/* ** ----------------------------------------------------------------------------- ** ** Perle Specialix driver for Linux ** Ported from existing RIO Driver for SCO sources. * * (C) 1990 - 2000 Specialix International Ltd., Byfleet, Surrey, UK. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ** ** Module : rioboot.c ** SID : 1.3 ** Last Modified : 11/6/98 10:33:36 ** Retrieved : 11/6/98 10:33:48 ** ** ident @(#)rioboot.c 1.3 ** ** ----------------------------------------------------------------------------- */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "linux_compat.h" #include "rio_linux.h" #include "pkt.h" #include "daemon.h" #include "rio.h" #include "riospace.h" #include "cmdpkt.h" #include "map.h" #include "rup.h" #include "port.h" #include "riodrvr.h" #include "rioinfo.h" #include "func.h" #include "errors.h" #include "pci.h" #include "parmmap.h" #include "unixrup.h" #include "board.h" #include "host.h" #include "phb.h" #include "link.h" #include "cmdblk.h" #include "route.h" static int RIOBootComplete(struct rio_info *p, struct Host *HostP, unsigned int Rup, struct PktCmd __iomem *PktCmdP); static const unsigned char RIOAtVec2Ctrl[] = { /* 0 */ INTERRUPT_DISABLE, /* 1 */ INTERRUPT_DISABLE, /* 2 */ INTERRUPT_DISABLE, /* 3 */ INTERRUPT_DISABLE, /* 4 */ INTERRUPT_DISABLE, /* 5 */ INTERRUPT_DISABLE, /* 6 */ INTERRUPT_DISABLE, /* 7 */ INTERRUPT_DISABLE, /* 8 */ INTERRUPT_DISABLE, /* 9 */ IRQ_9 | INTERRUPT_ENABLE, /* 10 */ INTERRUPT_DISABLE, /* 11 */ IRQ_11 | INTERRUPT_ENABLE, /* 12 */ IRQ_12 | INTERRUPT_ENABLE, /* 13 */ INTERRUPT_DISABLE, /* 14 */ INTERRUPT_DISABLE, /* 15 */ IRQ_15 | INTERRUPT_ENABLE }; /** * RIOBootCodeRTA - Load RTA boot code * @p: RIO to load * @rbp: Download descriptor * * Called when the user process initiates booting of the card firmware. * Lads the firmware */ int RIOBootCodeRTA(struct rio_info *p, struct DownLoad * rbp) { int offset; func_enter(); rio_dprintk(RIO_DEBUG_BOOT, "Data at user address %p\n", rbp->DataP); /* ** Check that we have set asside enough memory for this */ if (rbp->Count > SIXTY_FOUR_K) { rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot Code Too Large!\n"); p->RIOError.Error = HOST_FILE_TOO_LARGE; func_exit(); return -ENOMEM; } if (p->RIOBooting) { rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot Code : BUSY BUSY BUSY!\n"); p->RIOError.Error = BOOT_IN_PROGRESS; func_exit(); return -EBUSY; } /* ** The data we load in must end on a (RTA_BOOT_DATA_SIZE) byte boundary, ** so calculate how far we have to move the data up the buffer ** to achieve this. */ offset = (RTA_BOOT_DATA_SIZE - (rbp->Count % RTA_BOOT_DATA_SIZE)) % RTA_BOOT_DATA_SIZE; /* ** Be clean, and clear the 'unused' portion of the boot buffer, ** because it will (eventually) be part of the Rta run time environment ** and so should be zeroed. */ memset(p->RIOBootPackets, 0, offset); /* ** Copy the data from user space into the array */ if (copy_from_user(((u8 *)p->RIOBootPackets) + offset, rbp->DataP, rbp->Count)) { rio_dprintk(RIO_DEBUG_BOOT, "Bad data copy from user space\n"); p->RIOError.Error = COPYIN_FAILED; func_exit(); return -EFAULT; } /* ** Make sure that our copy of the size includes that offset we discussed ** earlier. */ p->RIONumBootPkts = (rbp->Count + offset) / RTA_BOOT_DATA_SIZE; p->RIOBootCount = rbp->Count; func_exit(); return 0; } /** * rio_start_card_running - host card start * @HostP: The RIO to kick off * * Start a RIO processor unit running. Encapsulates the knowledge * of the card type. */ void rio_start_card_running(struct Host *HostP) { switch (HostP->Type) { case RIO_AT: rio_dprintk(RIO_DEBUG_BOOT, "Start ISA card running\n"); writeb(BOOT_FROM_RAM | EXTERNAL_BUS_ON | HostP->Mode | RIOAtVec2Ctrl[HostP->Ivec & 0xF], &HostP->Control); break; case RIO_PCI: /* ** PCI is much the same as MCA. Everything is once again memory ** mapped, so we are writing to memory registers instead of io ** ports. */ rio_dprintk(RIO_DEBUG_BOOT, "Start PCI card running\n"); writeb(PCITpBootFromRam | PCITpBusEnable | HostP->Mode, &HostP->Control); break; default: rio_dprintk(RIO_DEBUG_BOOT, "Unknown host type %d\n", HostP->Type); break; } return; } /* ** Load in the host boot code - load it directly onto all halted hosts ** of the correct type. ** ** Put your rubber pants on before messing with this code - even the magic ** numbers have trouble understanding what they are doing here. */ int RIOBootCodeHOST(struct rio_info *p, struct DownLoad *rbp) { struct Host *HostP; u8 __iomem *Cad; PARM_MAP __iomem *ParmMapP; int RupN; int PortN; unsigned int host; u8 __iomem *StartP; u8 __iomem *DestP; int wait_count; u16 OldParmMap; u16 offset; /* It is very important that this is a u16 */ u8 *DownCode = NULL; unsigned long flags; HostP = NULL; /* Assure the compiler we've initialized it */ /* Walk the hosts */ for (host = 0; host < p->RIONumHosts; host++) { rio_dprintk(RIO_DEBUG_BOOT, "Attempt to boot host %d\n", host); HostP = &p->RIOHosts[host]; rio_dprintk(RIO_DEBUG_BOOT, "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n", HostP->Type, HostP->Mode, HostP->Ivec); /* Don't boot hosts already running */ if ((HostP->Flags & RUN_STATE) != RC_WAITING) { rio_dprintk(RIO_DEBUG_BOOT, "%s %d already running\n", "Host", host); continue; } /* ** Grab a pointer to the card (ioremapped) */ Cad = HostP->Caddr; /* ** We are going to (try) and load in rbp->Count bytes. ** The last byte will reside at p->RIOConf.HostLoadBase-1; ** Therefore, we need to start copying at address ** (caddr+p->RIOConf.HostLoadBase-rbp->Count) */ StartP = &Cad[p->RIOConf.HostLoadBase - rbp->Count]; rio_dprintk(RIO_DEBUG_BOOT, "kernel virtual address for host is %p\n", Cad); rio_dprintk(RIO_DEBUG_BOOT, "kernel virtual address for download is %p\n", StartP); rio_dprintk(RIO_DEBUG_BOOT, "host loadbase is 0x%x\n", p->RIOConf.HostLoadBase); rio_dprintk(RIO_DEBUG_BOOT, "size of download is 0x%x\n", rbp->Count); /* Make sure it fits */ if (p->RIOConf.HostLoadBase < rbp->Count) { rio_dprintk(RIO_DEBUG_BOOT, "Bin too large\n"); p->RIOError.Error = HOST_FILE_TOO_LARGE; func_exit(); return -EFBIG; } /* ** Ensure that the host really is stopped. ** Disable it's external bus & twang its reset line. */ RIOHostReset(HostP->Type, HostP->CardP, HostP->Slot); /* ** Copy the data directly from user space to the SRAM. ** This ain't going to be none too clever if the download ** code is bigger than this segment. */ rio_dprintk(RIO_DEBUG_BOOT, "Copy in code\n"); /* Buffer to local memory as we want to use I/O space and some cards only do 8 or 16 bit I/O */ DownCode = vmalloc(rbp->Count); if (!DownCode) { p->RIOError.Error = NOT_ENOUGH_CORE_FOR_PCI_COPY; func_exit(); return -ENOMEM; } if (copy_from_user(rbp->DataP, DownCode, rbp->Count)) { kfree(DownCode); p->RIOError.Error = COPYIN_FAILED; func_exit(); return -EFAULT; } HostP->Copy(DownCode, StartP, rbp->Count); vfree(DownCode); rio_dprintk(RIO_DEBUG_BOOT, "Copy completed\n"); /* ** S T O P ! ** ** Upto this point the code has been fairly rational, and possibly ** even straight forward. What follows is a pile of crud that will ** magically turn into six bytes of transputer assembler. Normally ** you would expect an array or something, but, being me, I have ** chosen [been told] to use a technique whereby the startup code ** will be correct if we change the loadbase for the code. Which ** brings us onto another issue - the loadbase is the *end* of the ** code, not the start. ** ** If I were you I wouldn't start from here. */ /* ** We now need to insert a short boot section into ** the memory at the end of Sram2. This is normally (de)composed ** of the last eight bytes of the download code. The ** download has been assembled/compiled to expect to be ** loaded from 0x7FFF downwards. We have loaded it ** at some other address. The startup code goes into the small ** ram window at Sram2, in the last 8 bytes, which are really ** at addresses 0x7FF8-0x7FFF. ** ** If the loadbase is, say, 0x7C00, then we need to branch to ** address 0x7BFE to run the host.bin startup code. We assemble ** this jump manually. ** ** The two byte sequence 60 08 is loaded into memory at address ** 0x7FFE,F. This is a local branch to location 0x7FF8 (60 is nfix 0, ** which adds '0' to the .O register, complements .O, and then shifts ** it left by 4 bit positions, 08 is a jump .O+8 instruction. This will ** add 8 to .O (which was 0xFFF0), and will branch RELATIVE to the new ** location. Now, the branch starts from the value of .PC (or .IP or ** whatever the bloody register is called on this chip), and the .PC ** will be pointing to the location AFTER the branch, in this case ** .PC == 0x8000, so the branch will be to 0x8000+0xFFF8 = 0x7FF8. ** ** A long branch is coded at 0x7FF8. This consists of loading a four ** byte offset into .O using nfix (as above) and pfix operators. The ** pfix operates in exactly the same way as the nfix operator, but ** without the complement operation. The offset, of course, must be ** relative to the address of the byte AFTER the branch instruction, ** which will be (urm) 0x7FFC, so, our final destination of the branch ** (loadbase-2), has to be reached from here. Imagine that the loadbase ** is 0x7C00 (which it is), then we will need to branch to 0x7BFE (which ** is the first byte of the initial two byte short local branch of the ** download code). ** ** To code a jump from 0x7FFC (which is where the branch will start ** from) to 0x7BFE, we will need to branch 0xFC02 bytes (0x7FFC+0xFC02)= ** 0x7BFE. ** This will be coded as four bytes: ** 60 2C 20 02 ** being nfix .O+0 ** pfix .O+C ** pfix .O+0 ** jump .O+2 ** ** The nfix operator is used, so that the startup code will be ** compatible with the whole Tp family. (lies, damn lies, it'll never ** work in a month of Sundays). ** ** The nfix nyble is the 1s complement of the nyble value you ** want to load - in this case we wanted 'F' so we nfix loaded '0'. */ /* ** Dest points to the top 8 bytes of Sram2. The Tp jumps ** to 0x7FFE at reset time, and starts executing. This is ** a short branch to 0x7FF8, where a long branch is coded. */ DestP = &Cad[0x7FF8]; /* <<<---- READ THE ABOVE COMMENTS */ #define NFIX(N) (0x60 | (N)) /* .O = (~(.O + N))<<4 */ #define PFIX(N) (0x20 | (N)) /* .O = (.O + N)<<4 */ #define JUMP(N) (0x00 | (N)) /* .PC = .PC + .O */ /* ** 0x7FFC is the address of the location following the last byte of ** the four byte jump instruction. ** READ THE ABOVE COMMENTS ** ** offset is (TO-FROM) % MEMSIZE, but with compound buggering about. ** Memsize is 64K for this range of Tp, so offset is a short (unsigned, ** cos I don't understand 2's complement). */ offset = (p->RIOConf.HostLoadBase - 2) - 0x7FFC; writeb(NFIX(((unsigned short) (~offset) >> (unsigned short) 12) & 0xF), DestP); writeb(PFIX((offset >> 8) & 0xF), DestP + 1); writeb(PFIX((offset >> 4) & 0xF), DestP + 2); writeb(JUMP(offset & 0xF), DestP + 3); writeb(NFIX(0), DestP + 6); writeb(JUMP(8), DestP + 7); rio_dprintk(RIO_DEBUG_BOOT, "host loadbase is 0x%x\n", p->RIOConf.HostLoadBase); rio_dprintk(RIO_DEBUG_BOOT, "startup offset is 0x%x\n", offset); /* ** Flag what is going on */ HostP->Flags &= ~RUN_STATE; HostP->Flags |= RC_STARTUP; /* ** Grab a copy of the current ParmMap pointer, so we ** can tell when it has changed. */ OldParmMap = readw(&HostP->__ParmMapR); rio_dprintk(RIO_DEBUG_BOOT, "Original parmmap is 0x%x\n", OldParmMap); /* ** And start it running (I hope). ** As there is nothing dodgy or obscure about the ** above code, this is guaranteed to work every time. */ rio_dprintk(RIO_DEBUG_BOOT, "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n", HostP->Type, HostP->Mode, HostP->Ivec); rio_start_card_running(HostP); rio_dprintk(RIO_DEBUG_BOOT, "Set control port\n"); /* ** Now, wait for upto five seconds for the Tp to setup the parmmap ** pointer: */ for (wait_count = 0; (wait_count < p->RIOConf.StartupTime) && (readw(&HostP->__ParmMapR) == OldParmMap); wait_count++) { rio_dprintk(RIO_DEBUG_BOOT, "Checkout %d, 0x%x\n", wait_count, readw(&HostP->__ParmMapR)); mdelay(100); } /* ** If the parmmap pointer is unchanged, then the host code ** has crashed & burned in a really spectacular way */ if (readw(&HostP->__ParmMapR) == OldParmMap) { rio_dprintk(RIO_DEBUG_BOOT, "parmmap 0x%x\n", readw(&HostP->__ParmMapR)); rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail\n"); HostP->Flags &= ~RUN_STATE; HostP->Flags |= RC_STUFFED; RIOHostReset( HostP->Type, HostP->CardP, HostP->Slot ); continue; } rio_dprintk(RIO_DEBUG_BOOT, "Running 0x%x\n", readw(&HostP->__ParmMapR)); /* ** Well, the board thought it was OK, and setup its parmmap ** pointer. For the time being, we will pretend that this ** board is running, and check out what the error flag says. */ /* ** Grab a 32 bit pointer to the parmmap structure */ ParmMapP = (PARM_MAP __iomem *) RIO_PTR(Cad, readw(&HostP->__ParmMapR)); rio_dprintk(RIO_DEBUG_BOOT, "ParmMapP : %p\n", ParmMapP); ParmMapP = (PARM_MAP __iomem *)(Cad + readw(&HostP->__ParmMapR)); rio_dprintk(RIO_DEBUG_BOOT, "ParmMapP : %p\n", ParmMapP); /* ** The links entry should be 0xFFFF; we set it up ** with a mask to say how many PHBs to use, and ** which links to use. */ if (readw(&ParmMapP->links) != 0xFFFF) { rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name); rio_dprintk(RIO_DEBUG_BOOT, "Links = 0x%x\n", readw(&ParmMapP->links)); HostP->Flags &= ~RUN_STATE; HostP->Flags |= RC_STUFFED; RIOHostReset( HostP->Type, HostP->CardP, HostP->Slot ); continue; } writew(RIO_LINK_ENABLE, &ParmMapP->links); /* ** now wait for the card to set all the parmmap->XXX stuff ** this is a wait of upto two seconds.... */ rio_dprintk(RIO_DEBUG_BOOT, "Looking for init_done - %d ticks\n", p->RIOConf.StartupTime); HostP->timeout_id = 0; for (wait_count = 0; (wait_count < p->RIOConf.StartupTime) && !readw(&ParmMapP->init_done); wait_count++) { rio_dprintk(RIO_DEBUG_BOOT, "Waiting for init_done\n"); mdelay(100); } rio_dprintk(RIO_DEBUG_BOOT, "OK! init_done!\n"); if (readw(&ParmMapP->error) != E_NO_ERROR || !readw(&ParmMapP->init_done)) { rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name); rio_dprintk(RIO_DEBUG_BOOT, "Timedout waiting for init_done\n"); HostP->Flags &= ~RUN_STATE; HostP->Flags |= RC_STUFFED; RIOHostReset( HostP->Type, HostP->CardP, HostP->Slot ); continue; } rio_dprintk(RIO_DEBUG_BOOT, "Got init_done\n"); /* ** It runs! It runs! */ rio_dprintk(RIO_DEBUG_BOOT, "Host ID %x Running\n", HostP->UniqueNum); /* ** set the time period between interrupts. */ writew(p->RIOConf.Timer, &ParmMapP->timer); /* ** Translate all the 16 bit pointers in the __ParmMapR into ** 32 bit pointers for the driver in ioremap space. */ HostP->ParmMapP = ParmMapP; HostP->PhbP = (struct PHB __iomem *) RIO_PTR(Cad, readw(&ParmMapP->phb_ptr)); HostP->RupP = (struct RUP __iomem *) RIO_PTR(Cad, readw(&ParmMapP->rups)); HostP->PhbNumP = (unsigned short __iomem *) RIO_PTR(Cad, readw(&ParmMapP->phb_num_ptr)); HostP->LinkStrP = (struct LPB __iomem *) RIO_PTR(Cad, readw(&ParmMapP->link_str_ptr)); /* ** point the UnixRups at the real Rups */ for (RupN = 0; RupN < MAX_RUP; RupN++) { HostP->UnixRups[RupN].RupP = &HostP->RupP[RupN]; HostP->UnixRups[RupN].Id = RupN + 1; HostP->UnixRups[RupN].BaseSysPort = NO_PORT; spin_lock_init(&HostP->UnixRups[RupN].RupLock); } for (RupN = 0; RupN < LINKS_PER_UNIT; RupN++) { HostP->UnixRups[RupN + MAX_RUP].RupP = &HostP->LinkStrP[RupN].rup; HostP->UnixRups[RupN + MAX_RUP].Id = 0; HostP->UnixRups[RupN + MAX_RUP].BaseSysPort = NO_PORT; spin_lock_init(&HostP->UnixRups[RupN + MAX_RUP].RupLock); } /* ** point the PortP->Phbs at the real Phbs */ for (PortN = p->RIOFirstPortsMapped; PortN < p->RIOLastPortsMapped + PORTS_PER_RTA; PortN++) { if (p->RIOPortp[PortN]->HostP == HostP) { struct Port *PortP = p->RIOPortp[PortN]; struct PHB __iomem *PhbP; /* int oldspl; */ if (!PortP->Mapped) continue; PhbP = &HostP->PhbP[PortP->HostPort]; rio_spin_lock_irqsave(&PortP->portSem, flags); PortP->PhbP = PhbP; PortP->TxAdd = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->tx_add)); PortP->TxStart = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->tx_start)); PortP->TxEnd = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->tx_end)); PortP->RxRemove = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->rx_remove)); PortP->RxStart = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->rx_start)); PortP->RxEnd = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->rx_end)); rio_spin_unlock_irqrestore(&PortP->portSem, flags); /* ** point the UnixRup at the base SysPort */ if (!(PortN % PORTS_PER_RTA)) HostP->UnixRups[PortP->RupNum].BaseSysPort = PortN; } } rio_dprintk(RIO_DEBUG_BOOT, "Set the card running... \n"); /* ** last thing - show the world that everything is in place */ HostP->Flags &= ~RUN_STATE; HostP->Flags |= RC_RUNNING; } /* ** MPX always uses a poller. This is actually patched into the system ** configuration and called directly from each clock tick. ** */ p->RIOPolling = 1; p->RIOSystemUp++; rio_dprintk(RIO_DEBUG_BOOT, "Done everything %x\n", HostP->Ivec); func_exit(); return 0; } /** * RIOBootRup - Boot an RTA * @p: rio we are working with * @Rup: Rup number * @HostP: host object * @PacketP: packet to use * * If we have successfully processed this boot, then * return 1. If we havent, then return 0. */ int RIOBootRup(struct rio_info *p, unsigned int Rup, struct Host *HostP, struct PKT __iomem *PacketP) { struct PktCmd __iomem *PktCmdP = (struct PktCmd __iomem *) PacketP->data; struct PktCmd_M *PktReplyP; struct CmdBlk *CmdBlkP; unsigned int sequence; /* ** If we haven't been told what to boot, we can't boot it. */ if (p->RIONumBootPkts == 0) { rio_dprintk(RIO_DEBUG_BOOT, "No RTA code to download yet\n"); return 0; } /* ** Special case of boot completed - if we get one of these then we ** don't need a command block. For all other cases we do, so handle ** this first and then get a command block, then handle every other ** case, relinquishing the command block if disaster strikes! */ if ((readb(&PacketP->len) & PKT_CMD_BIT) && (readb(&PktCmdP->Command) == BOOT_COMPLETED)) return RIOBootComplete(p, HostP, Rup, PktCmdP); /* ** Try to allocate a command block. This is in kernel space */ if (!(CmdBlkP = RIOGetCmdBlk())) { rio_dprintk(RIO_DEBUG_BOOT, "No command blocks to boot RTA! come back later.\n"); return 0; } /* ** Fill in the default info on the command block */ CmdBlkP->Packet.dest_unit = Rup < (unsigned short) MAX_RUP ? Rup : 0; CmdBlkP->Packet.dest_port = BOOT_RUP; CmdBlkP->Packet.src_unit = 0; CmdBlkP->Packet.src_port = BOOT_RUP; CmdBlkP->PreFuncP = CmdBlkP->PostFuncP = NULL; PktReplyP = (struct PktCmd_M *) CmdBlkP->Packet.data; /* ** process COMMANDS on the boot rup! */ if (readb(&PacketP->len) & PKT_CMD_BIT) { /* ** We only expect one type of command - a BOOT_REQUEST! */ if (readb(&PktCmdP->Command) != BOOT_REQUEST) { rio_dprintk(RIO_DEBUG_BOOT, "Unexpected command %d on BOOT RUP %d of host %Zd\n", readb(&PktCmdP->Command), Rup, HostP - p->RIOHosts); RIOFreeCmdBlk(CmdBlkP); return 1; } /* ** Build a Boot Sequence command block ** ** We no longer need to use "Boot Mode", we'll always allow ** boot requests - the boot will not complete if the device ** appears in the bindings table. ** ** We'll just (always) set the command field in packet reply ** to allow an attempted boot sequence : */ PktReplyP->Command = BOOT_SEQUENCE; PktReplyP->BootSequence.NumPackets = p->RIONumBootPkts; PktReplyP->BootSequence.LoadBase = p->RIOConf.RtaLoadBase; PktReplyP->BootSequence.CodeSize = p->RIOBootCount; CmdBlkP->Packet.len = BOOT_SEQUENCE_LEN | PKT_CMD_BIT; memcpy((void *) &CmdBlkP->Packet.data[BOOT_SEQUENCE_LEN], "BOOT", 4); rio_dprintk(RIO_DEBUG_BOOT, "Boot RTA on Host %Zd Rup %d - %d (0x%x) packets to 0x%x\n", HostP - p->RIOHosts, Rup, p->RIONumBootPkts, p->RIONumBootPkts, p->RIOConf.RtaLoadBase); /* ** If this host is in slave mode, send the RTA an invalid boot ** sequence command block to force it to kill the boot. We wait ** for half a second before sending this packet to prevent the RTA ** attempting to boot too often. The master host should then grab ** the RTA and make it its own. */ p->RIOBooting++; RIOQueueCmdBlk(HostP, Rup, CmdBlkP); return 1; } /* ** It is a request for boot data. */ sequence = readw(&PktCmdP->Sequence); rio_dprintk(RIO_DEBUG_BOOT, "Boot block %d on Host %Zd Rup%d\n", sequence, HostP - p->RIOHosts, Rup); if (sequence >= p->RIONumBootPkts) { rio_dprintk(RIO_DEBUG_BOOT, "Got a request for packet %d, max is %d\n", sequence, p->RIONumBootPkts); } PktReplyP->Sequence = sequence; memcpy(PktReplyP->BootData, p->RIOBootPackets[p->RIONumBootPkts - sequence - 1], RTA_BOOT_DATA_SIZE); CmdBlkP->Packet.len = PKT_MAX_DATA_LEN; RIOQueueCmdBlk(HostP, Rup, CmdBlkP); return 1; } /** * RIOBootComplete - RTA boot is done * @p: RIO we are working with * @HostP: Host structure * @Rup: RUP being used * @PktCmdP: Packet command that was used * * This function is called when an RTA been booted. * If booted by a host, HostP->HostUniqueNum is the booting host. * If booted by an RTA, HostP->Mapping[Rup].RtaUniqueNum is the booting RTA. * RtaUniq is the booted RTA. */ static int RIOBootComplete(struct rio_info *p, struct Host *HostP, unsigned int Rup, struct PktCmd __iomem *PktCmdP) { struct Map *MapP = NULL; struct Map *MapP2 = NULL; int Flag; int found; int host, rta; int EmptySlot = -1; int entry, entry2; char *MyType, *MyName; unsigned int MyLink; unsigned short RtaType; u32 RtaUniq = (readb(&PktCmdP->UniqNum[0])) + (readb(&PktCmdP->UniqNum[1]) << 8) + (readb(&PktCmdP->UniqNum[2]) << 16) + (readb(&PktCmdP->UniqNum[3]) << 24); p->RIOBooting = 0; rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot completed - BootInProgress now %d\n", p->RIOBooting); /* ** Determine type of unit (16/8 port RTA). */ RtaType = GetUnitType(RtaUniq); if (Rup >= (unsigned short) MAX_RUP) rio_dprintk(RIO_DEBUG_BOOT, "RIO: Host %s has booted an RTA(%d) on link %c\n", HostP->Name, 8 * RtaType, readb(&PktCmdP->LinkNum) + 'A'); else rio_dprintk(RIO_DEBUG_BOOT, "RIO: RTA %s has booted an RTA(%d) on link %c\n", HostP->Mapping[Rup].Name, 8 * RtaType, readb(&PktCmdP->LinkNum) + 'A'); rio_dprintk(RIO_DEBUG_BOOT, "UniqNum is 0x%x\n", RtaUniq); if (RtaUniq == 0x00000000 || RtaUniq == 0xffffffff) { rio_dprintk(RIO_DEBUG_BOOT, "Illegal RTA Uniq Number\n"); return 1; } /* ** If this RTA has just booted an RTA which doesn't belong to this ** system, or the system is in slave mode, do not attempt to create ** a new table entry for it. */ if (!RIOBootOk(p, HostP, RtaUniq)) { MyLink = readb(&PktCmdP->LinkNum); if (Rup < (unsigned short) MAX_RUP) { /* ** RtaUniq was clone booted (by this RTA). Instruct this RTA ** to hold off further attempts to boot on this link for 30 ** seconds. */ if (RIOSuspendBootRta(HostP, HostP->Mapping[Rup].ID, MyLink)) { rio_dprintk(RIO_DEBUG_BOOT, "RTA failed to suspend booting on link %c\n", 'A' + MyLink); } } else /* ** RtaUniq was booted by this host. Set the booting link ** to hold off for 30 seconds to give another unit a ** chance to boot it. */ writew(30, &HostP->LinkStrP[MyLink].WaitNoBoot); rio_dprintk(RIO_DEBUG_BOOT, "RTA %x not owned - suspend booting down link %c on unit %x\n", RtaUniq, 'A' + MyLink, HostP->Mapping[Rup].RtaUniqueNum); return 1; } /* ** Check for a SLOT_IN_USE entry for this RTA attached to the ** current host card in the driver table. ** ** If it exists, make a note that we have booted it. Other parts of ** the driver are interested in this information at a later date, ** in particular when the booting RTA asks for an ID for this unit, ** we must have set the BOOTED flag, and the NEWBOOT flag is used ** to force an open on any ports that where previously open on this ** unit. */ for (entry = 0; entry < MAX_RUP; entry++) { unsigned int sysport; if ((HostP->Mapping[entry].Flags & SLOT_IN_USE) && (HostP->Mapping[entry].RtaUniqueNum == RtaUniq)) { HostP->Mapping[entry].Flags |= RTA_BOOTED | RTA_NEWBOOT; if ((sysport = HostP->Mapping[entry].SysPort) != NO_PORT) { if (sysport < p->RIOFirstPortsBooted) p->RIOFirstPortsBooted = sysport; if (sysport > p->RIOLastPortsBooted) p->RIOLastPortsBooted = sysport; /* ** For a 16 port RTA, check the second bank of 8 ports */ if (RtaType == TYPE_RTA16) { entry2 = HostP->Mapping[entry].ID2 - 1; HostP->Mapping[entry2].Flags |= RTA_BOOTED | RTA_NEWBOOT; sysport = HostP->Mapping[entry2].SysPort; if (sysport < p->RIOFirstPortsBooted) p->RIOFirstPortsBooted = sysport; if (sysport > p->RIOLastPortsBooted) p->RIOLastPortsBooted = sysport; } } if (RtaType == TYPE_RTA16) rio_dprintk(RIO_DEBUG_BOOT, "RTA will be given IDs %d+%d\n", entry + 1, entry2 + 1); else rio_dprintk(RIO_DEBUG_BOOT, "RTA will be given ID %d\n", entry + 1); return 1; } } rio_dprintk(RIO_DEBUG_BOOT, "RTA not configured for this host\n"); if (Rup >= (unsigned short) MAX_RUP) { /* ** It was a host that did the booting */ MyType = "Host"; MyName = HostP->Name; } else { /* ** It was an RTA that did the booting */ MyType = "RTA"; MyName = HostP->Mapping[Rup].Name; } MyLink = readb(&PktCmdP->LinkNum); /* ** There is no SLOT_IN_USE entry for this RTA attached to the current ** host card in the driver table. ** ** Check for a SLOT_TENTATIVE entry for this RTA attached to the ** current host card in the driver table. ** ** If we find one, then we re-use that slot. */ for (entry = 0; entry < MAX_RUP; entry++) { if ((HostP->Mapping[entry].Flags & SLOT_TENTATIVE) && (HostP->Mapping[entry].RtaUniqueNum == RtaUniq)) { if (RtaType == TYPE_RTA16) { entry2 = HostP->Mapping[entry].ID2 - 1; if ((HostP->Mapping[entry2].Flags & SLOT_TENTATIVE) && (HostP->Mapping[entry2].RtaUniqueNum == RtaUniq)) rio_dprintk(RIO_DEBUG_BOOT, "Found previous tentative slots (%d+%d)\n", entry, entry2); else continue; } else rio_dprintk(RIO_DEBUG_BOOT, "Found previous tentative slot (%d)\n", entry); if (!p->RIONoMessage) printk("RTA connected to %s '%s' (%c) not configured.\n", MyType, MyName, MyLink + 'A'); return 1; } } /* ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA ** attached to the current host card in the driver table. ** ** Check if there is a SLOT_IN_USE or SLOT_TENTATIVE entry on another ** host for this RTA in the driver table. ** ** For a SLOT_IN_USE entry on another host, we need to delete the RTA ** entry from the other host and add it to this host (using some of ** the functions from table.c which do this). ** For a SLOT_TENTATIVE entry on another host, we must cope with the ** following scenario: ** ** + Plug 8 port RTA into host A. (This creates SLOT_TENTATIVE entry ** in table) ** + Unplug RTA and plug into host B. (We now have 2 SLOT_TENTATIVE ** entries) ** + Configure RTA on host B. (This slot now becomes SLOT_IN_USE) ** + Unplug RTA and plug back into host A. ** + Configure RTA on host A. We now have the same RTA configured ** with different ports on two different hosts. */ rio_dprintk(RIO_DEBUG_BOOT, "Have we seen RTA %x before?\n", RtaUniq); found = 0; Flag = 0; /* Convince the compiler this variable is initialized */ for (host = 0; !found && (host < p->RIONumHosts); host++) { for (rta = 0; rta < MAX_RUP; rta++) { if ((p->RIOHosts[host].Mapping[rta].Flags & (SLOT_IN_USE | SLOT_TENTATIVE)) && (p->RIOHosts[host].Mapping[rta].RtaUniqueNum == RtaUniq)) { Flag = p->RIOHosts[host].Mapping[rta].Flags; MapP = &p->RIOHosts[host].Mapping[rta]; if (RtaType == TYPE_RTA16) { MapP2 = &p->RIOHosts[host].Mapping[MapP->ID2 - 1]; rio_dprintk(RIO_DEBUG_BOOT, "This RTA is units %d+%d from host %s\n", rta + 1, MapP->ID2, p->RIOHosts[host].Name); } else rio_dprintk(RIO_DEBUG_BOOT, "This RTA is unit %d from host %s\n", rta + 1, p->RIOHosts[host].Name); found = 1; break; } } } /* ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA ** attached to the current host card in the driver table. ** ** If we have not found a SLOT_IN_USE or SLOT_TENTATIVE entry on ** another host for this RTA in the driver table... ** ** Check for a SLOT_IN_USE entry for this RTA in the config table. */ if (!MapP) { rio_dprintk(RIO_DEBUG_BOOT, "Look for RTA %x in RIOSavedTable\n", RtaUniq); for (rta = 0; rta < TOTAL_MAP_ENTRIES; rta++) { rio_dprintk(RIO_DEBUG_BOOT, "Check table entry %d (%x)", rta, p->RIOSavedTable[rta].RtaUniqueNum); if ((p->RIOSavedTable[rta].Flags & SLOT_IN_USE) && (p->RIOSavedTable[rta].RtaUniqueNum == RtaUniq)) { MapP = &p->RIOSavedTable[rta]; Flag = p->RIOSavedTable[rta].Flags; if (RtaType == TYPE_RTA16) { for (entry2 = rta + 1; entry2 < TOTAL_MAP_ENTRIES; entry2++) { if (p->RIOSavedTable[entry2].RtaUniqueNum == RtaUniq) break; } MapP2 = &p->RIOSavedTable[entry2]; rio_dprintk(RIO_DEBUG_BOOT, "This RTA is from table entries %d+%d\n", rta, entry2); } else rio_dprintk(RIO_DEBUG_BOOT, "This RTA is from table entry %d\n", rta); break; } } } /* ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA ** attached to the current host card in the driver table. ** ** We may have found a SLOT_IN_USE entry on another host for this ** RTA in the config table, or a SLOT_IN_USE or SLOT_TENTATIVE entry ** on another host for this RTA in the driver table. ** ** Check the driver table for room to fit this newly discovered RTA. ** RIOFindFreeID() first looks for free slots and if it does not ** find any free slots it will then attempt to oust any ** tentative entry in the table. */ EmptySlot = 1; if (RtaType == TYPE_RTA16) { if (RIOFindFreeID(p, HostP, &entry, &entry2) == 0) { RIODefaultName(p, HostP, entry); rio_fill_host_slot(entry, entry2, RtaUniq, HostP); EmptySlot = 0; } } else { if (RIOFindFreeID(p, HostP, &entry, NULL) == 0) { RIODefaultName(p, HostP, entry); rio_fill_host_slot(entry, 0, RtaUniq, HostP); EmptySlot = 0; } } /* ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA ** attached to the current host card in the driver table. ** ** If we found a SLOT_IN_USE entry on another host for this ** RTA in the config or driver table, and there are enough free ** slots in the driver table, then we need to move it over and ** delete it from the other host. ** If we found a SLOT_TENTATIVE entry on another host for this ** RTA in the driver table, just delete the other host entry. */ if (EmptySlot == 0) { if (MapP) { if (Flag & SLOT_IN_USE) { rio_dprintk(RIO_DEBUG_BOOT, "This RTA configured on another host - move entry to current host (1)\n"); HostP->Mapping[entry].SysPort = MapP->SysPort; memcpy(HostP->Mapping[entry].Name, MapP->Name, MAX_NAME_LEN); HostP->Mapping[entry].Flags = SLOT_IN_USE | RTA_BOOTED | RTA_NEWBOOT; RIOReMapPorts(p, HostP, &HostP->Mapping[entry]); if (HostP->Mapping[entry].SysPort < p->RIOFirstPortsBooted) p->RIOFirstPortsBooted = HostP->Mapping[entry].SysPort; if (HostP->Mapping[entry].SysPort > p->RIOLastPortsBooted) p->RIOLastPortsBooted = HostP->Mapping[entry].SysPort; rio_dprintk(RIO_DEBUG_BOOT, "SysPort %d, Name %s\n", (int) MapP->SysPort, MapP->Name); } else { rio_dprintk(RIO_DEBUG_BOOT, "This RTA has a tentative entry on another host - delete that entry (1)\n"); HostP->Mapping[entry].Flags = SLOT_TENTATIVE | RTA_BOOTED | RTA_NEWBOOT; } if (RtaType == TYPE_RTA16) { if (Flag & SLOT_IN_USE) { HostP->Mapping[entry2].Flags = SLOT_IN_USE | RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT; HostP->Mapping[entry2].SysPort = MapP2->SysPort; /* ** Map second block of ttys for 16 port RTA */ RIOReMapPorts(p, HostP, &HostP->Mapping[entry2]); if (HostP->Mapping[entry2].SysPort < p->RIOFirstPortsBooted) p->RIOFirstPortsBooted = HostP->Mapping[entry2].SysPort; if (HostP->Mapping[entry2].SysPort > p->RIOLastPortsBooted) p->RIOLastPortsBooted = HostP->Mapping[entry2].SysPort; rio_dprintk(RIO_DEBUG_BOOT, "SysPort %d, Name %s\n", (int) HostP->Mapping[entry2].SysPort, HostP->Mapping[entry].Name); } else HostP->Mapping[entry2].Flags = SLOT_TENTATIVE | RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT; memset(MapP2, 0, sizeof(struct Map)); } memset(MapP, 0, sizeof(struct Map)); if (!p->RIONoMessage) printk("An orphaned RTA has been adopted by %s '%s' (%c).\n", MyType, MyName, MyLink + 'A'); } else if (!p->RIONoMessage) printk("RTA connected to %s '%s' (%c) not configured.\n", MyType, MyName, MyLink + 'A'); RIOSetChange(p); return 1; } /* ** There is no room in the driver table to make an entry for the ** booted RTA. Keep a note of its Uniq Num in the overflow table, ** so we can ignore it's ID requests. */ if (!p->RIONoMessage) printk("The RTA connected to %s '%s' (%c) cannot be configured. You cannot configure more than 128 ports to one host card.\n", MyType, MyName, MyLink + 'A'); for (entry = 0; entry < HostP->NumExtraBooted; entry++) { if (HostP->ExtraUnits[entry] == RtaUniq) { /* ** already got it! */ return 1; } } /* ** If there is room, add the unit to the list of extras */ if (HostP->NumExtraBooted < MAX_EXTRA_UNITS) HostP->ExtraUnits[HostP->NumExtraBooted++] = RtaUniq; return 1; } /* ** If the RTA or its host appears in the RIOBindTab[] structure then ** we mustn't boot the RTA and should return 0. ** This operation is slightly different from the other drivers for RIO ** in that this is designed to work with the new utilities ** not config.rio and is FAR SIMPLER. ** We no longer support the RIOBootMode variable. It is all done from the ** "boot/noboot" field in the rio.cf file. */ int RIOBootOk(struct rio_info *p, struct Host *HostP, unsigned long RtaUniq) { int Entry; unsigned int HostUniq = HostP->UniqueNum; /* ** Search bindings table for RTA or its parent. ** If it exists, return 0, else 1. */ for (Entry = 0; (Entry < MAX_RTA_BINDINGS) && (p->RIOBindTab[Entry] != 0); Entry++) { if ((p->RIOBindTab[Entry] == HostUniq) || (p->RIOBindTab[Entry] == RtaUniq)) return 0; } return 1; } /* ** Make an empty slot tentative. If this is a 16 port RTA, make both ** slots tentative, and the second one RTA_SECOND_SLOT as well. */ void rio_fill_host_slot(int entry, int entry2, unsigned int rta_uniq, struct Host *host) { int link; rio_dprintk(RIO_DEBUG_BOOT, "rio_fill_host_slot(%d, %d, 0x%x...)\n", entry, entry2, rta_uniq); host->Mapping[entry].Flags = (RTA_BOOTED | RTA_NEWBOOT | SLOT_TENTATIVE); host->Mapping[entry].SysPort = NO_PORT; host->Mapping[entry].RtaUniqueNum = rta_uniq; host->Mapping[entry].HostUniqueNum = host->UniqueNum; host->Mapping[entry].ID = entry + 1; host->Mapping[entry].ID2 = 0; if (entry2) { host->Mapping[entry2].Flags = (RTA_BOOTED | RTA_NEWBOOT | SLOT_TENTATIVE | RTA16_SECOND_SLOT); host->Mapping[entry2].SysPort = NO_PORT; host->Mapping[entry2].RtaUniqueNum = rta_uniq; host->Mapping[entry2].HostUniqueNum = host->UniqueNum; host->Mapping[entry2].Name[0] = '\0'; host->Mapping[entry2].ID = entry2 + 1; host->Mapping[entry2].ID2 = entry + 1; host->Mapping[entry].ID2 = entry2 + 1; } /* ** Must set these up, so that utilities show ** topology of 16 port RTAs correctly */ for (link = 0; link < LINKS_PER_UNIT; link++) { host->Mapping[entry].Topology[link].Unit = ROUTE_DISCONNECT; host->Mapping[entry].Topology[link].Link = NO_LINK; if (entry2) { host->Mapping[entry2].Topology[link].Unit = ROUTE_DISCONNECT; host->Mapping[entry2].Topology[link].Link = NO_LINK; } } }