/* * PLL clock driver for Keystone devices * * Copyright (C) 2013 Texas Instruments Inc. * Murali Karicheri * Santosh Shilimkar * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include #include #include #include #include #include #include #include #define PLLM_LOW_MASK 0x3f #define PLLM_HIGH_MASK 0x7ffc0 #define MAIN_PLLM_HIGH_MASK 0x7f000 #define PLLM_HIGH_SHIFT 6 #define PLLD_MASK 0x3f #define CLKOD_MASK 0x780000 #define CLKOD_SHIFT 19 /** * struct clk_pll_data - pll data structure * @has_pllctrl: If set to non zero, lower 6 bits of multiplier is in pllm * register of pll controller, else it is in the pll_ctrl0((bit 11-6) * @phy_pllm: Physical address of PLLM in pll controller. Used when * has_pllctrl is non zero. * @phy_pll_ctl0: Physical address of PLL ctrl0. This could be that of * Main PLL or any other PLLs in the device such as ARM PLL, DDR PLL * or PA PLL available on keystone2. These PLLs are controlled by * this register. Main PLL is controlled by a PLL controller. * @pllm: PLL register map address * @pll_ctl0: PLL controller map address * @pllm_lower_mask: multiplier lower mask * @pllm_upper_mask: multiplier upper mask * @pllm_upper_shift: multiplier upper shift * @plld_mask: divider mask * @clkod_mask: output divider mask * @clkod_shift: output divider shift * @plld_mask: divider mask * @postdiv: Fixed post divider */ struct clk_pll_data { bool has_pllctrl; u32 phy_pllm; u32 phy_pll_ctl0; void __iomem *pllm; void __iomem *pll_ctl0; u32 pllm_lower_mask; u32 pllm_upper_mask; u32 pllm_upper_shift; u32 plld_mask; u32 clkod_mask; u32 clkod_shift; u32 postdiv; }; /** * struct clk_pll - Main pll clock * @hw: clk_hw for the pll * @pll_data: PLL driver specific data */ struct clk_pll { struct clk_hw hw; struct clk_pll_data *pll_data; }; #define to_clk_pll(_hw) container_of(_hw, struct clk_pll, hw) static unsigned long clk_pllclk_recalc(struct clk_hw *hw, unsigned long parent_rate) { struct clk_pll *pll = to_clk_pll(hw); struct clk_pll_data *pll_data = pll->pll_data; unsigned long rate = parent_rate; u32 mult = 0, prediv, postdiv, val; /* * get bits 0-5 of multiplier from pllctrl PLLM register * if has_pllctrl is non zero */ if (pll_data->has_pllctrl) { val = readl(pll_data->pllm); mult = (val & pll_data->pllm_lower_mask); } /* bit6-12 of PLLM is in Main PLL control register */ val = readl(pll_data->pll_ctl0); mult |= ((val & pll_data->pllm_upper_mask) >> pll_data->pllm_upper_shift); prediv = (val & pll_data->plld_mask); if (!pll_data->has_pllctrl) /* read post divider from od bits*/ postdiv = ((val & pll_data->clkod_mask) >> pll_data->clkod_shift) + 1; else postdiv = pll_data->postdiv; rate /= (prediv + 1); rate = (rate * (mult + 1)); rate /= postdiv; return rate; } static const struct clk_ops clk_pll_ops = { .recalc_rate = clk_pllclk_recalc, }; static struct clk *clk_register_pll(struct device *dev, const char *name, const char *parent_name, struct clk_pll_data *pll_data) { struct clk_init_data init; struct clk_pll *pll; struct clk *clk; pll = kzalloc(sizeof(*pll), GFP_KERNEL); if (!pll) return ERR_PTR(-ENOMEM); init.name = name; init.ops = &clk_pll_ops; init.flags = 0; init.parent_names = (parent_name ? &parent_name : NULL); init.num_parents = (parent_name ? 1 : 0); pll->pll_data = pll_data; pll->hw.init = &init; clk = clk_register(NULL, &pll->hw); if (IS_ERR(clk)) goto out; return clk; out: kfree(pll); return NULL; } /** * _of_clk_init - PLL initialisation via DT * @node: device tree node for this clock * @pllctrl: If true, lower 6 bits of multiplier is in pllm register of * pll controller, else it is in the control regsiter0(bit 11-6) */ static void __init _of_pll_clk_init(struct device_node *node, bool pllctrl) { struct clk_pll_data *pll_data; const char *parent_name; struct clk *clk; int i; pll_data = kzalloc(sizeof(*pll_data), GFP_KERNEL); if (!pll_data) { pr_err("%s: Out of memory\n", __func__); return; } parent_name = of_clk_get_parent_name(node, 0); if (of_property_read_u32(node, "fixed-postdiv", &pll_data->postdiv)) { /* assume the PLL has output divider register bits */ pll_data->clkod_mask = CLKOD_MASK; pll_data->clkod_shift = CLKOD_SHIFT; } i = of_property_match_string(node, "reg-names", "control"); pll_data->pll_ctl0 = of_iomap(node, i); if (!pll_data->pll_ctl0) { pr_err("%s: ioremap failed\n", __func__); goto out; } pll_data->pllm_lower_mask = PLLM_LOW_MASK; pll_data->pllm_upper_shift = PLLM_HIGH_SHIFT; pll_data->plld_mask = PLLD_MASK; pll_data->has_pllctrl = pllctrl; if (!pll_data->has_pllctrl) { pll_data->pllm_upper_mask = PLLM_HIGH_MASK; } else { pll_data->pllm_upper_mask = MAIN_PLLM_HIGH_MASK; i = of_property_match_string(node, "reg-names", "multiplier"); pll_data->pllm = of_iomap(node, i); if (!pll_data->pllm) { iounmap(pll_data->pll_ctl0); goto out; } } clk = clk_register_pll(NULL, node->name, parent_name, pll_data); if (clk) { of_clk_add_provider(node, of_clk_src_simple_get, clk); return; } out: pr_err("%s: error initializing pll %s\n", __func__, node->name); kfree(pll_data); } /** * of_keystone_pll_clk_init - PLL initialisation DT wrapper * @node: device tree node for this clock */ static void __init of_keystone_pll_clk_init(struct device_node *node) { _of_pll_clk_init(node, false); } CLK_OF_DECLARE(keystone_pll_clock, "ti,keystone,pll-clock", of_keystone_pll_clk_init); /** * of_keystone_pll_main_clk_init - Main PLL initialisation DT wrapper * @node: device tree node for this clock */ static void __init of_keystone_main_pll_clk_init(struct device_node *node) { _of_pll_clk_init(node, true); } CLK_OF_DECLARE(keystone_main_pll_clock, "ti,keystone,main-pll-clock", of_keystone_main_pll_clk_init); /** * of_pll_div_clk_init - PLL divider setup function * @node: device tree node for this clock */ static void __init of_pll_div_clk_init(struct device_node *node) { const char *parent_name; void __iomem *reg; u32 shift, mask; struct clk *clk; const char *clk_name = node->name; of_property_read_string(node, "clock-output-names", &clk_name); reg = of_iomap(node, 0); if (!reg) { pr_err("%s: ioremap failed\n", __func__); return; } parent_name = of_clk_get_parent_name(node, 0); if (!parent_name) { pr_err("%s: missing parent clock\n", __func__); return; } if (of_property_read_u32(node, "bit-shift", &shift)) { pr_err("%s: missing 'shift' property\n", __func__); return; } if (of_property_read_u32(node, "bit-mask", &mask)) { pr_err("%s: missing 'bit-mask' property\n", __func__); return; } clk = clk_register_divider(NULL, clk_name, parent_name, 0, reg, shift, mask, 0, NULL); if (clk) of_clk_add_provider(node, of_clk_src_simple_get, clk); else pr_err("%s: error registering divider %s\n", __func__, clk_name); } CLK_OF_DECLARE(pll_divider_clock, "ti,keystone,pll-divider-clock", of_pll_div_clk_init); /** * of_pll_mux_clk_init - PLL mux setup function * @node: device tree node for this clock */ static void __init of_pll_mux_clk_init(struct device_node *node) { void __iomem *reg; u32 shift, mask; struct clk *clk; const char *parents[2]; const char *clk_name = node->name; of_property_read_string(node, "clock-output-names", &clk_name); reg = of_iomap(node, 0); if (!reg) { pr_err("%s: ioremap failed\n", __func__); return; } parents[0] = of_clk_get_parent_name(node, 0); parents[1] = of_clk_get_parent_name(node, 1); if (!parents[0] || !parents[1]) { pr_err("%s: missing parent clocks\n", __func__); return; } if (of_property_read_u32(node, "bit-shift", &shift)) { pr_err("%s: missing 'shift' property\n", __func__); return; } if (of_property_read_u32(node, "bit-mask", &mask)) { pr_err("%s: missing 'bit-mask' property\n", __func__); return; } clk = clk_register_mux(NULL, clk_name, (const char **)&parents, ARRAY_SIZE(parents) , 0, reg, shift, mask, 0, NULL); if (clk) of_clk_add_provider(node, of_clk_src_simple_get, clk); else pr_err("%s: error registering mux %s\n", __func__, clk_name); } CLK_OF_DECLARE(pll_mux_clock, "ti,keystone,pll-mux-clock", of_pll_mux_clk_init);