/* * talitos - Freescale Integrated Security Engine (SEC) device driver * * Copyright (c) 2008 Freescale Semiconductor, Inc. * * Scatterlist Crypto API glue code copied from files with the following: * Copyright (c) 2006-2007 Herbert Xu <herbert@gondor.apana.org.au> * * Crypto algorithm registration code copied from hifn driver: * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru> * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/device.h> #include <linux/interrupt.h> #include <linux/crypto.h> #include <linux/hw_random.h> #include <linux/of_platform.h> #include <linux/dma-mapping.h> #include <linux/io.h> #include <linux/spinlock.h> #include <linux/rtnetlink.h> #include <crypto/algapi.h> #include <crypto/aes.h> #include <crypto/des.h> #include <crypto/sha.h> #include <crypto/aead.h> #include <crypto/authenc.h> #include <crypto/skcipher.h> #include <crypto/scatterwalk.h> #include "talitos.h" #define TALITOS_TIMEOUT 100000 #define TALITOS_MAX_DATA_LEN 65535 #define DESC_TYPE(desc_hdr) ((be32_to_cpu(desc_hdr) >> 3) & 0x1f) #define PRIMARY_EU(desc_hdr) ((be32_to_cpu(desc_hdr) >> 28) & 0xf) #define SECONDARY_EU(desc_hdr) ((be32_to_cpu(desc_hdr) >> 16) & 0xf) /* descriptor pointer entry */ struct talitos_ptr { __be16 len; /* length */ u8 j_extent; /* jump to sg link table and/or extent */ u8 eptr; /* extended address */ __be32 ptr; /* address */ }; /* descriptor */ struct talitos_desc { __be32 hdr; /* header high bits */ __be32 hdr_lo; /* header low bits */ struct talitos_ptr ptr[7]; /* ptr/len pair array */ }; /** * talitos_request - descriptor submission request * @desc: descriptor pointer (kernel virtual) * @dma_desc: descriptor's physical bus address * @callback: whom to call when descriptor processing is done * @context: caller context (optional) */ struct talitos_request { struct talitos_desc *desc; dma_addr_t dma_desc; void (*callback) (struct device *dev, struct talitos_desc *desc, void *context, int error); void *context; }; struct talitos_private { struct device *dev; struct of_device *ofdev; void __iomem *reg; int irq; /* SEC version geometry (from device tree node) */ unsigned int num_channels; unsigned int chfifo_len; unsigned int exec_units; unsigned int desc_types; /* SEC Compatibility info */ unsigned long features; /* next channel to be assigned next incoming descriptor */ atomic_t last_chan; /* per-channel number of requests pending in channel h/w fifo */ atomic_t *submit_count; /* per-channel request fifo */ struct talitos_request **fifo; /* * length of the request fifo * fifo_len is chfifo_len rounded up to next power of 2 * so we can use bitwise ops to wrap */ unsigned int fifo_len; /* per-channel index to next free descriptor request */ int *head; /* per-channel index to next in-progress/done descriptor request */ int *tail; /* per-channel request submission (head) and release (tail) locks */ spinlock_t *head_lock; spinlock_t *tail_lock; /* request callback tasklet */ struct tasklet_struct done_task; /* list of registered algorithms */ struct list_head alg_list; /* hwrng device */ struct hwrng rng; }; /* .features flag */ #define TALITOS_FTR_SRC_LINK_TBL_LEN_INCLUDES_EXTENT 0x00000001 #define TALITOS_FTR_HW_AUTH_CHECK 0x00000002 /* * map virtual single (contiguous) pointer to h/w descriptor pointer */ static void map_single_talitos_ptr(struct device *dev, struct talitos_ptr *talitos_ptr, unsigned short len, void *data, unsigned char extent, enum dma_data_direction dir) { talitos_ptr->len = cpu_to_be16(len); talitos_ptr->ptr = cpu_to_be32(dma_map_single(dev, data, len, dir)); talitos_ptr->j_extent = extent; } /* * unmap bus single (contiguous) h/w descriptor pointer */ static void unmap_single_talitos_ptr(struct device *dev, struct talitos_ptr *talitos_ptr, enum dma_data_direction dir) { dma_unmap_single(dev, be32_to_cpu(talitos_ptr->ptr), be16_to_cpu(talitos_ptr->len), dir); } static int reset_channel(struct device *dev, int ch) { struct talitos_private *priv = dev_get_drvdata(dev); unsigned int timeout = TALITOS_TIMEOUT; setbits32(priv->reg + TALITOS_CCCR(ch), TALITOS_CCCR_RESET); while ((in_be32(priv->reg + TALITOS_CCCR(ch)) & TALITOS_CCCR_RESET) && --timeout) cpu_relax(); if (timeout == 0) { dev_err(dev, "failed to reset channel %d\n", ch); return -EIO; } /* set done writeback and IRQ */ setbits32(priv->reg + TALITOS_CCCR_LO(ch), TALITOS_CCCR_LO_CDWE | TALITOS_CCCR_LO_CDIE); /* and ICCR writeback, if available */ if (priv->features & TALITOS_FTR_HW_AUTH_CHECK) setbits32(priv->reg + TALITOS_CCCR_LO(ch), TALITOS_CCCR_LO_IWSE); return 0; } static int reset_device(struct device *dev) { struct talitos_private *priv = dev_get_drvdata(dev); unsigned int timeout = TALITOS_TIMEOUT; setbits32(priv->reg + TALITOS_MCR, TALITOS_MCR_SWR); while ((in_be32(priv->reg + TALITOS_MCR) & TALITOS_MCR_SWR) && --timeout) cpu_relax(); if (timeout == 0) { dev_err(dev, "failed to reset device\n"); return -EIO; } return 0; } /* * Reset and initialize the device */ static int init_device(struct device *dev) { struct talitos_private *priv = dev_get_drvdata(dev); int ch, err; /* * Master reset * errata documentation: warning: certain SEC interrupts * are not fully cleared by writing the MCR:SWR bit, * set bit twice to completely reset */ err = reset_device(dev); if (err) return err; err = reset_device(dev); if (err) return err; /* reset channels */ for (ch = 0; ch < priv->num_channels; ch++) { err = reset_channel(dev, ch); if (err) return err; } /* enable channel done and error interrupts */ setbits32(priv->reg + TALITOS_IMR, TALITOS_IMR_INIT); setbits32(priv->reg + TALITOS_IMR_LO, TALITOS_IMR_LO_INIT); /* disable integrity check error interrupts (use writeback instead) */ if (priv->features & TALITOS_FTR_HW_AUTH_CHECK) setbits32(priv->reg + TALITOS_MDEUICR_LO, TALITOS_MDEUICR_LO_ICE); return 0; } /** * talitos_submit - submits a descriptor to the device for processing * @dev: the SEC device to be used * @desc: the descriptor to be processed by the device * @callback: whom to call when processing is complete * @context: a handle for use by caller (optional) * * desc must contain valid dma-mapped (bus physical) address pointers. * callback must check err and feedback in descriptor header * for device processing status. */ static int talitos_submit(struct device *dev, struct talitos_desc *desc, void (*callback)(struct device *dev, struct talitos_desc *desc, void *context, int error), void *context) { struct talitos_private *priv = dev_get_drvdata(dev); struct talitos_request *request; unsigned long flags, ch; int head; /* select done notification */ desc->hdr |= DESC_HDR_DONE_NOTIFY; /* emulate SEC's round-robin channel fifo polling scheme */ ch = atomic_inc_return(&priv->last_chan) & (priv->num_channels - 1); spin_lock_irqsave(&priv->head_lock[ch], flags); if (!atomic_inc_not_zero(&priv->submit_count[ch])) { /* h/w fifo is full */ spin_unlock_irqrestore(&priv->head_lock[ch], flags); return -EAGAIN; } head = priv->head[ch]; request = &priv->fifo[ch][head]; /* map descriptor and save caller data */ request->dma_desc = dma_map_single(dev, desc, sizeof(*desc), DMA_BIDIRECTIONAL); request->callback = callback; request->context = context; /* increment fifo head */ priv->head[ch] = (priv->head[ch] + 1) & (priv->fifo_len - 1); smp_wmb(); request->desc = desc; /* GO! */ wmb(); out_be32(priv->reg + TALITOS_FF_LO(ch), request->dma_desc); spin_unlock_irqrestore(&priv->head_lock[ch], flags); return -EINPROGRESS; } /* * process what was done, notify callback of error if not */ static void flush_channel(struct device *dev, int ch, int error, int reset_ch) { struct talitos_private *priv = dev_get_drvdata(dev); struct talitos_request *request, saved_req; unsigned long flags; int tail, status; spin_lock_irqsave(&priv->tail_lock[ch], flags); tail = priv->tail[ch]; while (priv->fifo[ch][tail].desc) { request = &priv->fifo[ch][tail]; /* descriptors with their done bits set don't get the error */ rmb(); if ((request->desc->hdr & DESC_HDR_DONE) == DESC_HDR_DONE) status = 0; else if (!error) break; else status = error; dma_unmap_single(dev, request->dma_desc, sizeof(struct talitos_desc), DMA_BIDIRECTIONAL); /* copy entries so we can call callback outside lock */ saved_req.desc = request->desc; saved_req.callback = request->callback; saved_req.context = request->context; /* release request entry in fifo */ smp_wmb(); request->desc = NULL; /* increment fifo tail */ priv->tail[ch] = (tail + 1) & (priv->fifo_len - 1); spin_unlock_irqrestore(&priv->tail_lock[ch], flags); atomic_dec(&priv->submit_count[ch]); saved_req.callback(dev, saved_req.desc, saved_req.context, status); /* channel may resume processing in single desc error case */ if (error && !reset_ch && status == error) return; spin_lock_irqsave(&priv->tail_lock[ch], flags); tail = priv->tail[ch]; } spin_unlock_irqrestore(&priv->tail_lock[ch], flags); } /* * process completed requests for channels that have done status */ static void talitos_done(unsigned long data) { struct device *dev = (struct device *)data; struct talitos_private *priv = dev_get_drvdata(dev); int ch; for (ch = 0; ch < priv->num_channels; ch++) flush_channel(dev, ch, 0, 0); /* At this point, all completed channels have been processed. * Unmask done interrupts for channels completed later on. */ setbits32(priv->reg + TALITOS_IMR, TALITOS_IMR_INIT); setbits32(priv->reg + TALITOS_IMR_LO, TALITOS_IMR_LO_INIT); } /* * locate current (offending) descriptor */ static struct talitos_desc *current_desc(struct device *dev, int ch) { struct talitos_private *priv = dev_get_drvdata(dev); int tail = priv->tail[ch]; dma_addr_t cur_desc; cur_desc = in_be32(priv->reg + TALITOS_CDPR_LO(ch)); while (priv->fifo[ch][tail].dma_desc != cur_desc) { tail = (tail + 1) & (priv->fifo_len - 1); if (tail == priv->tail[ch]) { dev_err(dev, "couldn't locate current descriptor\n"); return NULL; } } return priv->fifo[ch][tail].desc; } /* * user diagnostics; report root cause of error based on execution unit status */ static void report_eu_error(struct device *dev, int ch, struct talitos_desc *desc) { struct talitos_private *priv = dev_get_drvdata(dev); int i; switch (desc->hdr & DESC_HDR_SEL0_MASK) { case DESC_HDR_SEL0_AFEU: dev_err(dev, "AFEUISR 0x%08x_%08x\n", in_be32(priv->reg + TALITOS_AFEUISR), in_be32(priv->reg + TALITOS_AFEUISR_LO)); break; case DESC_HDR_SEL0_DEU: dev_err(dev, "DEUISR 0x%08x_%08x\n", in_be32(priv->reg + TALITOS_DEUISR), in_be32(priv->reg + TALITOS_DEUISR_LO)); break; case DESC_HDR_SEL0_MDEUA: case DESC_HDR_SEL0_MDEUB: dev_err(dev, "MDEUISR 0x%08x_%08x\n", in_be32(priv->reg + TALITOS_MDEUISR), in_be32(priv->reg + TALITOS_MDEUISR_LO)); break; case DESC_HDR_SEL0_RNG: dev_err(dev, "RNGUISR 0x%08x_%08x\n", in_be32(priv->reg + TALITOS_RNGUISR), in_be32(priv->reg + TALITOS_RNGUISR_LO)); break; case DESC_HDR_SEL0_PKEU: dev_err(dev, "PKEUISR 0x%08x_%08x\n", in_be32(priv->reg + TALITOS_PKEUISR), in_be32(priv->reg + TALITOS_PKEUISR_LO)); break; case DESC_HDR_SEL0_AESU: dev_err(dev, "AESUISR 0x%08x_%08x\n", in_be32(priv->reg + TALITOS_AESUISR), in_be32(priv->reg + TALITOS_AESUISR_LO)); break; case DESC_HDR_SEL0_CRCU: dev_err(dev, "CRCUISR 0x%08x_%08x\n", in_be32(priv->reg + TALITOS_CRCUISR), in_be32(priv->reg + TALITOS_CRCUISR_LO)); break; case DESC_HDR_SEL0_KEU: dev_err(dev, "KEUISR 0x%08x_%08x\n", in_be32(priv->reg + TALITOS_KEUISR), in_be32(priv->reg + TALITOS_KEUISR_LO)); break; } switch (desc->hdr & DESC_HDR_SEL1_MASK) { case DESC_HDR_SEL1_MDEUA: case DESC_HDR_SEL1_MDEUB: dev_err(dev, "MDEUISR 0x%08x_%08x\n", in_be32(priv->reg + TALITOS_MDEUISR), in_be32(priv->reg + TALITOS_MDEUISR_LO)); break; case DESC_HDR_SEL1_CRCU: dev_err(dev, "CRCUISR 0x%08x_%08x\n", in_be32(priv->reg + TALITOS_CRCUISR), in_be32(priv->reg + TALITOS_CRCUISR_LO)); break; } for (i = 0; i < 8; i++) dev_err(dev, "DESCBUF 0x%08x_%08x\n", in_be32(priv->reg + TALITOS_DESCBUF(ch) + 8*i), in_be32(priv->reg + TALITOS_DESCBUF_LO(ch) + 8*i)); } /* * recover from error interrupts */ static void talitos_error(unsigned long data, u32 isr, u32 isr_lo) { struct device *dev = (struct device *)data; struct talitos_private *priv = dev_get_drvdata(dev); unsigned int timeout = TALITOS_TIMEOUT; int ch, error, reset_dev = 0, reset_ch = 0; u32 v, v_lo; for (ch = 0; ch < priv->num_channels; ch++) { /* skip channels without errors */ if (!(isr & (1 << (ch * 2 + 1)))) continue; error = -EINVAL; v = in_be32(priv->reg + TALITOS_CCPSR(ch)); v_lo = in_be32(priv->reg + TALITOS_CCPSR_LO(ch)); if (v_lo & TALITOS_CCPSR_LO_DOF) { dev_err(dev, "double fetch fifo overflow error\n"); error = -EAGAIN; reset_ch = 1; } if (v_lo & TALITOS_CCPSR_LO_SOF) { /* h/w dropped descriptor */ dev_err(dev, "single fetch fifo overflow error\n"); error = -EAGAIN; } if (v_lo & TALITOS_CCPSR_LO_MDTE) dev_err(dev, "master data transfer error\n"); if (v_lo & TALITOS_CCPSR_LO_SGDLZ) dev_err(dev, "s/g data length zero error\n"); if (v_lo & TALITOS_CCPSR_LO_FPZ) dev_err(dev, "fetch pointer zero error\n"); if (v_lo & TALITOS_CCPSR_LO_IDH) dev_err(dev, "illegal descriptor header error\n"); if (v_lo & TALITOS_CCPSR_LO_IEU) dev_err(dev, "invalid execution unit error\n"); if (v_lo & TALITOS_CCPSR_LO_EU) report_eu_error(dev, ch, current_desc(dev, ch)); if (v_lo & TALITOS_CCPSR_LO_GB) dev_err(dev, "gather boundary error\n"); if (v_lo & TALITOS_CCPSR_LO_GRL) dev_err(dev, "gather return/length error\n"); if (v_lo & TALITOS_CCPSR_LO_SB) dev_err(dev, "scatter boundary error\n"); if (v_lo & TALITOS_CCPSR_LO_SRL) dev_err(dev, "scatter return/length error\n"); flush_channel(dev, ch, error, reset_ch); if (reset_ch) { reset_channel(dev, ch); } else { setbits32(priv->reg + TALITOS_CCCR(ch), TALITOS_CCCR_CONT); setbits32(priv->reg + TALITOS_CCCR_LO(ch), 0); while ((in_be32(priv->reg + TALITOS_CCCR(ch)) & TALITOS_CCCR_CONT) && --timeout) cpu_relax(); if (timeout == 0) { dev_err(dev, "failed to restart channel %d\n", ch); reset_dev = 1; } } } if (reset_dev || isr & ~TALITOS_ISR_CHERR || isr_lo) { dev_err(dev, "done overflow, internal time out, or rngu error: " "ISR 0x%08x_%08x\n", isr, isr_lo); /* purge request queues */ for (ch = 0; ch < priv->num_channels; ch++) flush_channel(dev, ch, -EIO, 1); /* reset and reinitialize the device */ init_device(dev); } } static irqreturn_t talitos_interrupt(int irq, void *data) { struct device *dev = data; struct talitos_private *priv = dev_get_drvdata(dev); u32 isr, isr_lo; isr = in_be32(priv->reg + TALITOS_ISR); isr_lo = in_be32(priv->reg + TALITOS_ISR_LO); /* Acknowledge interrupt */ out_be32(priv->reg + TALITOS_ICR, isr); out_be32(priv->reg + TALITOS_ICR_LO, isr_lo); if (unlikely((isr & ~TALITOS_ISR_CHDONE) || isr_lo)) talitos_error((unsigned long)data, isr, isr_lo); else if (likely(isr & TALITOS_ISR_CHDONE)) { /* mask further done interrupts. */ clrbits32(priv->reg + TALITOS_IMR, TALITOS_IMR_DONE); /* done_task will unmask done interrupts at exit */ tasklet_schedule(&priv->done_task); } return (isr || isr_lo) ? IRQ_HANDLED : IRQ_NONE; } /* * hwrng */ static int talitos_rng_data_present(struct hwrng *rng, int wait) { struct device *dev = (struct device *)rng->priv; struct talitos_private *priv = dev_get_drvdata(dev); u32 ofl; int i; for (i = 0; i < 20; i++) { ofl = in_be32(priv->reg + TALITOS_RNGUSR_LO) & TALITOS_RNGUSR_LO_OFL; if (ofl || !wait) break; udelay(10); } return !!ofl; } static int talitos_rng_data_read(struct hwrng *rng, u32 *data) { struct device *dev = (struct device *)rng->priv; struct talitos_private *priv = dev_get_drvdata(dev); /* rng fifo requires 64-bit accesses */ *data = in_be32(priv->reg + TALITOS_RNGU_FIFO); *data = in_be32(priv->reg + TALITOS_RNGU_FIFO_LO); return sizeof(u32); } static int talitos_rng_init(struct hwrng *rng) { struct device *dev = (struct device *)rng->priv; struct talitos_private *priv = dev_get_drvdata(dev); unsigned int timeout = TALITOS_TIMEOUT; setbits32(priv->reg + TALITOS_RNGURCR_LO, TALITOS_RNGURCR_LO_SR); while (!(in_be32(priv->reg + TALITOS_RNGUSR_LO) & TALITOS_RNGUSR_LO_RD) && --timeout) cpu_relax(); if (timeout == 0) { dev_err(dev, "failed to reset rng hw\n"); return -ENODEV; } /* start generating */ setbits32(priv->reg + TALITOS_RNGUDSR_LO, 0); return 0; } static int talitos_register_rng(struct device *dev) { struct talitos_private *priv = dev_get_drvdata(dev); priv->rng.name = dev_driver_string(dev), priv->rng.init = talitos_rng_init, priv->rng.data_present = talitos_rng_data_present, priv->rng.data_read = talitos_rng_data_read, priv->rng.priv = (unsigned long)dev; return hwrng_register(&priv->rng); } static void talitos_unregister_rng(struct device *dev) { struct talitos_private *priv = dev_get_drvdata(dev); hwrng_unregister(&priv->rng); } /* * crypto alg */ #define TALITOS_CRA_PRIORITY 3000 #define TALITOS_MAX_KEY_SIZE 64 #define TALITOS_MAX_IV_LENGTH 16 /* max of AES_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE */ #define MD5_DIGEST_SIZE 16 struct talitos_ctx { struct device *dev; __be32 desc_hdr_template; u8 key[TALITOS_MAX_KEY_SIZE]; u8 iv[TALITOS_MAX_IV_LENGTH]; unsigned int keylen; unsigned int enckeylen; unsigned int authkeylen; unsigned int authsize; }; static int aead_setauthsize(struct crypto_aead *authenc, unsigned int authsize) { struct talitos_ctx *ctx = crypto_aead_ctx(authenc); ctx->authsize = authsize; return 0; } static int aead_setkey(struct crypto_aead *authenc, const u8 *key, unsigned int keylen) { struct talitos_ctx *ctx = crypto_aead_ctx(authenc); struct rtattr *rta = (void *)key; struct crypto_authenc_key_param *param; unsigned int authkeylen; unsigned int enckeylen; if (!RTA_OK(rta, keylen)) goto badkey; if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM) goto badkey; if (RTA_PAYLOAD(rta) < sizeof(*param)) goto badkey; param = RTA_DATA(rta); enckeylen = be32_to_cpu(param->enckeylen); key += RTA_ALIGN(rta->rta_len); keylen -= RTA_ALIGN(rta->rta_len); if (keylen < enckeylen) goto badkey; authkeylen = keylen - enckeylen; if (keylen > TALITOS_MAX_KEY_SIZE) goto badkey; memcpy(&ctx->key, key, keylen); ctx->keylen = keylen; ctx->enckeylen = enckeylen; ctx->authkeylen = authkeylen; return 0; badkey: crypto_aead_set_flags(authenc, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } /* * talitos_edesc - s/w-extended descriptor * @src_nents: number of segments in input scatterlist * @dst_nents: number of segments in output scatterlist * @dma_len: length of dma mapped link_tbl space * @dma_link_tbl: bus physical address of link_tbl * @desc: h/w descriptor * @link_tbl: input and output h/w link tables (if {src,dst}_nents > 1) * * if decrypting (with authcheck), or either one of src_nents or dst_nents * is greater than 1, an integrity check value is concatenated to the end * of link_tbl data */ struct talitos_edesc { int src_nents; int dst_nents; int src_is_chained; int dst_is_chained; int dma_len; dma_addr_t dma_link_tbl; struct talitos_desc desc; struct talitos_ptr link_tbl[0]; }; static int talitos_map_sg(struct device *dev, struct scatterlist *sg, unsigned int nents, enum dma_data_direction dir, int chained) { if (unlikely(chained)) while (sg) { dma_map_sg(dev, sg, 1, dir); sg = scatterwalk_sg_next(sg); } else dma_map_sg(dev, sg, nents, dir); return nents; } static void talitos_unmap_sg_chain(struct device *dev, struct scatterlist *sg, enum dma_data_direction dir) { while (sg) { dma_unmap_sg(dev, sg, 1, dir); sg = scatterwalk_sg_next(sg); } } static void talitos_sg_unmap(struct device *dev, struct talitos_edesc *edesc, struct scatterlist *src, struct scatterlist *dst) { unsigned int src_nents = edesc->src_nents ? : 1; unsigned int dst_nents = edesc->dst_nents ? : 1; if (src != dst) { if (edesc->src_is_chained) talitos_unmap_sg_chain(dev, src, DMA_TO_DEVICE); else dma_unmap_sg(dev, src, src_nents, DMA_TO_DEVICE); if (edesc->dst_is_chained) talitos_unmap_sg_chain(dev, dst, DMA_FROM_DEVICE); else dma_unmap_sg(dev, dst, dst_nents, DMA_FROM_DEVICE); } else if (edesc->src_is_chained) talitos_unmap_sg_chain(dev, src, DMA_BIDIRECTIONAL); else dma_unmap_sg(dev, src, src_nents, DMA_BIDIRECTIONAL); } static void ipsec_esp_unmap(struct device *dev, struct talitos_edesc *edesc, struct aead_request *areq) { unmap_single_talitos_ptr(dev, &edesc->desc.ptr[6], DMA_FROM_DEVICE); unmap_single_talitos_ptr(dev, &edesc->desc.ptr[3], DMA_TO_DEVICE); unmap_single_talitos_ptr(dev, &edesc->desc.ptr[2], DMA_TO_DEVICE); unmap_single_talitos_ptr(dev, &edesc->desc.ptr[0], DMA_TO_DEVICE); dma_unmap_sg(dev, areq->assoc, 1, DMA_TO_DEVICE); talitos_sg_unmap(dev, edesc, areq->src, areq->dst); if (edesc->dma_len) dma_unmap_single(dev, edesc->dma_link_tbl, edesc->dma_len, DMA_BIDIRECTIONAL); } /* * ipsec_esp descriptor callbacks */ static void ipsec_esp_encrypt_done(struct device *dev, struct talitos_desc *desc, void *context, int err) { struct aead_request *areq = context; struct crypto_aead *authenc = crypto_aead_reqtfm(areq); struct talitos_ctx *ctx = crypto_aead_ctx(authenc); struct talitos_edesc *edesc; struct scatterlist *sg; void *icvdata; edesc = container_of(desc, struct talitos_edesc, desc); ipsec_esp_unmap(dev, edesc, areq); /* copy the generated ICV to dst */ if (edesc->dma_len) { icvdata = &edesc->link_tbl[edesc->src_nents + edesc->dst_nents + 2]; sg = sg_last(areq->dst, edesc->dst_nents); memcpy((char *)sg_virt(sg) + sg->length - ctx->authsize, icvdata, ctx->authsize); } kfree(edesc); aead_request_complete(areq, err); } static void ipsec_esp_decrypt_swauth_done(struct device *dev, struct talitos_desc *desc, void *context, int err) { struct aead_request *req = context; struct crypto_aead *authenc = crypto_aead_reqtfm(req); struct talitos_ctx *ctx = crypto_aead_ctx(authenc); struct talitos_edesc *edesc; struct scatterlist *sg; void *icvdata; edesc = container_of(desc, struct talitos_edesc, desc); ipsec_esp_unmap(dev, edesc, req); if (!err) { /* auth check */ if (edesc->dma_len) icvdata = &edesc->link_tbl[edesc->src_nents + edesc->dst_nents + 2]; else icvdata = &edesc->link_tbl[0]; sg = sg_last(req->dst, edesc->dst_nents ? : 1); err = memcmp(icvdata, (char *)sg_virt(sg) + sg->length - ctx->authsize, ctx->authsize) ? -EBADMSG : 0; } kfree(edesc); aead_request_complete(req, err); } static void ipsec_esp_decrypt_hwauth_done(struct device *dev, struct talitos_desc *desc, void *context, int err) { struct aead_request *req = context; struct talitos_edesc *edesc; edesc = container_of(desc, struct talitos_edesc, desc); ipsec_esp_unmap(dev, edesc, req); /* check ICV auth status */ if (!err && ((desc->hdr_lo & DESC_HDR_LO_ICCR1_MASK) != DESC_HDR_LO_ICCR1_PASS)) err = -EBADMSG; kfree(edesc); aead_request_complete(req, err); } /* * convert scatterlist to SEC h/w link table format * stop at cryptlen bytes */ static int sg_to_link_tbl(struct scatterlist *sg, int sg_count, int cryptlen, struct talitos_ptr *link_tbl_ptr) { int n_sg = sg_count; while (n_sg--) { link_tbl_ptr->ptr = cpu_to_be32(sg_dma_address(sg)); link_tbl_ptr->len = cpu_to_be16(sg_dma_len(sg)); link_tbl_ptr->j_extent = 0; link_tbl_ptr++; cryptlen -= sg_dma_len(sg); sg = scatterwalk_sg_next(sg); } /* adjust (decrease) last one (or two) entry's len to cryptlen */ link_tbl_ptr--; while (be16_to_cpu(link_tbl_ptr->len) <= (-cryptlen)) { /* Empty this entry, and move to previous one */ cryptlen += be16_to_cpu(link_tbl_ptr->len); link_tbl_ptr->len = 0; sg_count--; link_tbl_ptr--; } link_tbl_ptr->len = cpu_to_be16(be16_to_cpu(link_tbl_ptr->len) + cryptlen); /* tag end of link table */ link_tbl_ptr->j_extent = DESC_PTR_LNKTBL_RETURN; return sg_count; } /* * fill in and submit ipsec_esp descriptor */ static int ipsec_esp(struct talitos_edesc *edesc, struct aead_request *areq, u8 *giv, u64 seq, void (*callback) (struct device *dev, struct talitos_desc *desc, void *context, int error)) { struct crypto_aead *aead = crypto_aead_reqtfm(areq); struct talitos_ctx *ctx = crypto_aead_ctx(aead); struct device *dev = ctx->dev; struct talitos_desc *desc = &edesc->desc; unsigned int cryptlen = areq->cryptlen; unsigned int authsize = ctx->authsize; unsigned int ivsize; int sg_count, ret; int sg_link_tbl_len; /* hmac key */ map_single_talitos_ptr(dev, &desc->ptr[0], ctx->authkeylen, &ctx->key, 0, DMA_TO_DEVICE); /* hmac data */ map_single_talitos_ptr(dev, &desc->ptr[1], sg_virt(areq->src) - sg_virt(areq->assoc), sg_virt(areq->assoc), 0, DMA_TO_DEVICE); /* cipher iv */ ivsize = crypto_aead_ivsize(aead); map_single_talitos_ptr(dev, &desc->ptr[2], ivsize, giv ?: areq->iv, 0, DMA_TO_DEVICE); /* cipher key */ map_single_talitos_ptr(dev, &desc->ptr[3], ctx->enckeylen, (char *)&ctx->key + ctx->authkeylen, 0, DMA_TO_DEVICE); /* * cipher in * map and adjust cipher len to aead request cryptlen. * extent is bytes of HMAC postpended to ciphertext, * typically 12 for ipsec */ desc->ptr[4].len = cpu_to_be16(cryptlen); desc->ptr[4].j_extent = authsize; sg_count = talitos_map_sg(dev, areq->src, edesc->src_nents ? : 1, (areq->src == areq->dst) ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE, edesc->src_is_chained); if (sg_count == 1) { desc->ptr[4].ptr = cpu_to_be32(sg_dma_address(areq->src)); } else { sg_link_tbl_len = cryptlen; if (edesc->desc.hdr & DESC_HDR_MODE1_MDEU_CICV) sg_link_tbl_len = cryptlen + authsize; sg_count = sg_to_link_tbl(areq->src, sg_count, sg_link_tbl_len, &edesc->link_tbl[0]); if (sg_count > 1) { desc->ptr[4].j_extent |= DESC_PTR_LNKTBL_JUMP; desc->ptr[4].ptr = cpu_to_be32(edesc->dma_link_tbl); dma_sync_single_for_device(dev, edesc->dma_link_tbl, edesc->dma_len, DMA_BIDIRECTIONAL); } else { /* Only one segment now, so no link tbl needed */ desc->ptr[4].ptr = cpu_to_be32(sg_dma_address(areq-> src)); } } /* cipher out */ desc->ptr[5].len = cpu_to_be16(cryptlen); desc->ptr[5].j_extent = authsize; if (areq->src != areq->dst) sg_count = talitos_map_sg(dev, areq->dst, edesc->dst_nents ? : 1, DMA_FROM_DEVICE, edesc->dst_is_chained); if (sg_count == 1) { desc->ptr[5].ptr = cpu_to_be32(sg_dma_address(areq->dst)); } else { struct talitos_ptr *link_tbl_ptr = &edesc->link_tbl[edesc->src_nents + 1]; desc->ptr[5].ptr = cpu_to_be32((struct talitos_ptr *) edesc->dma_link_tbl + edesc->src_nents + 1); sg_count = sg_to_link_tbl(areq->dst, sg_count, cryptlen, link_tbl_ptr); /* Add an entry to the link table for ICV data */ link_tbl_ptr += sg_count - 1; link_tbl_ptr->j_extent = 0; sg_count++; link_tbl_ptr++; link_tbl_ptr->j_extent = DESC_PTR_LNKTBL_RETURN; link_tbl_ptr->len = cpu_to_be16(authsize); /* icv data follows link tables */ link_tbl_ptr->ptr = cpu_to_be32((struct talitos_ptr *) edesc->dma_link_tbl + edesc->src_nents + edesc->dst_nents + 2); desc->ptr[5].j_extent |= DESC_PTR_LNKTBL_JUMP; dma_sync_single_for_device(ctx->dev, edesc->dma_link_tbl, edesc->dma_len, DMA_BIDIRECTIONAL); } /* iv out */ map_single_talitos_ptr(dev, &desc->ptr[6], ivsize, ctx->iv, 0, DMA_FROM_DEVICE); ret = talitos_submit(dev, desc, callback, areq); if (ret != -EINPROGRESS) { ipsec_esp_unmap(dev, edesc, areq); kfree(edesc); } return ret; } /* * derive number of elements in scatterlist */ static int sg_count(struct scatterlist *sg_list, int nbytes, int *chained) { struct scatterlist *sg = sg_list; int sg_nents = 0; *chained = 0; while (nbytes > 0) { sg_nents++; nbytes -= sg->length; if (!sg_is_last(sg) && (sg + 1)->length == 0) *chained = 1; sg = scatterwalk_sg_next(sg); } return sg_nents; } /* * allocate and map the extended descriptor */ static struct talitos_edesc *talitos_edesc_alloc(struct device *dev, struct scatterlist *src, struct scatterlist *dst, unsigned int cryptlen, unsigned int authsize, int icv_stashing, u32 cryptoflags) { struct talitos_edesc *edesc; int src_nents, dst_nents, alloc_len, dma_len; int src_chained, dst_chained = 0; gfp_t flags = cryptoflags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL : GFP_ATOMIC; if (cryptlen + authsize > TALITOS_MAX_DATA_LEN) { dev_err(dev, "length exceeds h/w max limit\n"); return ERR_PTR(-EINVAL); } src_nents = sg_count(src, cryptlen + authsize, &src_chained); src_nents = (src_nents == 1) ? 0 : src_nents; if (dst == src) { dst_nents = src_nents; } else { dst_nents = sg_count(dst, cryptlen + authsize, &dst_chained); dst_nents = (dst_nents == 1) ? 0 : dst_nents; } /* * allocate space for base edesc plus the link tables, * allowing for two separate entries for ICV and generated ICV (+ 2), * and the ICV data itself */ alloc_len = sizeof(struct talitos_edesc); if (src_nents || dst_nents) { dma_len = (src_nents + dst_nents + 2) * sizeof(struct talitos_ptr) + authsize; alloc_len += dma_len; } else { dma_len = 0; alloc_len += icv_stashing ? authsize : 0; } edesc = kmalloc(alloc_len, GFP_DMA | flags); if (!edesc) { dev_err(dev, "could not allocate edescriptor\n"); return ERR_PTR(-ENOMEM); } edesc->src_nents = src_nents; edesc->dst_nents = dst_nents; edesc->src_is_chained = src_chained; edesc->dst_is_chained = dst_chained; edesc->dma_len = dma_len; edesc->dma_link_tbl = dma_map_single(dev, &edesc->link_tbl[0], edesc->dma_len, DMA_BIDIRECTIONAL); return edesc; } static struct talitos_edesc *aead_edesc_alloc(struct aead_request *areq, int icv_stashing) { struct crypto_aead *authenc = crypto_aead_reqtfm(areq); struct talitos_ctx *ctx = crypto_aead_ctx(authenc); return talitos_edesc_alloc(ctx->dev, areq->src, areq->dst, areq->cryptlen, ctx->authsize, icv_stashing, areq->base.flags); } static int aead_encrypt(struct aead_request *req) { struct crypto_aead *authenc = crypto_aead_reqtfm(req); struct talitos_ctx *ctx = crypto_aead_ctx(authenc); struct talitos_edesc *edesc; /* allocate extended descriptor */ edesc = aead_edesc_alloc(req, 0); if (IS_ERR(edesc)) return PTR_ERR(edesc); /* set encrypt */ edesc->desc.hdr = ctx->desc_hdr_template | DESC_HDR_MODE0_ENCRYPT; return ipsec_esp(edesc, req, NULL, 0, ipsec_esp_encrypt_done); } static int aead_decrypt(struct aead_request *req) { struct crypto_aead *authenc = crypto_aead_reqtfm(req); struct talitos_ctx *ctx = crypto_aead_ctx(authenc); unsigned int authsize = ctx->authsize; struct talitos_private *priv = dev_get_drvdata(ctx->dev); struct talitos_edesc *edesc; struct scatterlist *sg; void *icvdata; req->cryptlen -= authsize; /* allocate extended descriptor */ edesc = aead_edesc_alloc(req, 1); if (IS_ERR(edesc)) return PTR_ERR(edesc); if ((priv->features & TALITOS_FTR_HW_AUTH_CHECK) && ((!edesc->src_nents && !edesc->dst_nents) || priv->features & TALITOS_FTR_SRC_LINK_TBL_LEN_INCLUDES_EXTENT)) { /* decrypt and check the ICV */ edesc->desc.hdr = ctx->desc_hdr_template | DESC_HDR_DIR_INBOUND | DESC_HDR_MODE1_MDEU_CICV; /* reset integrity check result bits */ edesc->desc.hdr_lo = 0; return ipsec_esp(edesc, req, NULL, 0, ipsec_esp_decrypt_hwauth_done); } /* Have to check the ICV with software */ edesc->desc.hdr = ctx->desc_hdr_template | DESC_HDR_DIR_INBOUND; /* stash incoming ICV for later cmp with ICV generated by the h/w */ if (edesc->dma_len) icvdata = &edesc->link_tbl[edesc->src_nents + edesc->dst_nents + 2]; else icvdata = &edesc->link_tbl[0]; sg = sg_last(req->src, edesc->src_nents ? : 1); memcpy(icvdata, (char *)sg_virt(sg) + sg->length - ctx->authsize, ctx->authsize); return ipsec_esp(edesc, req, NULL, 0, ipsec_esp_decrypt_swauth_done); } static int aead_givencrypt(struct aead_givcrypt_request *req) { struct aead_request *areq = &req->areq; struct crypto_aead *authenc = crypto_aead_reqtfm(areq); struct talitos_ctx *ctx = crypto_aead_ctx(authenc); struct talitos_edesc *edesc; /* allocate extended descriptor */ edesc = aead_edesc_alloc(areq, 0); if (IS_ERR(edesc)) return PTR_ERR(edesc); /* set encrypt */ edesc->desc.hdr = ctx->desc_hdr_template | DESC_HDR_MODE0_ENCRYPT; memcpy(req->giv, ctx->iv, crypto_aead_ivsize(authenc)); /* avoid consecutive packets going out with same IV */ *(__be64 *)req->giv ^= cpu_to_be64(req->seq); return ipsec_esp(edesc, areq, req->giv, req->seq, ipsec_esp_encrypt_done); } static int ablkcipher_setkey(struct crypto_ablkcipher *cipher, const u8 *key, unsigned int keylen) { struct talitos_ctx *ctx = crypto_ablkcipher_ctx(cipher); struct ablkcipher_alg *alg = crypto_ablkcipher_alg(cipher); if (keylen > TALITOS_MAX_KEY_SIZE) goto badkey; if (keylen < alg->min_keysize || keylen > alg->max_keysize) goto badkey; memcpy(&ctx->key, key, keylen); ctx->keylen = keylen; return 0; badkey: crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } static void common_nonsnoop_unmap(struct device *dev, struct talitos_edesc *edesc, struct ablkcipher_request *areq) { unmap_single_talitos_ptr(dev, &edesc->desc.ptr[5], DMA_FROM_DEVICE); unmap_single_talitos_ptr(dev, &edesc->desc.ptr[2], DMA_TO_DEVICE); unmap_single_talitos_ptr(dev, &edesc->desc.ptr[1], DMA_TO_DEVICE); talitos_sg_unmap(dev, edesc, areq->src, areq->dst); if (edesc->dma_len) dma_unmap_single(dev, edesc->dma_link_tbl, edesc->dma_len, DMA_BIDIRECTIONAL); } static void ablkcipher_done(struct device *dev, struct talitos_desc *desc, void *context, int err) { struct ablkcipher_request *areq = context; struct talitos_edesc *edesc; edesc = container_of(desc, struct talitos_edesc, desc); common_nonsnoop_unmap(dev, edesc, areq); kfree(edesc); areq->base.complete(&areq->base, err); } static int common_nonsnoop(struct talitos_edesc *edesc, struct ablkcipher_request *areq, u8 *giv, void (*callback) (struct device *dev, struct talitos_desc *desc, void *context, int error)) { struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq); struct talitos_ctx *ctx = crypto_ablkcipher_ctx(cipher); struct device *dev = ctx->dev; struct talitos_desc *desc = &edesc->desc; unsigned int cryptlen = areq->nbytes; unsigned int ivsize; int sg_count, ret; /* first DWORD empty */ desc->ptr[0].len = 0; desc->ptr[0].ptr = 0; desc->ptr[0].j_extent = 0; /* cipher iv */ ivsize = crypto_ablkcipher_ivsize(cipher); map_single_talitos_ptr(dev, &desc->ptr[1], ivsize, giv ?: areq->info, 0, DMA_TO_DEVICE); /* cipher key */ map_single_talitos_ptr(dev, &desc->ptr[2], ctx->keylen, (char *)&ctx->key, 0, DMA_TO_DEVICE); /* * cipher in */ desc->ptr[3].len = cpu_to_be16(cryptlen); desc->ptr[3].j_extent = 0; sg_count = talitos_map_sg(dev, areq->src, edesc->src_nents ? : 1, (areq->src == areq->dst) ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE, edesc->src_is_chained); if (sg_count == 1) { desc->ptr[3].ptr = cpu_to_be32(sg_dma_address(areq->src)); } else { sg_count = sg_to_link_tbl(areq->src, sg_count, cryptlen, &edesc->link_tbl[0]); if (sg_count > 1) { desc->ptr[3].j_extent |= DESC_PTR_LNKTBL_JUMP; desc->ptr[3].ptr = cpu_to_be32(edesc->dma_link_tbl); dma_sync_single_for_device(dev, edesc->dma_link_tbl, edesc->dma_len, DMA_BIDIRECTIONAL); } else { /* Only one segment now, so no link tbl needed */ desc->ptr[3].ptr = cpu_to_be32(sg_dma_address(areq-> src)); } } /* cipher out */ desc->ptr[4].len = cpu_to_be16(cryptlen); desc->ptr[4].j_extent = 0; if (areq->src != areq->dst) sg_count = talitos_map_sg(dev, areq->dst, edesc->dst_nents ? : 1, DMA_FROM_DEVICE, edesc->dst_is_chained); if (sg_count == 1) { desc->ptr[4].ptr = cpu_to_be32(sg_dma_address(areq->dst)); } else { struct talitos_ptr *link_tbl_ptr = &edesc->link_tbl[edesc->src_nents + 1]; desc->ptr[4].j_extent |= DESC_PTR_LNKTBL_JUMP; desc->ptr[4].ptr = cpu_to_be32((struct talitos_ptr *) edesc->dma_link_tbl + edesc->src_nents + 1); sg_count = sg_to_link_tbl(areq->dst, sg_count, cryptlen, link_tbl_ptr); dma_sync_single_for_device(ctx->dev, edesc->dma_link_tbl, edesc->dma_len, DMA_BIDIRECTIONAL); } /* iv out */ map_single_talitos_ptr(dev, &desc->ptr[5], ivsize, ctx->iv, 0, DMA_FROM_DEVICE); /* last DWORD empty */ desc->ptr[6].len = 0; desc->ptr[6].ptr = 0; desc->ptr[6].j_extent = 0; ret = talitos_submit(dev, desc, callback, areq); if (ret != -EINPROGRESS) { common_nonsnoop_unmap(dev, edesc, areq); kfree(edesc); } return ret; } static struct talitos_edesc *ablkcipher_edesc_alloc(struct ablkcipher_request * areq) { struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq); struct talitos_ctx *ctx = crypto_ablkcipher_ctx(cipher); return talitos_edesc_alloc(ctx->dev, areq->src, areq->dst, areq->nbytes, 0, 0, areq->base.flags); } static int ablkcipher_encrypt(struct ablkcipher_request *areq) { struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq); struct talitos_ctx *ctx = crypto_ablkcipher_ctx(cipher); struct talitos_edesc *edesc; /* allocate extended descriptor */ edesc = ablkcipher_edesc_alloc(areq); if (IS_ERR(edesc)) return PTR_ERR(edesc); /* set encrypt */ edesc->desc.hdr = ctx->desc_hdr_template | DESC_HDR_MODE0_ENCRYPT; return common_nonsnoop(edesc, areq, NULL, ablkcipher_done); } static int ablkcipher_decrypt(struct ablkcipher_request *areq) { struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq); struct talitos_ctx *ctx = crypto_ablkcipher_ctx(cipher); struct talitos_edesc *edesc; /* allocate extended descriptor */ edesc = ablkcipher_edesc_alloc(areq); if (IS_ERR(edesc)) return PTR_ERR(edesc); edesc->desc.hdr = ctx->desc_hdr_template | DESC_HDR_DIR_INBOUND; return common_nonsnoop(edesc, areq, NULL, ablkcipher_done); } struct talitos_alg_template { struct crypto_alg alg; __be32 desc_hdr_template; }; static struct talitos_alg_template driver_algs[] = { /* AEAD algorithms. These use a single-pass ipsec_esp descriptor */ { .alg = { .cra_name = "authenc(hmac(sha1),cbc(aes))", .cra_driver_name = "authenc-hmac-sha1-cbc-aes-talitos", .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, .cra_type = &crypto_aead_type, .cra_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "<built-in>", .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, } }, .desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP | DESC_HDR_SEL0_AESU | DESC_HDR_MODE0_AESU_CBC | DESC_HDR_SEL1_MDEUA | DESC_HDR_MODE1_MDEU_INIT | DESC_HDR_MODE1_MDEU_PAD | DESC_HDR_MODE1_MDEU_SHA1_HMAC, }, { .alg = { .cra_name = "authenc(hmac(sha1),cbc(des3_ede))", .cra_driver_name = "authenc-hmac-sha1-cbc-3des-talitos", .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, .cra_type = &crypto_aead_type, .cra_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "<built-in>", .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, } }, .desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP | DESC_HDR_SEL0_DEU | DESC_HDR_MODE0_DEU_CBC | DESC_HDR_MODE0_DEU_3DES | DESC_HDR_SEL1_MDEUA | DESC_HDR_MODE1_MDEU_INIT | DESC_HDR_MODE1_MDEU_PAD | DESC_HDR_MODE1_MDEU_SHA1_HMAC, }, { .alg = { .cra_name = "authenc(hmac(sha256),cbc(aes))", .cra_driver_name = "authenc-hmac-sha256-cbc-aes-talitos", .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, .cra_type = &crypto_aead_type, .cra_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "<built-in>", .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, } }, .desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP | DESC_HDR_SEL0_AESU | DESC_HDR_MODE0_AESU_CBC | DESC_HDR_SEL1_MDEUA | DESC_HDR_MODE1_MDEU_INIT | DESC_HDR_MODE1_MDEU_PAD | DESC_HDR_MODE1_MDEU_SHA256_HMAC, }, { .alg = { .cra_name = "authenc(hmac(sha256),cbc(des3_ede))", .cra_driver_name = "authenc-hmac-sha256-cbc-3des-talitos", .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, .cra_type = &crypto_aead_type, .cra_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "<built-in>", .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, } }, .desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP | DESC_HDR_SEL0_DEU | DESC_HDR_MODE0_DEU_CBC | DESC_HDR_MODE0_DEU_3DES | DESC_HDR_SEL1_MDEUA | DESC_HDR_MODE1_MDEU_INIT | DESC_HDR_MODE1_MDEU_PAD | DESC_HDR_MODE1_MDEU_SHA256_HMAC, }, { .alg = { .cra_name = "authenc(hmac(md5),cbc(aes))", .cra_driver_name = "authenc-hmac-md5-cbc-aes-talitos", .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, .cra_type = &crypto_aead_type, .cra_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "<built-in>", .ivsize = AES_BLOCK_SIZE, .maxauthsize = MD5_DIGEST_SIZE, } }, .desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP | DESC_HDR_SEL0_AESU | DESC_HDR_MODE0_AESU_CBC | DESC_HDR_SEL1_MDEUA | DESC_HDR_MODE1_MDEU_INIT | DESC_HDR_MODE1_MDEU_PAD | DESC_HDR_MODE1_MDEU_MD5_HMAC, }, { .alg = { .cra_name = "authenc(hmac(md5),cbc(des3_ede))", .cra_driver_name = "authenc-hmac-md5-cbc-3des-talitos", .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, .cra_type = &crypto_aead_type, .cra_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "<built-in>", .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = MD5_DIGEST_SIZE, } }, .desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP | DESC_HDR_SEL0_DEU | DESC_HDR_MODE0_DEU_CBC | DESC_HDR_MODE0_DEU_3DES | DESC_HDR_SEL1_MDEUA | DESC_HDR_MODE1_MDEU_INIT | DESC_HDR_MODE1_MDEU_PAD | DESC_HDR_MODE1_MDEU_MD5_HMAC, }, /* ABLKCIPHER algorithms. */ { .alg = { .cra_name = "cbc(aes)", .cra_driver_name = "cbc-aes-talitos", .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_type = &crypto_ablkcipher_type, .cra_ablkcipher = { .setkey = ablkcipher_setkey, .encrypt = ablkcipher_encrypt, .decrypt = ablkcipher_decrypt, .geniv = "eseqiv", .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, } }, .desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU | DESC_HDR_SEL0_AESU | DESC_HDR_MODE0_AESU_CBC, }, { .alg = { .cra_name = "cbc(des3_ede)", .cra_driver_name = "cbc-3des-talitos", .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_type = &crypto_ablkcipher_type, .cra_ablkcipher = { .setkey = ablkcipher_setkey, .encrypt = ablkcipher_encrypt, .decrypt = ablkcipher_decrypt, .geniv = "eseqiv", .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .ivsize = DES3_EDE_BLOCK_SIZE, } }, .desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU | DESC_HDR_SEL0_DEU | DESC_HDR_MODE0_DEU_CBC | DESC_HDR_MODE0_DEU_3DES, } }; struct talitos_crypto_alg { struct list_head entry; struct device *dev; __be32 desc_hdr_template; struct crypto_alg crypto_alg; }; static int talitos_cra_init(struct crypto_tfm *tfm) { struct crypto_alg *alg = tfm->__crt_alg; struct talitos_crypto_alg *talitos_alg; struct talitos_ctx *ctx = crypto_tfm_ctx(tfm); talitos_alg = container_of(alg, struct talitos_crypto_alg, crypto_alg); /* update context with ptr to dev */ ctx->dev = talitos_alg->dev; /* copy descriptor header template value */ ctx->desc_hdr_template = talitos_alg->desc_hdr_template; /* random first IV */ get_random_bytes(ctx->iv, TALITOS_MAX_IV_LENGTH); return 0; } /* * given the alg's descriptor header template, determine whether descriptor * type and primary/secondary execution units required match the hw * capabilities description provided in the device tree node. */ static int hw_supports(struct device *dev, __be32 desc_hdr_template) { struct talitos_private *priv = dev_get_drvdata(dev); int ret; ret = (1 << DESC_TYPE(desc_hdr_template) & priv->desc_types) && (1 << PRIMARY_EU(desc_hdr_template) & priv->exec_units); if (SECONDARY_EU(desc_hdr_template)) ret = ret && (1 << SECONDARY_EU(desc_hdr_template) & priv->exec_units); return ret; } static int talitos_remove(struct of_device *ofdev) { struct device *dev = &ofdev->dev; struct talitos_private *priv = dev_get_drvdata(dev); struct talitos_crypto_alg *t_alg, *n; int i; list_for_each_entry_safe(t_alg, n, &priv->alg_list, entry) { crypto_unregister_alg(&t_alg->crypto_alg); list_del(&t_alg->entry); kfree(t_alg); } if (hw_supports(dev, DESC_HDR_SEL0_RNG)) talitos_unregister_rng(dev); kfree(priv->submit_count); kfree(priv->tail); kfree(priv->head); if (priv->fifo) for (i = 0; i < priv->num_channels; i++) kfree(priv->fifo[i]); kfree(priv->fifo); kfree(priv->head_lock); kfree(priv->tail_lock); if (priv->irq != NO_IRQ) { free_irq(priv->irq, dev); irq_dispose_mapping(priv->irq); } tasklet_kill(&priv->done_task); iounmap(priv->reg); dev_set_drvdata(dev, NULL); kfree(priv); return 0; } static struct talitos_crypto_alg *talitos_alg_alloc(struct device *dev, struct talitos_alg_template *template) { struct talitos_crypto_alg *t_alg; struct crypto_alg *alg; t_alg = kzalloc(sizeof(struct talitos_crypto_alg), GFP_KERNEL); if (!t_alg) return ERR_PTR(-ENOMEM); alg = &t_alg->crypto_alg; *alg = template->alg; alg->cra_module = THIS_MODULE; alg->cra_init = talitos_cra_init; alg->cra_priority = TALITOS_CRA_PRIORITY; alg->cra_alignmask = 0; alg->cra_ctxsize = sizeof(struct talitos_ctx); t_alg->desc_hdr_template = template->desc_hdr_template; t_alg->dev = dev; return t_alg; } static int talitos_probe(struct of_device *ofdev, const struct of_device_id *match) { struct device *dev = &ofdev->dev; struct device_node *np = ofdev->node; struct talitos_private *priv; const unsigned int *prop; int i, err; priv = kzalloc(sizeof(struct talitos_private), GFP_KERNEL); if (!priv) return -ENOMEM; dev_set_drvdata(dev, priv); priv->ofdev = ofdev; tasklet_init(&priv->done_task, talitos_done, (unsigned long)dev); INIT_LIST_HEAD(&priv->alg_list); priv->irq = irq_of_parse_and_map(np, 0); if (priv->irq == NO_IRQ) { dev_err(dev, "failed to map irq\n"); err = -EINVAL; goto err_out; } /* get the irq line */ err = request_irq(priv->irq, talitos_interrupt, 0, dev_driver_string(dev), dev); if (err) { dev_err(dev, "failed to request irq %d\n", priv->irq); irq_dispose_mapping(priv->irq); priv->irq = NO_IRQ; goto err_out; } priv->reg = of_iomap(np, 0); if (!priv->reg) { dev_err(dev, "failed to of_iomap\n"); err = -ENOMEM; goto err_out; } /* get SEC version capabilities from device tree */ prop = of_get_property(np, "fsl,num-channels", NULL); if (prop) priv->num_channels = *prop; prop = of_get_property(np, "fsl,channel-fifo-len", NULL); if (prop) priv->chfifo_len = *prop; prop = of_get_property(np, "fsl,exec-units-mask", NULL); if (prop) priv->exec_units = *prop; prop = of_get_property(np, "fsl,descriptor-types-mask", NULL); if (prop) priv->desc_types = *prop; if (!is_power_of_2(priv->num_channels) || !priv->chfifo_len || !priv->exec_units || !priv->desc_types) { dev_err(dev, "invalid property data in device tree node\n"); err = -EINVAL; goto err_out; } if (of_device_is_compatible(np, "fsl,sec3.0")) priv->features |= TALITOS_FTR_SRC_LINK_TBL_LEN_INCLUDES_EXTENT; if (of_device_is_compatible(np, "fsl,sec2.1")) priv->features |= TALITOS_FTR_HW_AUTH_CHECK; priv->head_lock = kmalloc(sizeof(spinlock_t) * priv->num_channels, GFP_KERNEL); priv->tail_lock = kmalloc(sizeof(spinlock_t) * priv->num_channels, GFP_KERNEL); if (!priv->head_lock || !priv->tail_lock) { dev_err(dev, "failed to allocate fifo locks\n"); err = -ENOMEM; goto err_out; } for (i = 0; i < priv->num_channels; i++) { spin_lock_init(&priv->head_lock[i]); spin_lock_init(&priv->tail_lock[i]); } priv->fifo = kmalloc(sizeof(struct talitos_request *) * priv->num_channels, GFP_KERNEL); if (!priv->fifo) { dev_err(dev, "failed to allocate request fifo\n"); err = -ENOMEM; goto err_out; } priv->fifo_len = roundup_pow_of_two(priv->chfifo_len); for (i = 0; i < priv->num_channels; i++) { priv->fifo[i] = kzalloc(sizeof(struct talitos_request) * priv->fifo_len, GFP_KERNEL); if (!priv->fifo[i]) { dev_err(dev, "failed to allocate request fifo %d\n", i); err = -ENOMEM; goto err_out; } } priv->submit_count = kmalloc(sizeof(atomic_t) * priv->num_channels, GFP_KERNEL); if (!priv->submit_count) { dev_err(dev, "failed to allocate fifo submit count space\n"); err = -ENOMEM; goto err_out; } for (i = 0; i < priv->num_channels; i++) atomic_set(&priv->submit_count[i], -(priv->chfifo_len - 1)); priv->head = kzalloc(sizeof(int) * priv->num_channels, GFP_KERNEL); priv->tail = kzalloc(sizeof(int) * priv->num_channels, GFP_KERNEL); if (!priv->head || !priv->tail) { dev_err(dev, "failed to allocate request index space\n"); err = -ENOMEM; goto err_out; } /* reset and initialize the h/w */ err = init_device(dev); if (err) { dev_err(dev, "failed to initialize device\n"); goto err_out; } /* register the RNG, if available */ if (hw_supports(dev, DESC_HDR_SEL0_RNG)) { err = talitos_register_rng(dev); if (err) { dev_err(dev, "failed to register hwrng: %d\n", err); goto err_out; } else dev_info(dev, "hwrng\n"); } /* register crypto algorithms the device supports */ for (i = 0; i < ARRAY_SIZE(driver_algs); i++) { if (hw_supports(dev, driver_algs[i].desc_hdr_template)) { struct talitos_crypto_alg *t_alg; t_alg = talitos_alg_alloc(dev, &driver_algs[i]); if (IS_ERR(t_alg)) { err = PTR_ERR(t_alg); goto err_out; } err = crypto_register_alg(&t_alg->crypto_alg); if (err) { dev_err(dev, "%s alg registration failed\n", t_alg->crypto_alg.cra_driver_name); kfree(t_alg); } else { list_add_tail(&t_alg->entry, &priv->alg_list); dev_info(dev, "%s\n", t_alg->crypto_alg.cra_driver_name); } } } return 0; err_out: talitos_remove(ofdev); return err; } static struct of_device_id talitos_match[] = { { .compatible = "fsl,sec2.0", }, {}, }; MODULE_DEVICE_TABLE(of, talitos_match); static struct of_platform_driver talitos_driver = { .name = "talitos", .match_table = talitos_match, .probe = talitos_probe, .remove = talitos_remove, }; static int __init talitos_init(void) { return of_register_platform_driver(&talitos_driver); } module_init(talitos_init); static void __exit talitos_exit(void) { of_unregister_platform_driver(&talitos_driver); } module_exit(talitos_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Kim Phillips <kim.phillips@freescale.com>"); MODULE_DESCRIPTION("Freescale integrated security engine (SEC) driver");