/* * LCD, LED and Button interface for Cobalt * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1996, 1997 by Andrew Bose * * Linux kernel version history: * March 2001: Ported from 2.0.34 by Liam Davies * */ #define RTC_IO_EXTENT 0x10 /*Only really two ports, but... */ #include <linux/config.h> #include <linux/types.h> #include <linux/errno.h> #include <linux/miscdevice.h> #include <linux/slab.h> #include <linux/ioport.h> #include <linux/fcntl.h> #include <linux/mc146818rtc.h> #include <linux/netdevice.h> #include <linux/sched.h> #include <linux/delay.h> #include <asm/io.h> #include <asm/uaccess.h> #include <asm/system.h> #include <linux/delay.h> #include "lcd.h" static DEFINE_SPINLOCK(lcd_lock); static int lcd_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg); static unsigned int lcd_present = 1; /* used in arch/mips/cobalt/reset.c */ int led_state = 0; #if defined(CONFIG_TULIP) && 0 #define MAX_INTERFACES 8 static linkcheck_func_t linkcheck_callbacks[MAX_INTERFACES]; static void *linkcheck_cookies[MAX_INTERFACES]; int lcd_register_linkcheck_func(int iface_num, void *func, void *cookie) { if (iface_num < 0 || iface_num >= MAX_INTERFACES || linkcheck_callbacks[iface_num] != NULL) return -1; linkcheck_callbacks[iface_num] = (linkcheck_func_t) func; linkcheck_cookies[iface_num] = cookie; return 0; } #endif static int lcd_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { struct lcd_display button_display; unsigned long address, a; switch (cmd) { case LCD_On: udelay(150); BusyCheck(); LCDWriteInst(0x0F); break; case LCD_Off: udelay(150); BusyCheck(); LCDWriteInst(0x08); break; case LCD_Reset: udelay(150); LCDWriteInst(0x3F); udelay(150); LCDWriteInst(0x3F); udelay(150); LCDWriteInst(0x3F); udelay(150); LCDWriteInst(0x3F); udelay(150); LCDWriteInst(0x01); udelay(150); LCDWriteInst(0x06); break; case LCD_Clear: udelay(150); BusyCheck(); LCDWriteInst(0x01); break; case LCD_Cursor_Left: udelay(150); BusyCheck(); LCDWriteInst(0x10); break; case LCD_Cursor_Right: udelay(150); BusyCheck(); LCDWriteInst(0x14); break; case LCD_Cursor_Off: udelay(150); BusyCheck(); LCDWriteInst(0x0C); break; case LCD_Cursor_On: udelay(150); BusyCheck(); LCDWriteInst(0x0F); break; case LCD_Blink_Off: udelay(150); BusyCheck(); LCDWriteInst(0x0E); break; case LCD_Get_Cursor_Pos:{ struct lcd_display display; udelay(150); BusyCheck(); display.cursor_address = (LCDReadInst); display.cursor_address = (display.cursor_address & 0x07F); if (copy_to_user ((struct lcd_display *) arg, &display, sizeof(struct lcd_display))) return -EFAULT; break; } case LCD_Set_Cursor_Pos:{ struct lcd_display display; if (copy_from_user (&display, (struct lcd_display *) arg, sizeof(struct lcd_display))) return -EFAULT; a = (display.cursor_address | kLCD_Addr); udelay(150); BusyCheck(); LCDWriteInst(a); break; } case LCD_Get_Cursor:{ struct lcd_display display; udelay(150); BusyCheck(); display.character = LCDReadData; if (copy_to_user ((struct lcd_display *) arg, &display, sizeof(struct lcd_display))) return -EFAULT; udelay(150); BusyCheck(); LCDWriteInst(0x10); break; } case LCD_Set_Cursor:{ struct lcd_display display; if (copy_from_user (&display, (struct lcd_display *) arg, sizeof(struct lcd_display))) return -EFAULT; udelay(150); BusyCheck(); LCDWriteData(display.character); udelay(150); BusyCheck(); LCDWriteInst(0x10); break; } case LCD_Disp_Left: udelay(150); BusyCheck(); LCDWriteInst(0x18); break; case LCD_Disp_Right: udelay(150); BusyCheck(); LCDWriteInst(0x1C); break; case LCD_Home: udelay(150); BusyCheck(); LCDWriteInst(0x02); break; case LCD_Write:{ struct lcd_display display; unsigned int index; if (copy_from_user (&display, (struct lcd_display *) arg, sizeof(struct lcd_display))) return -EFAULT; udelay(150); BusyCheck(); LCDWriteInst(0x80); udelay(150); BusyCheck(); for (index = 0; index < (display.size1); index++) { udelay(150); BusyCheck(); LCDWriteData(display.line1[index]); BusyCheck(); } udelay(150); BusyCheck(); LCDWriteInst(0xC0); udelay(150); BusyCheck(); for (index = 0; index < (display.size2); index++) { udelay(150); BusyCheck(); LCDWriteData(display.line2[index]); } break; } case LCD_Read:{ struct lcd_display display; BusyCheck(); for (address = kDD_R00; address <= kDD_R01; address++) { a = (address | kLCD_Addr); udelay(150); BusyCheck(); LCDWriteInst(a); udelay(150); BusyCheck(); display.line1[address] = LCDReadData; } display.line1[0x27] = '\0'; for (address = kDD_R10; address <= kDD_R11; address++) { a = (address | kLCD_Addr); udelay(150); BusyCheck(); LCDWriteInst(a); udelay(150); BusyCheck(); display.line2[address - 0x40] = LCDReadData; } display.line2[0x27] = '\0'; if (copy_to_user ((struct lcd_display *) arg, &display, sizeof(struct lcd_display))) return -EFAULT; break; } // set all GPIO leds to led_display.leds case LED_Set:{ struct lcd_display led_display; if (copy_from_user (&led_display, (struct lcd_display *) arg, sizeof(struct lcd_display))) return -EFAULT; led_state = led_display.leds; LEDSet(led_state); break; } // set only bit led_display.leds case LED_Bit_Set:{ unsigned int i; int bit = 1; struct lcd_display led_display; if (copy_from_user (&led_display, (struct lcd_display *) arg, sizeof(struct lcd_display))) return -EFAULT; for (i = 0; i < (int) led_display.leds; i++) { bit = 2 * bit; } led_state = led_state | bit; LEDSet(led_state); break; } // clear only bit led_display.leds case LED_Bit_Clear:{ unsigned int i; int bit = 1; struct lcd_display led_display; if (copy_from_user (&led_display, (struct lcd_display *) arg, sizeof(struct lcd_display))) return -EFAULT; for (i = 0; i < (int) led_display.leds; i++) { bit = 2 * bit; } led_state = led_state & ~bit; LEDSet(led_state); break; } case BUTTON_Read:{ button_display.buttons = GPIRead; if (copy_to_user ((struct lcd_display *) arg, &button_display, sizeof(struct lcd_display))) return -EFAULT; break; } case LINK_Check:{ button_display.buttons = *((volatile unsigned long *) (0xB0100060)); if (copy_to_user ((struct lcd_display *) arg, &button_display, sizeof(struct lcd_display))) return -EFAULT; break; } case LINK_Check_2:{ int iface_num; /* panel-utils should pass in the desired interface status is wanted for * in "buttons" of the structure. We will set this to non-zero if the * link is in fact up for the requested interface. --DaveM */ if (copy_from_user (&button_display, (struct lcd_display *) arg, sizeof(button_display))) return -EFAULT; iface_num = button_display.buttons; #if defined(CONFIG_TULIP) && 0 if (iface_num >= 0 && iface_num < MAX_INTERFACES && linkcheck_callbacks[iface_num] != NULL) { button_display.buttons = linkcheck_callbacks[iface_num] (linkcheck_cookies[iface_num]); } else #endif button_display.buttons = 0; if (__copy_to_user ((struct lcd_display *) arg, &button_display, sizeof(struct lcd_display))) return -EFAULT; break; } // Erase the flash case FLASH_Erase:{ int ctr = 0; if ( !capable(CAP_SYS_ADMIN) ) return -EPERM; pr_info(LCD "Erasing Flash\n"); // Chip Erase Sequence WRITE_FLASH(kFlash_Addr1, kFlash_Data1); WRITE_FLASH(kFlash_Addr2, kFlash_Data2); WRITE_FLASH(kFlash_Addr1, kFlash_Erase3); WRITE_FLASH(kFlash_Addr1, kFlash_Data1); WRITE_FLASH(kFlash_Addr2, kFlash_Data2); WRITE_FLASH(kFlash_Addr1, kFlash_Erase6); while ((!dqpoll(0x00000000, 0xFF)) && (!timeout(0x00000000))) { ctr++; } if (READ_FLASH(0x07FFF0) == 0xFF) { pr_info(LCD "Erase Successful\n"); } else if (timeout) { pr_info(LCD "Erase Timed Out\n"); } break; } // burn the flash case FLASH_Burn:{ volatile unsigned long burn_addr; unsigned long flags; unsigned int i, index; unsigned char *rom; struct lcd_display display; if ( !capable(CAP_SYS_ADMIN) ) return -EPERM; if (copy_from_user (&display, (struct lcd_display *) arg, sizeof(struct lcd_display))) return -EFAULT; rom = (unsigned char *) kmalloc((128), GFP_ATOMIC); if (rom == NULL) { printk(KERN_ERR LCD "kmalloc() failed in %s\n", __FUNCTION__); return -ENOMEM; } pr_info(LCD "Starting Flash burn\n"); for (i = 0; i < FLASH_SIZE; i = i + 128) { if (copy_from_user (rom, display.RomImage + i, 128)) { kfree(rom); return -EFAULT; } burn_addr = kFlashBase + i; spin_lock_irqsave(&lcd_lock, flags); for (index = 0; index < (128); index++) { WRITE_FLASH(kFlash_Addr1, kFlash_Data1); WRITE_FLASH(kFlash_Addr2, kFlash_Data2); WRITE_FLASH(kFlash_Addr1, kFlash_Prog); *((volatile unsigned char *)burn_addr) = (volatile unsigned char) rom[index]; while ((!dqpoll (burn_addr, (volatile unsigned char) rom[index])) && (!timeout(burn_addr))) { } burn_addr++; } spin_unlock_irqrestore(&lcd_lock, flags); if (* ((volatile unsigned char *) (burn_addr - 1)) == (volatile unsigned char) rom[index - 1]) { } else if (timeout) { pr_info(LCD "Flash burn timed out\n"); } } kfree(rom); pr_info(LCD "Flash successfully burned\n"); break; } // read the flash all at once case FLASH_Read:{ unsigned char *user_bytes; volatile unsigned long read_addr; unsigned int i; user_bytes = &(((struct lcd_display *) arg)->RomImage[0]); if (!access_ok (VERIFY_WRITE, user_bytes, FLASH_SIZE)) return -EFAULT; pr_info(LCD "Reading Flash"); for (i = 0; i < FLASH_SIZE; i++) { unsigned char tmp_byte; read_addr = kFlashBase + i; tmp_byte = *((volatile unsigned char *) read_addr); if (__put_user(tmp_byte, &user_bytes[i])) return -EFAULT; } break; } default: return -EINVAL; } return 0; } static int lcd_open(struct inode *inode, struct file *file) { if (!lcd_present) return -ENXIO; else return 0; } /* Only RESET or NEXT counts as button pressed */ static inline int button_pressed(void) { unsigned long buttons = GPIRead; if ((buttons == BUTTON_Next) || (buttons == BUTTON_Next_B) || (buttons == BUTTON_Reset_B)) return buttons; return 0; } /* LED daemon sits on this and we wake him up once a key is pressed. */ static int lcd_waiters = 0; static long lcd_read(struct inode *inode, struct file *file, char *buf, unsigned long count) { long buttons_now; if (lcd_waiters > 0) return -EINVAL; lcd_waiters++; while (((buttons_now = (long) button_pressed()) == 0) && !(signal_pending(current))) { msleep_interruptible(2000); } lcd_waiters--; if (signal_pending(current)) return -ERESTARTSYS; return buttons_now; } /* * The various file operations we support. */ static struct file_operations lcd_fops = { .read = lcd_read, .ioctl = lcd_ioctl, .open = lcd_open, }; static struct miscdevice lcd_dev = { MISC_DYNAMIC_MINOR, "lcd", &lcd_fops }; static int lcd_init(void) { unsigned long data; pr_info("%s\n", LCD_DRIVER); misc_register(&lcd_dev); /* Check region? Naaah! Just snarf it up. */ /* request_region(RTC_PORT(0), RTC_IO_EXTENT, "lcd");*/ udelay(150); data = LCDReadData; if ((data & 0x000000FF) == (0x00)) { lcd_present = 0; pr_info(LCD "LCD Not Present\n"); } else { lcd_present = 1; WRITE_GAL(kGal_DevBank2PReg, kGal_DevBank2Cfg); WRITE_GAL(kGal_DevBank3PReg, kGal_DevBank3Cfg); } return 0; } static void __exit lcd_exit(void) { misc_deregister(&lcd_dev); } // // Function: dqpoll // // Description: Polls the data lines to see if the flash is busy // // In: address, byte data // // Out: 0 = busy, 1 = write or erase complete // // static int dqpoll(volatile unsigned long address, volatile unsigned char data) { volatile unsigned char dq7; dq7 = data & 0x80; return ((READ_FLASH(address) & 0x80) == dq7); } // // Function: timeout // // Description: Checks to see if erase or write has timed out // By polling dq5 // // In: address // // // Out: 0 = not timed out, 1 = timed out static int timeout(volatile unsigned long address) { return (READ_FLASH(address) & 0x20) == 0x20; } module_init(lcd_init); module_exit(lcd_exit); MODULE_AUTHOR("Andrew Bose"); MODULE_LICENSE("GPL");