/* * ipmi_bt_sm.c * * The state machine for an Open IPMI BT sub-driver under ipmi_si.c, part * of the driver architecture at http://sourceforge.net/projects/openipmi * * Author: Rocky Craig * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 675 Mass Ave, Cambridge, MA 02139, USA. */ #include /* For printk. */ #include #include #include #include /* for completion codes */ #include "ipmi_si_sm.h" #define BT_DEBUG_OFF 0 /* Used in production */ #define BT_DEBUG_ENABLE 1 /* Generic messages */ #define BT_DEBUG_MSG 2 /* Prints all request/response buffers */ #define BT_DEBUG_STATES 4 /* Verbose look at state changes */ /* * BT_DEBUG_OFF must be zero to correspond to the default uninitialized * value */ static int bt_debug; /* 0 == BT_DEBUG_OFF */ module_param(bt_debug, int, 0644); MODULE_PARM_DESC(bt_debug, "debug bitmask, 1=enable, 2=messages, 4=states"); /* * Typical "Get BT Capabilities" values are 2-3 retries, 5-10 seconds, * and 64 byte buffers. However, one HP implementation wants 255 bytes of * buffer (with a documented message of 160 bytes) so go for the max. * Since the Open IPMI architecture is single-message oriented at this * stage, the queue depth of BT is of no concern. */ #define BT_NORMAL_TIMEOUT 5 /* seconds */ #define BT_NORMAL_RETRY_LIMIT 2 #define BT_RESET_DELAY 6 /* seconds after warm reset */ /* * States are written in chronological order and usually cover * multiple rows of the state table discussion in the IPMI spec. */ enum bt_states { BT_STATE_IDLE = 0, /* Order is critical in this list */ BT_STATE_XACTION_START, BT_STATE_WRITE_BYTES, BT_STATE_WRITE_CONSUME, BT_STATE_READ_WAIT, BT_STATE_CLEAR_B2H, BT_STATE_READ_BYTES, BT_STATE_RESET1, /* These must come last */ BT_STATE_RESET2, BT_STATE_RESET3, BT_STATE_RESTART, BT_STATE_PRINTME, BT_STATE_CAPABILITIES_BEGIN, BT_STATE_CAPABILITIES_END, BT_STATE_LONG_BUSY /* BT doesn't get hosed :-) */ }; /* * Macros seen at the end of state "case" blocks. They help with legibility * and debugging. */ #define BT_STATE_CHANGE(X, Y) { bt->state = X; return Y; } #define BT_SI_SM_RETURN(Y) { last_printed = BT_STATE_PRINTME; return Y; } struct si_sm_data { enum bt_states state; unsigned char seq; /* BT sequence number */ struct si_sm_io *io; unsigned char write_data[IPMI_MAX_MSG_LENGTH + 2]; /* +2 for memcpy */ int write_count; unsigned char read_data[IPMI_MAX_MSG_LENGTH + 2]; /* +2 for memcpy */ int read_count; int truncated; long timeout; /* microseconds countdown */ int error_retries; /* end of "common" fields */ int nonzero_status; /* hung BMCs stay all 0 */ enum bt_states complete; /* to divert the state machine */ int BT_CAP_outreqs; long BT_CAP_req2rsp; int BT_CAP_retries; /* Recommended retries */ }; #define BT_CLR_WR_PTR 0x01 /* See IPMI 1.5 table 11.6.4 */ #define BT_CLR_RD_PTR 0x02 #define BT_H2B_ATN 0x04 #define BT_B2H_ATN 0x08 #define BT_SMS_ATN 0x10 #define BT_OEM0 0x20 #define BT_H_BUSY 0x40 #define BT_B_BUSY 0x80 /* * Some bits are toggled on each write: write once to set it, once * more to clear it; writing a zero does nothing. To absolutely * clear it, check its state and write if set. This avoids the "get * current then use as mask" scheme to modify one bit. Note that the * variable "bt" is hardcoded into these macros. */ #define BT_STATUS bt->io->inputb(bt->io, 0) #define BT_CONTROL(x) bt->io->outputb(bt->io, 0, x) #define BMC2HOST bt->io->inputb(bt->io, 1) #define HOST2BMC(x) bt->io->outputb(bt->io, 1, x) #define BT_INTMASK_R bt->io->inputb(bt->io, 2) #define BT_INTMASK_W(x) bt->io->outputb(bt->io, 2, x) /* * Convenience routines for debugging. These are not multi-open safe! * Note the macros have hardcoded variables in them. */ static char *state2txt(unsigned char state) { switch (state) { case BT_STATE_IDLE: return("IDLE"); case BT_STATE_XACTION_START: return("XACTION"); case BT_STATE_WRITE_BYTES: return("WR_BYTES"); case BT_STATE_WRITE_CONSUME: return("WR_CONSUME"); case BT_STATE_READ_WAIT: return("RD_WAIT"); case BT_STATE_CLEAR_B2H: return("CLEAR_B2H"); case BT_STATE_READ_BYTES: return("RD_BYTES"); case BT_STATE_RESET1: return("RESET1"); case BT_STATE_RESET2: return("RESET2"); case BT_STATE_RESET3: return("RESET3"); case BT_STATE_RESTART: return("RESTART"); case BT_STATE_LONG_BUSY: return("LONG_BUSY"); case BT_STATE_CAPABILITIES_BEGIN: return("CAP_BEGIN"); case BT_STATE_CAPABILITIES_END: return("CAP_END"); } return("BAD STATE"); } #define STATE2TXT state2txt(bt->state) static char *status2txt(unsigned char status) { /* * This cannot be called by two threads at the same time and * the buffer is always consumed immediately, so the static is * safe to use. */ static char buf[40]; strcpy(buf, "[ "); if (status & BT_B_BUSY) strcat(buf, "B_BUSY "); if (status & BT_H_BUSY) strcat(buf, "H_BUSY "); if (status & BT_OEM0) strcat(buf, "OEM0 "); if (status & BT_SMS_ATN) strcat(buf, "SMS "); if (status & BT_B2H_ATN) strcat(buf, "B2H "); if (status & BT_H2B_ATN) strcat(buf, "H2B "); strcat(buf, "]"); return buf; } #define STATUS2TXT status2txt(status) /* called externally at insmod time, and internally on cleanup */ static unsigned int bt_init_data(struct si_sm_data *bt, struct si_sm_io *io) { memset(bt, 0, sizeof(struct si_sm_data)); if (bt->io != io) { /* external: one-time only things */ bt->io = io; bt->seq = 0; } bt->state = BT_STATE_IDLE; /* start here */ bt->complete = BT_STATE_IDLE; /* end here */ bt->BT_CAP_req2rsp = BT_NORMAL_TIMEOUT * USEC_PER_SEC; bt->BT_CAP_retries = BT_NORMAL_RETRY_LIMIT; /* BT_CAP_outreqs == zero is a flag to read BT Capabilities */ return 3; /* We claim 3 bytes of space; ought to check SPMI table */ } /* Jam a completion code (probably an error) into a response */ static void force_result(struct si_sm_data *bt, unsigned char completion_code) { bt->read_data[0] = 4; /* # following bytes */ bt->read_data[1] = bt->write_data[1] | 4; /* Odd NetFn/LUN */ bt->read_data[2] = bt->write_data[2]; /* seq (ignored) */ bt->read_data[3] = bt->write_data[3]; /* Command */ bt->read_data[4] = completion_code; bt->read_count = 5; } /* The upper state machine starts here */ static int bt_start_transaction(struct si_sm_data *bt, unsigned char *data, unsigned int size) { unsigned int i; if (size < 2) return IPMI_REQ_LEN_INVALID_ERR; if (size > IPMI_MAX_MSG_LENGTH) return IPMI_REQ_LEN_EXCEEDED_ERR; if (bt->state == BT_STATE_LONG_BUSY) return IPMI_NODE_BUSY_ERR; if (bt->state != BT_STATE_IDLE) return IPMI_NOT_IN_MY_STATE_ERR; if (bt_debug & BT_DEBUG_MSG) { printk(KERN_WARNING "BT: +++++++++++++++++ New command\n"); printk(KERN_WARNING "BT: NetFn/LUN CMD [%d data]:", size - 2); for (i = 0; i < size; i ++) printk(" %02x", data[i]); printk("\n"); } bt->write_data[0] = size + 1; /* all data plus seq byte */ bt->write_data[1] = *data; /* NetFn/LUN */ bt->write_data[2] = bt->seq++; memcpy(bt->write_data + 3, data + 1, size - 1); bt->write_count = size + 2; bt->error_retries = 0; bt->nonzero_status = 0; bt->truncated = 0; bt->state = BT_STATE_XACTION_START; bt->timeout = bt->BT_CAP_req2rsp; force_result(bt, IPMI_ERR_UNSPECIFIED); return 0; } /* * After the upper state machine has been told SI_SM_TRANSACTION_COMPLETE * it calls this. Strip out the length and seq bytes. */ static int bt_get_result(struct si_sm_data *bt, unsigned char *data, unsigned int length) { int i, msg_len; msg_len = bt->read_count - 2; /* account for length & seq */ if (msg_len < 3 || msg_len > IPMI_MAX_MSG_LENGTH) { force_result(bt, IPMI_ERR_UNSPECIFIED); msg_len = 3; } data[0] = bt->read_data[1]; data[1] = bt->read_data[3]; if (length < msg_len || bt->truncated) { data[2] = IPMI_ERR_MSG_TRUNCATED; msg_len = 3; } else memcpy(data + 2, bt->read_data + 4, msg_len - 2); if (bt_debug & BT_DEBUG_MSG) { printk(KERN_WARNING "BT: result %d bytes:", msg_len); for (i = 0; i < msg_len; i++) printk(" %02x", data[i]); printk("\n"); } return msg_len; } /* This bit's functionality is optional */ #define BT_BMC_HWRST 0x80 static void reset_flags(struct si_sm_data *bt) { if (bt_debug) printk(KERN_WARNING "IPMI BT: flag reset %s\n", status2txt(BT_STATUS)); if (BT_STATUS & BT_H_BUSY) BT_CONTROL(BT_H_BUSY); /* force clear */ BT_CONTROL(BT_CLR_WR_PTR); /* always reset */ BT_CONTROL(BT_SMS_ATN); /* always clear */ BT_INTMASK_W(BT_BMC_HWRST); } /* * Get rid of an unwanted/stale response. This should only be needed for * BMCs that support multiple outstanding requests. */ static void drain_BMC2HOST(struct si_sm_data *bt) { int i, size; if (!(BT_STATUS & BT_B2H_ATN)) /* Not signalling a response */ return; BT_CONTROL(BT_H_BUSY); /* now set */ BT_CONTROL(BT_B2H_ATN); /* always clear */ BT_STATUS; /* pause */ BT_CONTROL(BT_B2H_ATN); /* some BMCs are stubborn */ BT_CONTROL(BT_CLR_RD_PTR); /* always reset */ if (bt_debug) printk(KERN_WARNING "IPMI BT: stale response %s; ", status2txt(BT_STATUS)); size = BMC2HOST; for (i = 0; i < size ; i++) BMC2HOST; BT_CONTROL(BT_H_BUSY); /* now clear */ if (bt_debug) printk("drained %d bytes\n", size + 1); } static inline void write_all_bytes(struct si_sm_data *bt) { int i; if (bt_debug & BT_DEBUG_MSG) { printk(KERN_WARNING "BT: write %d bytes seq=0x%02X", bt->write_count, bt->seq); for (i = 0; i < bt->write_count; i++) printk(" %02x", bt->write_data[i]); printk("\n"); } for (i = 0; i < bt->write_count; i++) HOST2BMC(bt->write_data[i]); } static inline int read_all_bytes(struct si_sm_data *bt) { unsigned int i; /* * length is "framing info", minimum = 4: NetFn, Seq, Cmd, cCode. * Keep layout of first four bytes aligned with write_data[] */ bt->read_data[0] = BMC2HOST; bt->read_count = bt->read_data[0]; if (bt->read_count < 4 || bt->read_count >= IPMI_MAX_MSG_LENGTH) { if (bt_debug & BT_DEBUG_MSG) printk(KERN_WARNING "BT: bad raw rsp len=%d\n", bt->read_count); bt->truncated = 1; return 1; /* let next XACTION START clean it up */ } for (i = 1; i <= bt->read_count; i++) bt->read_data[i] = BMC2HOST; bt->read_count++; /* Account internally for length byte */ if (bt_debug & BT_DEBUG_MSG) { int max = bt->read_count; printk(KERN_WARNING "BT: got %d bytes seq=0x%02X", max, bt->read_data[2]); if (max > 16) max = 16; for (i = 0; i < max; i++) printk(KERN_CONT " %02x", bt->read_data[i]); printk(KERN_CONT "%s\n", bt->read_count == max ? "" : " ..."); } /* per the spec, the (NetFn[1], Seq[2], Cmd[3]) tuples must match */ if ((bt->read_data[3] == bt->write_data[3]) && (bt->read_data[2] == bt->write_data[2]) && ((bt->read_data[1] & 0xF8) == (bt->write_data[1] & 0xF8))) return 1; if (bt_debug & BT_DEBUG_MSG) printk(KERN_WARNING "IPMI BT: bad packet: " "want 0x(%02X, %02X, %02X) got (%02X, %02X, %02X)\n", bt->write_data[1] | 0x04, bt->write_data[2], bt->write_data[3], bt->read_data[1], bt->read_data[2], bt->read_data[3]); return 0; } /* Restart if retries are left, or return an error completion code */ static enum si_sm_result error_recovery(struct si_sm_data *bt, unsigned char status, unsigned char cCode) { char *reason; bt->timeout = bt->BT_CAP_req2rsp; switch (cCode) { case IPMI_TIMEOUT_ERR: reason = "timeout"; break; default: reason = "internal error"; break; } printk(KERN_WARNING "IPMI BT: %s in %s %s ", /* open-ended line */ reason, STATE2TXT, STATUS2TXT); /* * Per the IPMI spec, retries are based on the sequence number * known only to this module, so manage a restart here. */ (bt->error_retries)++; if (bt->error_retries < bt->BT_CAP_retries) { printk("%d retries left\n", bt->BT_CAP_retries - bt->error_retries); bt->state = BT_STATE_RESTART; return SI_SM_CALL_WITHOUT_DELAY; } printk(KERN_WARNING "failed %d retries, sending error response\n", bt->BT_CAP_retries); if (!bt->nonzero_status) printk(KERN_ERR "IPMI BT: stuck, try power cycle\n"); /* this is most likely during insmod */ else if (bt->seq <= (unsigned char)(bt->BT_CAP_retries & 0xFF)) { printk(KERN_WARNING "IPMI: BT reset (takes 5 secs)\n"); bt->state = BT_STATE_RESET1; return SI_SM_CALL_WITHOUT_DELAY; } /* * Concoct a useful error message, set up the next state, and * be done with this sequence. */ bt->state = BT_STATE_IDLE; switch (cCode) { case IPMI_TIMEOUT_ERR: if (status & BT_B_BUSY) { cCode = IPMI_NODE_BUSY_ERR; bt->state = BT_STATE_LONG_BUSY; } break; default: break; } force_result(bt, cCode); return SI_SM_TRANSACTION_COMPLETE; } /* Check status and (usually) take action and change this state machine. */ static enum si_sm_result bt_event(struct si_sm_data *bt, long time) { unsigned char status, BT_CAP[8]; static enum bt_states last_printed = BT_STATE_PRINTME; int i; status = BT_STATUS; bt->nonzero_status |= status; if ((bt_debug & BT_DEBUG_STATES) && (bt->state != last_printed)) { printk(KERN_WARNING "BT: %s %s TO=%ld - %ld \n", STATE2TXT, STATUS2TXT, bt->timeout, time); last_printed = bt->state; } /* * Commands that time out may still (eventually) provide a response. * This stale response will get in the way of a new response so remove * it if possible (hopefully during IDLE). Even if it comes up later * it will be rejected by its (now-forgotten) seq number. */ if ((bt->state < BT_STATE_WRITE_BYTES) && (status & BT_B2H_ATN)) { drain_BMC2HOST(bt); BT_SI_SM_RETURN(SI_SM_CALL_WITH_DELAY); } if ((bt->state != BT_STATE_IDLE) && (bt->state < BT_STATE_PRINTME)) { /* check timeout */ bt->timeout -= time; if ((bt->timeout < 0) && (bt->state < BT_STATE_RESET1)) return error_recovery(bt, status, IPMI_TIMEOUT_ERR); } switch (bt->state) { /* * Idle state first checks for asynchronous messages from another * channel, then does some opportunistic housekeeping. */ case BT_STATE_IDLE: if (status & BT_SMS_ATN) { BT_CONTROL(BT_SMS_ATN); /* clear it */ return SI_SM_ATTN; } if (status & BT_H_BUSY) /* clear a leftover H_BUSY */ BT_CONTROL(BT_H_BUSY); /* Read BT capabilities if it hasn't been done yet */ if (!bt->BT_CAP_outreqs) BT_STATE_CHANGE(BT_STATE_CAPABILITIES_BEGIN, SI_SM_CALL_WITHOUT_DELAY); bt->timeout = bt->BT_CAP_req2rsp; BT_SI_SM_RETURN(SI_SM_IDLE); case BT_STATE_XACTION_START: if (status & (BT_B_BUSY | BT_H2B_ATN)) BT_SI_SM_RETURN(SI_SM_CALL_WITH_DELAY); if (BT_STATUS & BT_H_BUSY) BT_CONTROL(BT_H_BUSY); /* force clear */ BT_STATE_CHANGE(BT_STATE_WRITE_BYTES, SI_SM_CALL_WITHOUT_DELAY); case BT_STATE_WRITE_BYTES: if (status & BT_H_BUSY) BT_CONTROL(BT_H_BUSY); /* clear */ BT_CONTROL(BT_CLR_WR_PTR); write_all_bytes(bt); BT_CONTROL(BT_H2B_ATN); /* can clear too fast to catch */ BT_STATE_CHANGE(BT_STATE_WRITE_CONSUME, SI_SM_CALL_WITHOUT_DELAY); case BT_STATE_WRITE_CONSUME: if (status & (BT_B_BUSY | BT_H2B_ATN)) BT_SI_SM_RETURN(SI_SM_CALL_WITH_DELAY); BT_STATE_CHANGE(BT_STATE_READ_WAIT, SI_SM_CALL_WITHOUT_DELAY); /* Spinning hard can suppress B2H_ATN and force a timeout */ case BT_STATE_READ_WAIT: if (!(status & BT_B2H_ATN)) BT_SI_SM_RETURN(SI_SM_CALL_WITH_DELAY); BT_CONTROL(BT_H_BUSY); /* set */ /* * Uncached, ordered writes should just proceed serially but * some BMCs don't clear B2H_ATN with one hit. Fast-path a * workaround without too much penalty to the general case. */ BT_CONTROL(BT_B2H_ATN); /* clear it to ACK the BMC */ BT_STATE_CHANGE(BT_STATE_CLEAR_B2H, SI_SM_CALL_WITHOUT_DELAY); case BT_STATE_CLEAR_B2H: if (status & BT_B2H_ATN) { /* keep hitting it */ BT_CONTROL(BT_B2H_ATN); BT_SI_SM_RETURN(SI_SM_CALL_WITH_DELAY); } BT_STATE_CHANGE(BT_STATE_READ_BYTES, SI_SM_CALL_WITHOUT_DELAY); case BT_STATE_READ_BYTES: if (!(status & BT_H_BUSY)) /* check in case of retry */ BT_CONTROL(BT_H_BUSY); BT_CONTROL(BT_CLR_RD_PTR); /* start of BMC2HOST buffer */ i = read_all_bytes(bt); /* true == packet seq match */ BT_CONTROL(BT_H_BUSY); /* NOW clear */ if (!i) /* Not my message */ BT_STATE_CHANGE(BT_STATE_READ_WAIT, SI_SM_CALL_WITHOUT_DELAY); bt->state = bt->complete; return bt->state == BT_STATE_IDLE ? /* where to next? */ SI_SM_TRANSACTION_COMPLETE : /* normal */ SI_SM_CALL_WITHOUT_DELAY; /* Startup magic */ case BT_STATE_LONG_BUSY: /* For example: after FW update */ if (!(status & BT_B_BUSY)) { reset_flags(bt); /* next state is now IDLE */ bt_init_data(bt, bt->io); } return SI_SM_CALL_WITH_DELAY; /* No repeat printing */ case BT_STATE_RESET1: reset_flags(bt); drain_BMC2HOST(bt); BT_STATE_CHANGE(BT_STATE_RESET2, SI_SM_CALL_WITH_DELAY); case BT_STATE_RESET2: /* Send a soft reset */ BT_CONTROL(BT_CLR_WR_PTR); HOST2BMC(3); /* number of bytes following */ HOST2BMC(0x18); /* NetFn/LUN == Application, LUN 0 */ HOST2BMC(42); /* Sequence number */ HOST2BMC(3); /* Cmd == Soft reset */ BT_CONTROL(BT_H2B_ATN); bt->timeout = BT_RESET_DELAY * USEC_PER_SEC; BT_STATE_CHANGE(BT_STATE_RESET3, SI_SM_CALL_WITH_DELAY); case BT_STATE_RESET3: /* Hold off everything for a bit */ if (bt->timeout > 0) return SI_SM_CALL_WITH_DELAY; drain_BMC2HOST(bt); BT_STATE_CHANGE(BT_STATE_RESTART, SI_SM_CALL_WITH_DELAY); case BT_STATE_RESTART: /* don't reset retries or seq! */ bt->read_count = 0; bt->nonzero_status = 0; bt->timeout = bt->BT_CAP_req2rsp; BT_STATE_CHANGE(BT_STATE_XACTION_START, SI_SM_CALL_WITH_DELAY); /* * Get BT Capabilities, using timing of upper level state machine. * Set outreqs to prevent infinite loop on timeout. */ case BT_STATE_CAPABILITIES_BEGIN: bt->BT_CAP_outreqs = 1; { unsigned char GetBT_CAP[] = { 0x18, 0x36 }; bt->state = BT_STATE_IDLE; bt_start_transaction(bt, GetBT_CAP, sizeof(GetBT_CAP)); } bt->complete = BT_STATE_CAPABILITIES_END; BT_STATE_CHANGE(BT_STATE_XACTION_START, SI_SM_CALL_WITH_DELAY); case BT_STATE_CAPABILITIES_END: i = bt_get_result(bt, BT_CAP, sizeof(BT_CAP)); bt_init_data(bt, bt->io); if ((i == 8) && !BT_CAP[2]) { bt->BT_CAP_outreqs = BT_CAP[3]; bt->BT_CAP_req2rsp = BT_CAP[6] * USEC_PER_SEC; bt->BT_CAP_retries = BT_CAP[7]; } else printk(KERN_WARNING "IPMI BT: using default values\n"); if (!bt->BT_CAP_outreqs) bt->BT_CAP_outreqs = 1; printk(KERN_WARNING "IPMI BT: req2rsp=%ld secs retries=%d\n", bt->BT_CAP_req2rsp / USEC_PER_SEC, bt->BT_CAP_retries); bt->timeout = bt->BT_CAP_req2rsp; return SI_SM_CALL_WITHOUT_DELAY; default: /* should never occur */ return error_recovery(bt, status, IPMI_ERR_UNSPECIFIED); } return SI_SM_CALL_WITH_DELAY; } static int bt_detect(struct si_sm_data *bt) { /* * It's impossible for the BT status and interrupt registers to be * all 1's, (assuming a properly functioning, self-initialized BMC) * but that's what you get from reading a bogus address, so we * test that first. The calling routine uses negative logic. */ if ((BT_STATUS == 0xFF) && (BT_INTMASK_R == 0xFF)) return 1; reset_flags(bt); return 0; } static void bt_cleanup(struct si_sm_data *bt) { } static int bt_size(void) { return sizeof(struct si_sm_data); } struct si_sm_handlers bt_smi_handlers = { .init_data = bt_init_data, .start_transaction = bt_start_transaction, .get_result = bt_get_result, .event = bt_event, .detect = bt_detect, .cleanup = bt_cleanup, .size = bt_size, };