tcd_pool, fsl_desc->tcd[i].vtcd, fsl_desc->tcd[i].ptcd); kfree(fsl_desc); } static int fsl_edma_terminate_all(struct dma_chan *chan) { struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); unsigned long flags; LIST_HEAD(head); spin_lock_irqsave(&fsl_chan->vchan.lock, flags); fsl_edma_disable_request(fsl_chan); fsl_chan->edesc = NULL; vchan_get_all_descriptors(&fsl_chan->vchan, &head); spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); vchan_dma_desc_free_list(&fsl_chan->vchan, &head); return 0; } static int fsl_edma_pause(struct dma_chan *chan) { struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); unsigned long flags; spin_lock_irqsave(&fsl_chan->vchan.lock, flags); if (fsl_chan->edesc) { fsl_edma_disable_request(fsl_chan); fsl_chan->status = DMA_PAUSED; } spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); return 0; } static int fsl_edma_resume(struct dma_chan *chan) { struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); unsigned long flags; spin_lock_irqsave(&fsl_chan->vchan.lock, flags); if (fsl_chan->edesc) { fsl_edma_enable_request(fsl_chan); fsl_chan->status = DMA_IN_PROGRESS; } spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); return 0; } static int fsl_edma_slave_config(struct dma_chan *chan, struct dma_slave_config *cfg) { struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); fsl_chan->fsc.dir = cfg->direction; if (cfg->direction == DMA_DEV_TO_MEM) { fsl_chan->fsc.dev_addr = cfg->src_addr; fsl_chan->fsc.addr_width = cfg->src_addr_width; fsl_chan->fsc.burst = cfg->src_maxburst; fsl_chan->fsc.attr = fsl_edma_get_tcd_attr(cfg->src_addr_width); } else if (cfg->direction == DMA_MEM_TO_DEV) { fsl_chan->fsc.dev_addr = cfg->dst_addr; fsl_chan->fsc.addr_width = cfg->dst_addr_width; fsl_chan->fsc.burst = cfg->dst_maxburst; fsl_chan->fsc.attr = fsl_edma_get_tcd_attr(cfg->dst_addr_width); } else { return -EINVAL; } return 0; } static size_t fsl_edma_desc_residue(struct fsl_edma_chan *fsl_chan, struct virt_dma_desc *vdesc, bool in_progress) { struct fsl_edma_desc *edesc = fsl_chan->edesc; void __iomem *addr = fsl_chan->edma->membase; u32 ch = fsl_chan->vchan.chan.chan_id; enum dma_transfer_direction dir = fsl_chan->fsc.dir; dma_addr_t cur_addr, dma_addr; size_t len, size; int i; /* calculate the total size in this desc */ for (len = i = 0; i < fsl_chan->edesc->n_tcds; i++) len += le32_to_cpu(edesc->tcd[i].vtcd->nbytes) * le16_to_cpu(edesc->tcd[i].vtcd->biter); if (!in_progress) return len; if (dir == DMA_MEM_TO_DEV) cur_addr = edma_readl(fsl_chan->edma, addr + EDMA_TCD_SADDR(ch)); else cur_addr = edma_readl(fsl_chan->edma, addr + EDMA_TCD_DADDR(ch)); /* figure out the finished and calculate the residue */ for (i = 0; i < fsl_chan->edesc->n_tcds; i++) { size = le32_to_cpu(edesc->tcd[i].vtcd->nbytes) * le16_to_cpu(edesc->tcd[i].vtcd->biter); if (dir == DMA_MEM_TO_DEV) dma_addr = le32_to_cpu(edesc->tcd[i].vtcd->saddr); else dma_addr = le32_to_cpu(edesc->tcd[i].vtcd->daddr); len -= size; if (cur_addr >= dma_addr && cur_addr < dma_addr + size) { len += dma_addr + size - cur_addr; break; } } return len; } static enum dma_status fsl_edma_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); struct virt_dma_desc *vdesc; enum dma_status status; unsigned long flags; status = dma_cookie_status(chan, cookie, txstate); if (status == DMA_COMPLETE) return status; if (!txstate) return fsl_chan->status; spin_lock_irqsave(&fsl_chan->vchan.lock, flags); vdesc = vchan_find_desc(&fsl_chan->vchan, cookie); if (fsl_chan->edesc && cookie == fsl_chan->edesc->vdesc.tx.cookie) txstate->residue = fsl_edma_desc_residue(fsl_chan, vdesc, true); else if (vdesc) txstate->residue = fsl_edma_desc_residue(fsl_chan, vdesc, false); else txstate->residue = 0; spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); return fsl_chan->status; } static void fsl_edma_set_tcd_regs(struct fsl_edma_chan *fsl_chan, struct fsl_edma_hw_tcd *tcd) { struct fsl_edma_engine *edma = fsl_chan->edma; void __iomem *addr = fsl_chan->edma->membase; u32 ch = fsl_chan->vchan.chan.chan_id; /* * TCD parameters are stored in struct fsl_edma_hw_tcd in little * endian format. However, we need to load the TCD registers in * big- or little-endian obeying the eDMA engine model endian. */ edma_writew(edma, 0, addr + EDMA_TCD_CSR(ch)); edma_writel(edma, le32_to_cpu(tcd->saddr), addr + EDMA_TCD_SADDR(ch)); edma_writel(edma, le32_to_cpu(tcd->daddr), addr + EDMA_TCD_DADDR(ch)); edma_writew(edma, le16_to_cpu(tcd->attr), addr + EDMA_TCD_ATTR(ch)); edma_writew(edma, le16_to_cpu(tcd->soff), addr + EDMA_TCD_SOFF(ch)); edma_writel(edma, le32_to_cpu(tcd->nbytes), addr + EDMA_TCD_NBYTES(ch)); edma_writel(edma, le32_to_cpu(tcd->slast), addr + EDMA_TCD_SLAST(ch)); edma_writew(edma, le16_to_cpu(tcd->citer), addr + EDMA_TCD_CITER(ch)); edma_writew(edma, le16_to_cpu(tcd->biter), addr + EDMA_TCD_BITER(ch)); edma_writew(edma, le16_to_cpu(tcd->doff), addr + EDMA_TCD_DOFF(ch)); edma_writel(edma, le32_to_cpu(tcd->dlast_sga), addr + EDMA_TCD_DLAST_SGA(ch)); edma_writew(edma, le16_to_cpu(tcd->csr), addr + EDMA_TCD_CSR(ch)); } static inline void fsl_edma_fill_tcd(struct fsl_edma_hw_tcd *tcd, u32 src, u32 dst, u16 attr, u16 soff, u32 nbytes, u32 slast, u16 citer, u16 biter, u16 doff, u32 dlast_sga, bool major_int, bool disable_req, bool enable_sg) { u16 csr = 0; /* * eDMA hardware SGs require the TCDs to be stored in little * endian format irrespective of the register endian model. * So we put the value in little endian in memory, waiting * for fsl_edma_set_tcd_regs doing the swap. */ tcd->saddr = cpu_to_le32(src); tcd->daddr = cpu_to_le32(dst); tcd->attr = cpu_to_le16(attr); tcd->soff = cpu_to_le16(EDMA_TCD_SOFF_SOFF(soff)); tcd->nbytes = cpu_to_le32(EDMA_TCD_NBYTES_NBYTES(nbytes)); tcd->slast = cpu_to_le32(EDMA_TCD_SLAST_SLAST(slast)); tcd->citer = cpu_to_le16(EDMA_TCD_CITER_CITER(citer)); tcd->doff = cpu_to_le16(EDMA_TCD_DOFF_DOFF(doff)); tcd->dlast_sga = cpu_to_le32(EDMA_TCD_DLAST_SGA_DLAST_SGA(dlast_sga)); tcd->biter = cpu_to_le16(EDMA_TCD_BITER_BITER(biter)); if (major_int) csr |= EDMA_TCD_CSR_INT_MAJOR; if (disable_req) csr |= EDMA_TCD_CSR_D_REQ; if (enable_sg) csr |= EDMA_TCD_CSR_E_SG; tcd->csr = cpu_to_le16(csr); } static struct fsl_edma_desc *fsl_edma_alloc_desc(struct fsl_edma_chan *fsl_chan, int sg_len) { struct fsl_edma_desc *fsl_desc; int i; fsl_desc = kzalloc(sizeof(*fsl_desc) + sizeof(struct fsl_edma_sw_tcd) * sg_len, GFP_NOWAIT); if (!fsl_desc) return NULL; fsl_desc->echan = fsl_chan; fsl_desc->n_tcds = sg_len; for (i = 0; i < sg_len; i++) { fsl_desc->tcd[i].vtcd = dma_pool_alloc(fsl_chan->tcd_pool, GFP_NOWAIT, &fsl_desc->tcd[i].ptcd); if (!fsl_desc->tcd[i].vtcd) goto err; } return fsl_desc; err: while (--i >= 0) dma_pool_free(fsl_chan->tcd_pool, fsl_desc->tcd[i].vtcd, fsl_desc->tcd[i].ptcd); kfree(fsl_desc); return NULL; } static struct dma_async_tx_descriptor *fsl_edma_prep_dma_cyclic( struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len, size_t period_len, enum dma_transfer_direction direction, unsigned long flags) { struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); struct fsl_edma_desc *fsl_desc; dma_addr_t dma_buf_next; int sg_len, i; u32 src_addr, dst_addr, last_sg, nbytes; u16 soff, doff, iter; if (!is_slave_direction(fsl_chan->fsc.dir)) return NULL; sg_len = buf_len / period_len; fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len); if (!fsl_desc) return NULL; fsl_desc->iscyclic = true; dma_buf_next = dma_addr; nbytes = fsl_chan->fsc.addr_width * fsl_chan->fsc.burst; iter = period_len / nbytes; for (i = 0; i < sg_len; i++) { if (dma_buf_next >= dma_addr + buf_len) dma_buf_next = dma_addr; /* get next sg's physical address */ last_sg = fsl_desc->tcd[(i + 1) % sg_len].ptcd; if (fsl_chan->fsc.dir == DMA_MEM_TO_DEV) { src_addr = dma_buf_next; dst_addr = fsl_chan->fsc.dev_addr; soff = fsl_chan->fsc.addr_width; doff = 0; } else { src_addr = fsl_chan->fsc.dev_addr; dst_addr = dma_buf_next; soff = 0; doff = fsl_chan->fsc.addr_width; } fsl_edma_fill_tcd(fsl_desc->tcd[i].vtcd, src_addr, dst_addr, fsl_chan->fsc.attr, soff, nbytes, 0, iter, iter, doff, last_sg, true, false, true); dma_buf_next += period_len; } return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags); } static struct dma_async_tx_descriptor *fsl_edma_prep_slave_sg( struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, enum dma_transfer_direction direction, unsigned long flags, void *context) { struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); struct fsl_edma_desc *fsl_desc; struct scatterlist *sg; u32 src_addr, dst_addr, last_sg, nbytes; u16 soff, doff, iter; int i; if (!is_slave_direction(fsl_chan->fsc.dir)) return NULL; fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len); if (!fsl_desc) return NULL; fsl_desc->iscyclic = false; nbytes = fsl_chan->fsc.addr_width * fsl_chan->fsc.burst; for_each_sg(sgl, sg, sg_len, i) { /* get next sg's physical address */ last_sg = fsl_desc->tcd[(i + 1) % sg_len].ptcd; if (fsl_chan->fsc.dir == DMA_MEM_TO_DEV) { src_addr = sg_dma_address(sg); dst_addr = fsl_chan->fsc.dev_addr; soff = fsl_chan->fsc.addr_width; doff = 0; } else { src_addr = fsl_chan->fsc.dev_addr; dst_addr = sg_dma_address(sg); soff = 0; doff = fsl_chan->fsc.addr_width; } iter = sg_dma_len(sg) / nbytes; if (i < sg_len - 1) { last_sg = fsl_desc->tcd[(i + 1)].ptcd; fsl_edma_fill_tcd(fsl_desc->tcd[i].vtcd, src_addr, dst_addr, fsl_chan->fsc.attr, soff, nbytes, 0, iter, iter, doff, last_sg, false, false, true); } else { last_sg = 0; fsl_edma_fill_tcd(fsl_desc->tcd[i].vtcd, src_addr, dst_addr, fsl_chan->fsc.attr, soff, nbytes, 0, iter, iter, doff, last_sg, true, true, false); } } return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags); } static void fsl_edma_xfer_desc(struct fsl_edma_chan *fsl_chan) { struct virt_dma_desc *vdesc; vdesc = vchan_next_desc(&fsl_chan->vchan); if (!vdesc) return; fsl_chan->edesc = to_fsl_edma_desc(vdesc); fsl_edma_set_tcd_regs(fsl_chan, fsl_chan->edesc->tcd[0].vtcd); fsl_edma_enable_request(fsl_chan); fsl_chan->status = DMA_IN_PROGRESS; } static irqreturn_t fsl_edma_tx_handler(int irq, void *dev_id) { struct fsl_edma_engine *fsl_edma = dev_id; unsigned int intr, ch; void __iomem *base_addr; struct fsl_edma_chan *fsl_chan; base_addr = fsl_edma->membase; intr = edma_readl(fsl_edma, base_addr + EDMA_INTR); if (!intr) return IRQ_NONE; for (ch = 0; ch < fsl_edma->n_chans; ch++) { if (intr & (0x1 << ch)) { edma_writeb(fsl_edma, EDMA_CINT_CINT(ch), base_addr + EDMA_CINT); fsl_chan = &fsl_edma->chans[ch]; spin_lock(&fsl_chan->vchan.lock); if (!fsl_chan->edesc->iscyclic) { list_del(&fsl_chan->edesc->vdesc.node); vchan_cookie_complete(&fsl_chan->edesc->vdesc); fsl_chan->edesc = NULL; fsl_chan->status = DMA_COMPLETE; } else { vchan_cyclic_callback(&fsl_chan->edesc->vdesc); } if (!fsl_chan->edesc) fsl_edma_xfer_desc(fsl_chan); spin_unlock(&fsl_chan->vchan.lock); } } return IRQ_HANDLED; } static irqreturn_t fsl_edma_err_handler(int irq, void *dev_id) { struct fsl_edma_engine *fsl_edma = dev_id; unsigned int err, ch; err = edma_readl(fsl_edma, fsl_edma->membase + EDMA_ERR); if (!err) return IRQ_NONE; for (ch = 0; ch < fsl_edma->n_chans; ch++) { if (err & (0x1 << ch)) { fsl_edma_disable_request(&fsl_edma->chans[ch]); edma_writeb(fsl_edma, EDMA_CERR_CERR(ch), fsl_edma->membase + EDMA_CERR); fsl_edma->chans[ch].status = DMA_ERROR; } } return IRQ_HANDLED; } static irqreturn_t fsl_edma_irq_handler(int irq, void *dev_id) { if (fsl_edma_tx_handler(irq, dev_id) == IRQ_HANDLED) return IRQ_HANDLED; return fsl_edma_err_handler(irq, dev_id); } static void fsl_edma_issue_pending(struct dma_chan *chan) { struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); unsigned long flags; spin_lock_irqsave(&fsl_chan->vchan.lock, flags); if (vchan_issue_pending(&fsl_chan->vchan) && !fsl_chan->edesc) fsl_edma_xfer_desc(fsl_chan); spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); } static struct dma_chan *fsl_edma_xlate(struct of_phandle_args *dma_spec, struct of_dma *ofdma) { struct fsl_edma_engine *fsl_edma = ofdma->of_dma_data; struct dma_chan *chan, *_chan; unsigned long chans_per_mux = fsl_edma->n_chans / DMAMUX_NR; if (dma_spec->args_count != 2) return NULL; mutex_lock(&fsl_edma->fsl_edma_mutex); list_for_each_entry_safe(chan, _chan, &fsl_edma->dma_dev.channels, device_node) { if (chan->client_count) continue; if ((chan->chan_id / chans_per_mux) == dma_spec->args[0]) { chan = dma_get_slave_channel(chan); if (chan) { chan->device->privatecnt++; fsl_edma_chan_mux(to_fsl_edma_chan(chan), dma_spec->args[1], true); mutex_unlock(&fsl_edma->fsl_edma_mutex); return chan; } } } mutex_unlock(&fsl_edma->fsl_edma_mutex); return NULL; } static int fsl_edma_alloc_chan_resources(struct dma_chan *chan) { struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); fsl_chan->tcd_pool = dma_pool_create("tcd_pool", chan->device->dev, sizeof(struct fsl_edma_hw_tcd), 32, 0); return 0; } static void fsl_edma_free_chan_resources(struct dma_chan *chan) { struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); unsigned long flags; LIST_HEAD(head); spin_lock_irqsave(&fsl_chan->vchan.lock, flags); fsl_edma_disable_request(fsl_chan); fsl_edma_chan_mux(fsl_chan, 0, false); fsl_chan->edesc = NULL; vchan_get_all_descriptors(&fsl_chan->vchan, &head); spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); vchan_dma_desc_free_list(&fsl_chan->vchan, &head); dma_pool_destroy(fsl_chan->tcd_pool); fsl_chan->tcd_pool = NULL; } static int fsl_dma_device_slave_caps(struct dma_chan *dchan, struct dma_slave_caps *caps) { caps->src_addr_widths = FSL_EDMA_BUSWIDTHS; caps->dst_addr_widths = FSL_EDMA_BUSWIDTHS; caps->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); caps->cmd_pause = true; caps->cmd_terminate = true; return 0; } static int fsl_edma_irq_init(struct platform_device *pdev, struct fsl_edma_engine *fsl_edma) { int ret; fsl_edma->txirq = platform_get_irq_byname(pdev, "edma-tx"); if (fsl_edma->txirq < 0) { dev_err(&pdev->dev, "Can't get edma-tx irq.\n"); return fsl_edma->txirq; } fsl_edma->errirq = platform_get_irq_byname(pdev, "edma-err"); if (fsl_edma->errirq < 0) { dev_err(&pdev->dev, "Can't get edma-err irq.\n"); return fsl_edma->errirq; } if (fsl_edma->txirq == fsl_edma->errirq) { ret = devm_request_irq(&pdev->dev, fsl_edma->txirq, fsl_edma_irq_handler, 0, "eDMA", fsl_edma); if (ret) { dev_err(&pdev->dev, "Can't register eDMA IRQ.\n"); return ret; } } else { ret = devm_request_irq(&pdev->dev, fsl_edma->txirq, fsl_edma_tx_handler, 0, "eDMA tx", fsl_edma); if (ret) { dev_err(&pdev->dev, "Can't register eDMA tx IRQ.\n"); return ret; } ret = devm_request_irq(&pdev->dev, fsl_edma->errirq, fsl_edma_err_handler, 0, "eDMA err", fsl_edma); if (ret) { dev_err(&pdev->dev, "Can't register eDMA err IRQ.\n"); return ret; } } return 0; } static int fsl_edma_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct fsl_edma_engine *fsl_edma; struct fsl_edma_chan *fsl_chan; struct resource *res; int len, chans; int ret, i; ret = of_property_read_u32(np, "dma-channels", &chans); if (ret) { dev_err(&pdev->dev, "Can't get dma-channels.\n"); return ret; } len = sizeof(*fsl_edma) + sizeof(*fsl_chan) * chans; fsl_edma = devm_kzalloc(&pdev->dev, len, GFP_KERNEL); if (!fsl_edma) return -ENOMEM; fsl_edma->n_chans = chans; mutex_init(&fsl_edma->fsl_edma_mutex); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); fsl_edma->membase = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(fsl_edma->membase)) return PTR_ERR(fsl_edma->membase); for (i = 0; i < DMAMUX_NR; i++) { char clkname[32]; res = platform_get_resource(pdev, IORESOURCE_MEM, 1 + i); fsl_edma->muxbase[i] = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(fsl_edma->muxbase[i])) return PTR_ERR(fsl_edma->muxbase[i]); sprintf(clkname, "dmamux%d", i); fsl_edma->muxclk[i] = devm_clk_get(&pdev->dev, clkname); if (IS_ERR(fsl_edma->muxclk[i])) { dev_err(&pdev->dev, "Missing DMAMUX block clock.\n"); return PTR_ERR(fsl_edma->muxclk[i]); } ret = clk_prepare_enable(fsl_edma->muxclk[i]); if (ret) { dev_err(&pdev->dev, "DMAMUX clk block failed.\n"); return ret; } } ret = fsl_edma_irq_init(pdev, fsl_edma); if (ret) return ret; fsl_edma->big_endian = of_property_read_bool(np, "big-endian"); INIT_LIST_HEAD(&fsl_edma->dma_dev.channels); for (i = 0; i < fsl_edma->n_chans; i++) { struct fsl_edma_chan *fsl_chan = &fsl_edma->chans[i]; fsl_chan->edma = fsl_edma; fsl_chan->vchan.desc_free = fsl_edma_free_desc; vchan_init(&fsl_chan->vchan, &fsl_edma->dma_dev); edma_writew(fsl_edma, 0x0, fsl_edma->membase + EDMA_TCD_CSR(i)); fsl_edma_chan_mux(fsl_chan, 0, false); } dma_cap_set(DMA_PRIVATE, fsl_edma->dma_dev.cap_mask); dma_cap_set(DMA_SLAVE, fsl_edma->dma_dev.cap_mask); dma_cap_set(DMA_CYCLIC, fsl_edma->dma_dev.cap_mask); fsl_edma->dma_dev.dev = &pdev->dev; fsl_edma->dma_dev.device_alloc_chan_resources = fsl_edma_alloc_chan_resources; fsl_edma->dma_dev.device_free_chan_resources = fsl_edma_free_chan_resources; fsl_edma->dma_dev.device_tx_status = fsl_edma_tx_status; fsl_edma->dma_dev.device_prep_slave_sg = fsl_edma_prep_slave_sg; fsl_edma->dma_dev.device_prep_dma_cyclic = fsl_edma_prep_dma_cyclic; fsl_edma->dma_dev.device_config = fsl_edma_slave_config; fsl_edma->dma_dev.device_pause = fsl_edma_pause; fsl_edma->dma_dev.device_resume = fsl_edma_resume; fsl_edma->dma_dev.device_terminate_all = fsl_edma_terminate_all; fsl_edma->dma_dev.device_issue_pending = fsl_edma_issue_pending; fsl_edma->dma_dev.device_slave_caps = fsl_dma_device_slave_caps; platform_set_drvdata(pdev, fsl_edma); ret = dma_async_device_register(&fsl_edma->dma_dev); if (ret) { dev_err(&pdev->dev, "Can't register Freescale eDMA engine.\n"); return ret; } ret = of_dma_controller_register(np, fsl_edma_xlate, fsl_edma); if (ret) { dev_err(&pdev->dev, "Can't register Freescale eDMA of_dma.\n"); dma_async_device_unregister(&fsl_edma->dma_dev); return ret; } /* enable round robin arbitration */ edma_writel(fsl_edma, EDMA_CR_ERGA | EDMA_CR_ERCA, fsl_edma->membase + EDMA_CR); return 0; } static int fsl_edma_remove(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct fsl_edma_engine *fsl_edma = platform_get_drvdata(pdev); int i; of_dma_controller_free(np); dma_async_device_unregister(&fsl_edma->dma_dev); for (i = 0; i < DMAMUX_NR; i++) clk_disable_unprepare(fsl_edma->muxclk[i]); return 0; } static const struct of_device_id fsl_edma_dt_ids[] = { { .compatible = "fsl,vf610-edma", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, fsl_edma_dt_ids); static struct platform_driver fsl_edma_driver = { .driver = { .name = "fsl-edma", .of_match_table = fsl_edma_dt_ids, }, .probe = fsl_edma_probe, .remove = fsl_edma_remove, }; static int __init fsl_edma_init(void) { return platform_driver_register(&fsl_edma_driver); } subsys_initcall(fsl_edma_init); static void __exit fsl_edma_exit(void) { platform_driver_unregister(&fsl_edma_driver); } module_exit(fsl_edma_exit); MODULE_ALIAS("platform:fsl-edma"); MODULE_DESCRIPTION("Freescale eDMA engine driver"); MODULE_LICENSE("GPL v2");