/* * * BRIEF MODULE DESCRIPTION * Qtronix 990P infrared keyboard driver. * * * Copyright 2001 MontaVista Software Inc. * Author: MontaVista Software, Inc. * ppopov@mvista.com or source@mvista.com * * * The bottom portion of this driver was take from * pc_keyb.c Please see that file for copyrights. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 675 Mass Ave, Cambridge, MA 02139, USA. */ #include /* * NOTE: * * This driver has only been tested with the Consumer IR * port of the ITE 8172 system controller. * * You do not need this driver if you are using the ps/2 or * USB adapter that the keyboard ships with. You only need * this driver if your board has a IR port and the keyboard * data is being sent directly to the IR. In that case, * you also need some low-level IR support. See it8172_cir.c. * */ #ifdef CONFIG_QTRONIX_KEYBOARD #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define leading1 0 #define leading2 0xF #define KBD_CIR_PORT 0 #define AUX_RECONNECT 170 /* scancode when ps2 device is plugged (back) in */ static int data_index; struct cir_port *cir; static unsigned char kbdbytes[5]; static unsigned char cir_data[32]; /* we only need 16 chars */ static void kbd_int_handler(int irq, void *dev_id, struct pt_regs *regs); static int handle_data(unsigned char *p_data); static inline void handle_mouse_event(unsigned char scancode); static inline void handle_keyboard_event(unsigned char scancode, int down); static int __init psaux_init(void); static struct aux_queue *queue; /* Mouse data buffer. */ static int aux_count = 0; /* * Keys accessed through the 'Fn' key * The Fn key does not produce a key-up sequence. So, the first * time the user presses it, it will be key-down event. The key * stays down until the user presses it again. */ #define NUM_FN_KEYS 56 static unsigned char fn_keys[NUM_FN_KEYS] = { 0,0,0,0,0,0,0,0, /* 0 7 */ 8,9,10,93,0,0,0,0, /* 8 15 */ 0,0,0,0,0,0,0,5, /* 16 23 */ 6,7,91,0,0,0,0,0, /* 24 31 */ 0,0,0,0,0,2,3,4, /* 32 39 */ 92,0,0,0,0,0,0,0, /* 40 47 */ 0,0,0,0,11,0,94,95 /* 48 55 */ }; void __init init_qtronix_990P_kbd(void) { int retval; cir = (struct cir_port *)kmalloc(sizeof(struct cir_port), GFP_KERNEL); if (!cir) { printk("Unable to initialize Qtronix keyboard\n"); return; } /* * revisit * this should be programmable, somehow by the, by the user. */ cir->port = KBD_CIR_PORT; cir->baud_rate = 0x1d; cir->rdwos = 0; cir->rxdcr = 0x3; cir->hcfs = 0; cir->fifo_tl = 0; cir->cfq = 0x1d; cir_port_init(cir); retval = request_irq(IT8172_CIR0_IRQ, kbd_int_handler, (unsigned long )(SA_INTERRUPT|SA_SHIRQ), (const char *)"Qtronix IR Keyboard", (void *)cir); if (retval) { printk("unable to allocate cir %d irq %d\n", cir->port, IT8172_CIR0_IRQ); } #ifdef CONFIG_PSMOUSE psaux_init(); #endif } static inline unsigned char BitReverse(unsigned short key) { unsigned char rkey = 0; rkey |= (key & 0x1) << 7; rkey |= (key & 0x2) << 5; rkey |= (key & 0x4) << 3; rkey |= (key & 0x8) << 1; rkey |= (key & 0x10) >> 1; rkey |= (key & 0x20) >> 3; rkey |= (key & 0x40) >> 5; rkey |= (key & 0x80) >> 7; return rkey; } static inline u_int8_t UpperByte(u_int8_t data) { return (data >> 4); } static inline u_int8_t LowerByte(u_int8_t data) { return (data & 0xF); } int CheckSumOk(u_int8_t byte1, u_int8_t byte2, u_int8_t byte3, u_int8_t byte4, u_int8_t byte5) { u_int8_t CheckSum; CheckSum = (byte1 & 0x0F) + byte2 + byte3 + byte4 + byte5; if ( LowerByte(UpperByte(CheckSum) + LowerByte(CheckSum)) != UpperByte(byte1) ) return 0; else return 1; } static void kbd_int_handler(int irq, void *dev_id, struct pt_regs *regs) { struct cir_port *cir; int j; unsigned char int_status; cir = (struct cir_port *)dev_id; int_status = get_int_status(cir); if (int_status & 0x4) { clear_fifo(cir); return; } while (cir_get_rx_count(cir)) { cir_data[data_index] = cir_read_data(cir); if (data_index == 0) {/* expecting first byte */ if (cir_data[data_index] != leading1) { //printk("!leading byte %x\n", cir_data[data_index]); set_rx_active(cir); clear_fifo(cir); continue; } } if (data_index == 1) { if ((cir_data[data_index] & 0xf) != leading2) { set_rx_active(cir); data_index = 0; /* start over */ clear_fifo(cir); continue; } } if ( (cir_data[data_index] == 0xff)) { /* last byte */ //printk("data_index %d\n", data_index); set_rx_active(cir); #if 0 for (j=0; j<=data_index; j++) { printk("rx_data %d: %x\n", j, cir_data[j]); } #endif data_index = 0; handle_data(cir_data); return; } else if (data_index>16) { set_rx_active(cir); #if 0 printk("warning: data_index %d\n", data_index); for (j=0; j<=data_index; j++) { printk("rx_data %d: %x\n", j, cir_data[j]); } #endif data_index = 0; clear_fifo(cir); return; } data_index++; } } #define NUM_KBD_BYTES 5 static int handle_data(unsigned char *p_data) { u_int32_t bit_bucket; u_int32_t i, j; u_int32_t got_bits, next_byte; int down = 0; /* Reorganize the bit stream */ for (i=0; i<16; i++) p_data[i] = BitReverse(~p_data[i]); /* * We've already previously checked that p_data[0] * is equal to leading1 and that (p_data[1] & 0xf) * is equal to leading2. These twelve bits are the * leader code. We can now throw them away (the 12 * bits) and continue parsing the stream. */ bit_bucket = p_data[1] << 12; got_bits = 4; next_byte = 2; /* * Process four bits at a time */ for (i=0; i> 1); got_bits -= 4; bit_bucket = bit_bucket << 4; } else if ((bit_bucket & 0xC000) == 0x8000) { /* Convert 10b to 0 */ kbdbytes[i] = kbdbytes[i] >> 1; got_bits -= 2; bit_bucket = bit_bucket << 2; } else { /* bad serial stream */ return 1; } if (next_byte > 16) { //printk("error: too many bytes\n"); return 1; } } } if (!CheckSumOk(kbdbytes[0], kbdbytes[1], kbdbytes[2], kbdbytes[3], kbdbytes[4])) { //printk("checksum failed\n"); return 1; } if (kbdbytes[1] & 0x08) { //printk("m: %x %x %x\n", kbdbytes[1], kbdbytes[2], kbdbytes[3]); handle_mouse_event(kbdbytes[1]); handle_mouse_event(kbdbytes[2]); handle_mouse_event(kbdbytes[3]); } else { if (kbdbytes[2] == 0) down = 1; #if 0 if (down) printk("down %d\n", kbdbytes[3]); else printk("up %d\n", kbdbytes[3]); #endif handle_keyboard_event(kbdbytes[3], down); } return 0; } DEFINE_SPINLOCK(kbd_controller_lock); static unsigned char handle_kbd_event(void); int kbd_setkeycode(unsigned int scancode, unsigned int keycode) { printk("kbd_setkeycode scancode %x keycode %x\n", scancode, keycode); return 0; } int kbd_getkeycode(unsigned int scancode) { return scancode; } int kbd_translate(unsigned char scancode, unsigned char *keycode, char raw_mode) { static int prev_scancode = 0; if (scancode == 0x00 || scancode == 0xff) { prev_scancode = 0; return 0; } /* todo */ if (!prev_scancode && scancode == 160) { /* Fn key down */ //printk("Fn key down\n"); prev_scancode = 160; return 0; } else if (prev_scancode && scancode == 160) { /* Fn key up */ //printk("Fn key up\n"); prev_scancode = 0; return 0; } /* todo */ if (prev_scancode == 160) { if (scancode <= NUM_FN_KEYS) { *keycode = fn_keys[scancode]; //printk("fn keycode %d\n", *keycode); } else return 0; } else if (scancode <= 127) { *keycode = scancode; } else return 0; return 1; } char kbd_unexpected_up(unsigned char keycode) { //printk("kbd_unexpected_up\n"); return 0; } static unsigned char kbd_exists = 1; static inline void handle_keyboard_event(unsigned char scancode, int down) { kbd_exists = 1; handle_scancode(scancode, down); tasklet_schedule(&keyboard_tasklet); } void kbd_leds(unsigned char leds) { } /* dummy */ void kbd_init_hw(void) { } static inline void handle_mouse_event(unsigned char scancode) { if(scancode == AUX_RECONNECT){ queue->head = queue->tail = 0; /* Flush input queue */ // __aux_write_ack(AUX_ENABLE_DEV); /* ping the mouse :) */ return; } if (aux_count) { int head = queue->head; queue->buf[head] = scancode; head = (head + 1) & (AUX_BUF_SIZE-1); if (head != queue->tail) { queue->head = head; kill_fasync(&queue->fasync, SIGIO, POLL_IN); wake_up_interruptible(&queue->proc_list); } } } static unsigned char get_from_queue(void) { unsigned char result; unsigned long flags; spin_lock_irqsave(&kbd_controller_lock, flags); result = queue->buf[queue->tail]; queue->tail = (queue->tail + 1) & (AUX_BUF_SIZE-1); spin_unlock_irqrestore(&kbd_controller_lock, flags); return result; } static inline int queue_empty(void) { return queue->head == queue->tail; } static int fasync_aux(int fd, struct file *filp, int on) { int retval; //printk("fasync_aux\n"); retval = fasync_helper(fd, filp, on, &queue->fasync); if (retval < 0) return retval; return 0; } /* * Random magic cookie for the aux device */ #define AUX_DEV ((void *)queue) static int release_aux(struct inode * inode, struct file * file) { fasync_aux(-1, file, 0); aux_count--; return 0; } static int open_aux(struct inode * inode, struct file * file) { if (aux_count++) { return 0; } queue->head = queue->tail = 0; /* Flush input queue */ return 0; } /* * Put bytes from input queue to buffer. */ static ssize_t read_aux(struct file * file, char * buffer, size_t count, loff_t *ppos) { DECLARE_WAITQUEUE(wait, current); ssize_t i = count; unsigned char c; if (queue_empty()) { if (file->f_flags & O_NONBLOCK) return -EAGAIN; add_wait_queue(&queue->proc_list, &wait); repeat: set_current_state(TASK_INTERRUPTIBLE); if (queue_empty() && !signal_pending(current)) { schedule(); goto repeat; } current->state = TASK_RUNNING; remove_wait_queue(&queue->proc_list, &wait); } while (i > 0 && !queue_empty()) { c = get_from_queue(); put_user(c, buffer++); i--; } if (count-i) { struct inode *inode = file->f_dentry->d_inode; inode->i_atime = current_fs_time(inode->i_sb); return count-i; } if (signal_pending(current)) return -ERESTARTSYS; return 0; } /* * Write to the aux device. */ static ssize_t write_aux(struct file * file, const char * buffer, size_t count, loff_t *ppos) { /* * The ITE boards this was tested on did not have the * transmit wires connected. */ return count; } static unsigned int aux_poll(struct file *file, poll_table * wait) { poll_wait(file, &queue->proc_list, wait); if (!queue_empty()) return POLLIN | POLLRDNORM; return 0; } struct file_operations psaux_fops = { .read = read_aux, .write = write_aux, .poll = aux_poll, .open = open_aux, .release = release_aux, .fasync = fasync_aux, }; /* * Initialize driver. */ static struct miscdevice psaux_mouse = { PSMOUSE_MINOR, "psaux", &psaux_fops }; static int __init psaux_init(void) { int retval; retval = misc_register(&psaux_mouse); if(retval < 0) return retval; queue = (struct aux_queue *) kmalloc(sizeof(*queue), GFP_KERNEL); if (!queue) { misc_deregister(&psaux_mouse); return -ENOMEM; } memset(queue, 0, sizeof(*queue)); queue->head = queue->tail = 0; init_waitqueue_head(&queue->proc_list); return 0; } module_init(init_qtronix_990P_kbd); #endif