/******************************************************************************* * * (c) 1998 by Computone Corporation * ******************************************************************************** * * * PACKAGE: Linux tty Device Driver for IntelliPort family of multiport * serial I/O controllers. * * DESCRIPTION: Low-level interface code for the device driver * (This is included source code, not a separate compilation * module.) * *******************************************************************************/ //--------------------------------------------- // Function declarations private to this module //--------------------------------------------- // Functions called only indirectly through i2eBordStr entries. static int iiWriteBuf16(i2eBordStrPtr, unsigned char *, int); static int iiWriteBuf8(i2eBordStrPtr, unsigned char *, int); static int iiReadBuf16(i2eBordStrPtr, unsigned char *, int); static int iiReadBuf8(i2eBordStrPtr, unsigned char *, int); static unsigned short iiReadWord16(i2eBordStrPtr); static unsigned short iiReadWord8(i2eBordStrPtr); static void iiWriteWord16(i2eBordStrPtr, unsigned short); static void iiWriteWord8(i2eBordStrPtr, unsigned short); static int iiWaitForTxEmptyII(i2eBordStrPtr, int); static int iiWaitForTxEmptyIIEX(i2eBordStrPtr, int); static int iiTxMailEmptyII(i2eBordStrPtr); static int iiTxMailEmptyIIEX(i2eBordStrPtr); static int iiTrySendMailII(i2eBordStrPtr, unsigned char); static int iiTrySendMailIIEX(i2eBordStrPtr, unsigned char); static unsigned short iiGetMailII(i2eBordStrPtr); static unsigned short iiGetMailIIEX(i2eBordStrPtr); static void iiEnableMailIrqII(i2eBordStrPtr); static void iiEnableMailIrqIIEX(i2eBordStrPtr); static void iiWriteMaskII(i2eBordStrPtr, unsigned char); static void iiWriteMaskIIEX(i2eBordStrPtr, unsigned char); static void ii2DelayTimer(unsigned int); static void ii2DelayWakeup(unsigned long id); static void ii2Nop(void); //*************** //* Static Data * //*************** static int ii2Safe; // Safe I/O address for delay routine static int iiDelayed; // Set when the iiResetDelay function is // called. Cleared when ANY board is reset. static struct timer_list * pDelayTimer; // Used by iiDelayTimer static wait_queue_head_t pDelayWait; // Used by iiDelayTimer static rwlock_t Dl_spinlock; //******** //* Code * //******** //======================================================= // Initialization Routines // // iiSetAddress // iiReset // iiResetDelay // iiInitialize //======================================================= //****************************************************************************** // Function: iiEllisInit() // Parameters: None // // Returns: Nothing // // Description: // // This routine performs any required initialization of the iiEllis subsystem. // //****************************************************************************** static void iiEllisInit(void) { pDelayTimer = kmalloc ( sizeof (struct timer_list), GFP_KERNEL ); init_timer(pDelayTimer); init_waitqueue_head(&pDelayWait); LOCK_INIT(&Dl_spinlock); } //****************************************************************************** // Function: iiEllisCleanup() // Parameters: None // // Returns: Nothing // // Description: // // This routine performs any required cleanup of the iiEllis subsystem. // //****************************************************************************** static void iiEllisCleanup(void) { kfree(pDelayTimer); } //****************************************************************************** // Function: iiSetAddress(pB, address, delay) // Parameters: pB - pointer to the board structure // address - the purported I/O address of the board // delay - pointer to the 1-ms delay function to use // in this and any future operations to this board // // Returns: True if everything appears copacetic. // False if there is any error: the pB->i2eError field has the error // // Description: // // This routine (roughly) checks for address validity, sets the i2eValid OK and // sets the state to II_STATE_COLD which means that we haven't even sent a reset // yet. // //****************************************************************************** static int iiSetAddress( i2eBordStrPtr pB, int address, delayFunc_t delay ) { // Should any failure occur before init is finished... pB->i2eValid = I2E_INCOMPLETE; // Cannot check upper limit except extremely: Might be microchannel // Address must be on an 8-byte boundary if ((unsigned int)address <= 0x100 || (unsigned int)address >= 0xfff8 || (address & 0x7) ) { COMPLETE(pB,I2EE_BADADDR); } // Initialize accelerators pB->i2eBase = address; pB->i2eData = address + FIFO_DATA; pB->i2eStatus = address + FIFO_STATUS; pB->i2ePointer = address + FIFO_PTR; pB->i2eXMail = address + FIFO_MAIL; pB->i2eXMask = address + FIFO_MASK; // Initialize i/o address for ii2DelayIO ii2Safe = address + FIFO_NOP; // Initialize the delay routine pB->i2eDelay = ((delay != (delayFunc_t)NULL) ? delay : (delayFunc_t)ii2Nop); pB->i2eValid = I2E_MAGIC; pB->i2eState = II_STATE_COLD; COMPLETE(pB, I2EE_GOOD); } //****************************************************************************** // Function: iiReset(pB) // Parameters: pB - pointer to the board structure // // Returns: True if everything appears copacetic. // False if there is any error: the pB->i2eError field has the error // // Description: // // Attempts to reset the board (see also i2hw.h). Normally, we would use this to // reset a board immediately after iiSetAddress(), but it is valid to reset a // board from any state, say, in order to change or re-load loadware. (Under // such circumstances, no reason to re-run iiSetAddress(), which is why it is a // separate routine and not included in this routine. // //****************************************************************************** static int iiReset(i2eBordStrPtr pB) { // Magic number should be set, else even the address is suspect if (pB->i2eValid != I2E_MAGIC) { COMPLETE(pB, I2EE_BADMAGIC); } OUTB(pB->i2eBase + FIFO_RESET, 0); // Any data will do iiDelay(pB, 50); // Pause between resets OUTB(pB->i2eBase + FIFO_RESET, 0); // Second reset // We must wait before even attempting to read anything from the FIFO: the // board's P.O.S.T may actually attempt to read and write its end of the // FIFO in order to check flags, loop back (where supported), etc. On // completion of this testing it would reset the FIFO, and on completion // of all // P.O.S.T., write the message. We must not mistake data which // might have been sent for testing as part of the reset message. To // better utilize time, say, when resetting several boards, we allow the // delay to be performed externally; in this way the caller can reset // several boards, delay a single time, then call the initialization // routine for all. pB->i2eState = II_STATE_RESET; iiDelayed = 0; // i.e., the delay routine hasn't been called since the most // recent reset. // Ensure anything which would have been of use to standard loadware is // blanked out, since board has now forgotten everything!. pB->i2eUsingIrq = IRQ_UNDEFINED; // Not set up to use an interrupt yet pB->i2eWaitingForEmptyFifo = 0; pB->i2eOutMailWaiting = 0; pB->i2eChannelPtr = NULL; pB->i2eChannelCnt = 0; pB->i2eLeadoffWord[0] = 0; pB->i2eFifoInInts = 0; pB->i2eFifoOutInts = 0; pB->i2eFatalTrap = NULL; pB->i2eFatal = 0; COMPLETE(pB, I2EE_GOOD); } //****************************************************************************** // Function: iiResetDelay(pB) // Parameters: pB - pointer to the board structure // // Returns: True if everything appears copacetic. // False if there is any error: the pB->i2eError field has the error // // Description: // // Using the delay defined in board structure, waits two seconds (for board to // reset). // //****************************************************************************** static int iiResetDelay(i2eBordStrPtr pB) { if (pB->i2eValid != I2E_MAGIC) { COMPLETE(pB, I2EE_BADMAGIC); } if (pB->i2eState != II_STATE_RESET) { COMPLETE(pB, I2EE_BADSTATE); } iiDelay(pB,2000); /* Now we wait for two seconds. */ iiDelayed = 1; /* Delay has been called: ok to initialize */ COMPLETE(pB, I2EE_GOOD); } //****************************************************************************** // Function: iiInitialize(pB) // Parameters: pB - pointer to the board structure // // Returns: True if everything appears copacetic. // False if there is any error: the pB->i2eError field has the error // // Description: // // Attempts to read the Power-on reset message. Initializes any remaining fields // in the pB structure. // // This should be called as the third step of a process beginning with // iiReset(), then iiResetDelay(). This routine checks to see that the structure // is "valid" and in the reset state, also confirms that the delay routine has // been called since the latest reset (to any board! overly strong!). // //****************************************************************************** static int iiInitialize(i2eBordStrPtr pB) { int itemp; unsigned char c; unsigned short utemp; unsigned int ilimit; if (pB->i2eValid != I2E_MAGIC) { COMPLETE(pB, I2EE_BADMAGIC); } if (pB->i2eState != II_STATE_RESET || !iiDelayed) { COMPLETE(pB, I2EE_BADSTATE); } // In case there is a failure short of our completely reading the power-up // message. pB->i2eValid = I2E_INCOMPLETE; // Now attempt to read the message. for (itemp = 0; itemp < sizeof(porStr); itemp++) { // We expect the entire message is ready. if (HAS_NO_INPUT(pB)) { pB->i2ePomSize = itemp; COMPLETE(pB, I2EE_PORM_SHORT); } pB->i2ePom.c[itemp] = c = BYTE_FROM(pB); // We check the magic numbers as soon as they are supposed to be read // (rather than after) to minimize effect of reading something we // already suspect can't be "us". if ( (itemp == POR_1_INDEX && c != POR_MAGIC_1) || (itemp == POR_2_INDEX && c != POR_MAGIC_2)) { pB->i2ePomSize = itemp+1; COMPLETE(pB, I2EE_BADMAGIC); } } pB->i2ePomSize = itemp; // Ensure that this was all the data... if (HAS_INPUT(pB)) COMPLETE(pB, I2EE_PORM_LONG); // For now, we'll fail to initialize if P.O.S.T reports bad chip mapper: // Implying we will not be able to download any code either: That's ok: the // condition is pretty explicit. if (pB->i2ePom.e.porDiag1 & POR_BAD_MAPPER) { COMPLETE(pB, I2EE_POSTERR); } // Determine anything which must be done differently depending on the family // of boards! switch (pB->i2ePom.e.porID & POR_ID_FAMILY) { case POR_ID_FII: // IntelliPort-II pB->i2eFifoStyle = FIFO_II; pB->i2eFifoSize = 512; // 512 bytes, always pB->i2eDataWidth16 = NO; pB->i2eMaxIrq = 15; // Because board cannot tell us it is in an 8-bit // slot, we do allow it to be done (documentation!) pB->i2eGoodMap[1] = pB->i2eGoodMap[2] = pB->i2eGoodMap[3] = pB->i2eChannelMap[1] = pB->i2eChannelMap[2] = pB->i2eChannelMap[3] = 0; switch (pB->i2ePom.e.porID & POR_ID_SIZE) { case POR_ID_II_4: pB->i2eGoodMap[0] = pB->i2eChannelMap[0] = 0x0f; // four-port // Since porPorts1 is based on the Hardware ID register, the numbers // should always be consistent for IntelliPort-II. Ditto below... if (pB->i2ePom.e.porPorts1 != 4) { COMPLETE(pB, I2EE_INCONSIST); } break; case POR_ID_II_8: case POR_ID_II_8R: pB->i2eGoodMap[0] = pB->i2eChannelMap[0] = 0xff; // Eight port if (pB->i2ePom.e.porPorts1 != 8) { COMPLETE(pB, I2EE_INCONSIST); } break; case POR_ID_II_6: pB->i2eGoodMap[0] = pB->i2eChannelMap[0] = 0x3f; // Six Port if (pB->i2ePom.e.porPorts1 != 6) { COMPLETE(pB, I2EE_INCONSIST); } break; } // Fix up the "good channel list based on any errors reported. if (pB->i2ePom.e.porDiag1 & POR_BAD_UART1) { pB->i2eGoodMap[0] &= ~0x0f; } if (pB->i2ePom.e.porDiag1 & POR_BAD_UART2) { pB->i2eGoodMap[0] &= ~0xf0; } break; // POR_ID_FII case case POR_ID_FIIEX: // IntelliPort-IIEX pB->i2eFifoStyle = FIFO_IIEX; itemp = pB->i2ePom.e.porFifoSize; // Implicit assumption that fifo would not grow beyond 32k, // nor would ever be less than 256. if (itemp < 8 || itemp > 15) { COMPLETE(pB, I2EE_INCONSIST); } pB->i2eFifoSize = (1 << itemp); // These are based on what P.O.S.T thinks should be there, based on // box ID registers ilimit = pB->i2ePom.e.porNumBoxes; if (ilimit > ABS_MAX_BOXES) { ilimit = ABS_MAX_BOXES; } // For as many boxes as EXIST, gives the type of box. // Added 8/6/93: check for the ISA-4 (asic) which looks like an // expandable but for whom "8 or 16?" is not the right question. utemp = pB->i2ePom.e.porFlags; if (utemp & POR_CEX4) { pB->i2eChannelMap[0] = 0x000f; } else { utemp &= POR_BOXES; for (itemp = 0; itemp < ilimit; itemp++) { pB->i2eChannelMap[itemp] = ((utemp & POR_BOX_16) ? 0xffff : 0x00ff); utemp >>= 1; } } // These are based on what P.O.S.T actually found. utemp = (pB->i2ePom.e.porPorts2 << 8) + pB->i2ePom.e.porPorts1; for (itemp = 0; itemp < ilimit; itemp++) { pB->i2eGoodMap[itemp] = 0; if (utemp & 1) pB->i2eGoodMap[itemp] |= 0x000f; if (utemp & 2) pB->i2eGoodMap[itemp] |= 0x00f0; if (utemp & 4) pB->i2eGoodMap[itemp] |= 0x0f00; if (utemp & 8) pB->i2eGoodMap[itemp] |= 0xf000; utemp >>= 4; } // Now determine whether we should transfer in 8 or 16-bit mode. switch (pB->i2ePom.e.porBus & (POR_BUS_SLOT16 | POR_BUS_DIP16) ) { case POR_BUS_SLOT16 | POR_BUS_DIP16: pB->i2eDataWidth16 = YES; pB->i2eMaxIrq = 15; break; case POR_BUS_SLOT16: pB->i2eDataWidth16 = NO; pB->i2eMaxIrq = 15; break; case 0: case POR_BUS_DIP16: // In an 8-bit slot, DIP switch don't care. default: pB->i2eDataWidth16 = NO; pB->i2eMaxIrq = 7; break; } break; // POR_ID_FIIEX case default: // Unknown type of board COMPLETE(pB, I2EE_BAD_FAMILY); break; } // End the switch based on family // Temporarily, claim there is no room in the outbound fifo. // We will maintain this whenever we check for an empty outbound FIFO. pB->i2eFifoRemains = 0; // Now, based on the bus type, should we expect to be able to re-configure // interrupts (say, for testing purposes). switch (pB->i2ePom.e.porBus & POR_BUS_TYPE) { case POR_BUS_T_ISA: case POR_BUS_T_UNK: // If the type of bus is undeclared, assume ok. pB->i2eChangeIrq = YES; break; case POR_BUS_T_MCA: case POR_BUS_T_EISA: pB->i2eChangeIrq = NO; break; default: COMPLETE(pB, I2EE_BADBUS); } if (pB->i2eDataWidth16 == YES) { pB->i2eWriteBuf = iiWriteBuf16; pB->i2eReadBuf = iiReadBuf16; pB->i2eWriteWord = iiWriteWord16; pB->i2eReadWord = iiReadWord16; } else { pB->i2eWriteBuf = iiWriteBuf8; pB->i2eReadBuf = iiReadBuf8; pB->i2eWriteWord = iiWriteWord8; pB->i2eReadWord = iiReadWord8; } switch(pB->i2eFifoStyle) { case FIFO_II: pB->i2eWaitForTxEmpty = iiWaitForTxEmptyII; pB->i2eTxMailEmpty = iiTxMailEmptyII; pB->i2eTrySendMail = iiTrySendMailII; pB->i2eGetMail = iiGetMailII; pB->i2eEnableMailIrq = iiEnableMailIrqII; pB->i2eWriteMask = iiWriteMaskII; break; case FIFO_IIEX: pB->i2eWaitForTxEmpty = iiWaitForTxEmptyIIEX; pB->i2eTxMailEmpty = iiTxMailEmptyIIEX; pB->i2eTrySendMail = iiTrySendMailIIEX; pB->i2eGetMail = iiGetMailIIEX; pB->i2eEnableMailIrq = iiEnableMailIrqIIEX; pB->i2eWriteMask = iiWriteMaskIIEX; break; default: COMPLETE(pB, I2EE_INCONSIST); } // Initialize state information. pB->i2eState = II_STATE_READY; // Ready to load loadware. // Some Final cleanup: // For some boards, the bootstrap firmware may perform some sort of test // resulting in a stray character pending in the incoming mailbox. If one is // there, it should be read and discarded, especially since for the standard // firmware, it's the mailbox that interrupts the host. pB->i2eStartMail = iiGetMail(pB); // Throw it away and clear the mailbox structure element pB->i2eStartMail = NO_MAIL_HERE; // Everything is ok now, return with good status/ pB->i2eValid = I2E_MAGIC; COMPLETE(pB, I2EE_GOOD); } //======================================================= // Delay Routines // // iiDelayIO // iiNop //======================================================= static void ii2DelayWakeup(unsigned long id) { wake_up_interruptible ( &pDelayWait ); } //****************************************************************************** // Function: ii2DelayTimer(mseconds) // Parameters: mseconds - number of milliseconds to delay // // Returns: Nothing // // Description: // // This routine delays for approximately mseconds milliseconds and is intended // to be called indirectly through i2Delay field in i2eBordStr. It uses the // Linux timer_list mechanism. // // The Linux timers use a unit called "jiffies" which are 10mS in the Intel // architecture. This function rounds the delay period up to the next "jiffy". // In the Alpha architecture the "jiffy" is 1mS, but this driver is not intended // for Alpha platforms at this time. // //****************************************************************************** static void ii2DelayTimer(unsigned int mseconds) { wait_queue_t wait; init_waitqueue_entry(&wait, current); init_timer ( pDelayTimer ); add_wait_queue(&pDelayWait, &wait); set_current_state( TASK_INTERRUPTIBLE ); pDelayTimer->expires = jiffies + ( mseconds + 9 ) / 10; pDelayTimer->function = ii2DelayWakeup; pDelayTimer->data = 0; add_timer ( pDelayTimer ); schedule(); set_current_state( TASK_RUNNING ); remove_wait_queue(&pDelayWait, &wait); del_timer ( pDelayTimer ); } #if 0 //static void ii2DelayIO(unsigned int); //****************************************************************************** // !!! Not Used, this is DOS crap, some of you young folks may be interested in // in how things were done in the stone age of caculating machines !!! // Function: ii2DelayIO(mseconds) // Parameters: mseconds - number of milliseconds to delay // // Returns: Nothing // // Description: // // This routine delays for approximately mseconds milliseconds and is intended // to be called indirectly through i2Delay field in i2eBordStr. It is intended // for use where a clock-based function is impossible: for example, DOS drivers. // // This function uses the IN instruction to place bounds on the timing and // assumes that ii2Safe has been set. This is because I/O instructions are not // subject to caching and will therefore take a certain minimum time. To ensure // the delay is at least long enough on fast machines, it is based on some // fastest-case calculations. On slower machines this may cause VERY long // delays. (3 x fastest case). In the fastest case, everything is cached except // the I/O instruction itself. // // Timing calculations: // The fastest bus speed for I/O operations is likely to be 10 MHz. The I/O // operation in question is a byte operation to an odd address. For 8-bit // operations, the architecture generally enforces two wait states. At 10 MHz, a // single cycle time is 100nS. A read operation at two wait states takes 6 // cycles for a total time of 600nS. Therefore approximately 1666 iterations // would be required to generate a single millisecond delay. The worst // (reasonable) case would be an 8MHz system with no cacheing. In this case, the // I/O instruction would take 125nS x 6 cyles = 750 nS. More importantly, code // fetch of other instructions in the loop would take time (zero wait states, // however) and would be hard to estimate. This is minimized by using in-line // assembler for the in inner loop of IN instructions. This consists of just a // few bytes. So we'll guess about four code fetches per loop. Each code fetch // should take four cycles, so we have 125nS * 8 = 1000nS. Worst case then is // that what should have taken 1 mS takes instead 1666 * (1750) = 2.9 mS. // // So much for theoretical timings: results using 1666 value on some actual // machines: // IBM 286 6MHz 3.15 mS // Zenith 386 33MHz 2.45 mS // (brandX) 386 33MHz 1.90 mS (has cache) // (brandY) 486 33MHz 2.35 mS // NCR 486 ?? 1.65 mS (microchannel) // // For most machines, it is probably safe to scale this number back (remember, // for robust operation use an actual timed delay if possible), so we are using // a value of 1190. This yields 1.17 mS for the fastest machine in our sample, // 1.75 mS for typical 386 machines, and 2.25 mS the absolute slowest machine. // // 1/29/93: // The above timings are too slow. Actual cycle times might be faster. ISA cycle // times could approach 500 nS, and ... // The IBM model 77 being microchannel has no wait states for 8-bit reads and // seems to be accessing the I/O at 440 nS per access (from start of one to // start of next). This would imply we need 1000/.440 = 2272 iterations to // guarantee we are fast enough. In actual testing, we see that 2 * 1190 are in // fact enough. For diagnostics, we keep the level at 1190, but developers note // this needs tuning. // // Safe assumption: 2270 i/o reads = 1 millisecond // //****************************************************************************** static int ii2DelValue = 1190; // See timing calculations below // 1666 for fastest theoretical machine // 1190 safe for most fast 386 machines // 1000 for fastest machine tested here // 540 (sic) for AT286/6Mhz static void ii2DelayIO(unsigned int mseconds) { if (!ii2Safe) return; /* Do nothing if this variable uninitialized */ while(mseconds--) { int i = ii2DelValue; while ( i-- ) { INB ( ii2Safe ); } } } #endif //****************************************************************************** // Function: ii2Nop() // Parameters: None // // Returns: Nothing // // Description: // // iiInitialize will set i2eDelay to this if the delay parameter is NULL. This // saves checking for a NULL pointer at every call. //****************************************************************************** static void ii2Nop(void) { return; // no mystery here } //======================================================= // Routines which are available in 8/16-bit versions, or // in different fifo styles. These are ALL called // indirectly through the board structure. //======================================================= //****************************************************************************** // Function: iiWriteBuf16(pB, address, count) // Parameters: pB - pointer to board structure // address - address of data to write // count - number of data bytes to write // // Returns: True if everything appears copacetic. // False if there is any error: the pB->i2eError field has the error // // Description: // // Writes 'count' bytes from 'address' to the data fifo specified by the board // structure pointer pB. Should count happen to be odd, an extra pad byte is // sent (identity unknown...). Uses 16-bit (word) operations. Is called // indirectly through pB->i2eWriteBuf. // //****************************************************************************** static int iiWriteBuf16(i2eBordStrPtr pB, unsigned char *address, int count) { // Rudimentary sanity checking here. if (pB->i2eValid != I2E_MAGIC) COMPLETE(pB, I2EE_INVALID); OUTSW ( pB->i2eData, address, count); COMPLETE(pB, I2EE_GOOD); } //****************************************************************************** // Function: iiWriteBuf8(pB, address, count) // Parameters: pB - pointer to board structure // address - address of data to write // count - number of data bytes to write // // Returns: True if everything appears copacetic. // False if there is any error: the pB->i2eError field has the error // // Description: // // Writes 'count' bytes from 'address' to the data fifo specified by the board // structure pointer pB. Should count happen to be odd, an extra pad byte is // sent (identity unknown...). This is to be consistent with the 16-bit version. // Uses 8-bit (byte) operations. Is called indirectly through pB->i2eWriteBuf. // //****************************************************************************** static int iiWriteBuf8(i2eBordStrPtr pB, unsigned char *address, int count) { /* Rudimentary sanity checking here */ if (pB->i2eValid != I2E_MAGIC) COMPLETE(pB, I2EE_INVALID); OUTSB ( pB->i2eData, address, count ); COMPLETE(pB, I2EE_GOOD); } //****************************************************************************** // Function: iiReadBuf16(pB, address, count) // Parameters: pB - pointer to board structure // address - address to put data read // count - number of data bytes to read // // Returns: True if everything appears copacetic. // False if there is any error: the pB->i2eError field has the error // // Description: // // Reads 'count' bytes into 'address' from the data fifo specified by the board // structure pointer pB. Should count happen to be odd, an extra pad byte is // received (identity unknown...). Uses 16-bit (word) operations. Is called // indirectly through pB->i2eReadBuf. // //****************************************************************************** static int iiReadBuf16(i2eBordStrPtr pB, unsigned char *address, int count) { // Rudimentary sanity checking here. if (pB->i2eValid != I2E_MAGIC) COMPLETE(pB, I2EE_INVALID); INSW ( pB->i2eData, address, count); COMPLETE(pB, I2EE_GOOD); } //****************************************************************************** // Function: iiReadBuf8(pB, address, count) // Parameters: pB - pointer to board structure // address - address to put data read // count - number of data bytes to read // // Returns: True if everything appears copacetic. // False if there is any error: the pB->i2eError field has the error // // Description: // // Reads 'count' bytes into 'address' from the data fifo specified by the board // structure pointer pB. Should count happen to be odd, an extra pad byte is // received (identity unknown...). This to match the 16-bit behaviour. Uses // 8-bit (byte) operations. Is called indirectly through pB->i2eReadBuf. // //****************************************************************************** static int iiReadBuf8(i2eBordStrPtr pB, unsigned char *address, int count) { // Rudimentary sanity checking here. if (pB->i2eValid != I2E_MAGIC) COMPLETE(pB, I2EE_INVALID); INSB ( pB->i2eData, address, count); COMPLETE(pB, I2EE_GOOD); } //****************************************************************************** // Function: iiReadWord16(pB) // Parameters: pB - pointer to board structure // // Returns: True if everything appears copacetic. // False if there is any error: the pB->i2eError field has the error // // Description: // // Returns the word read from the data fifo specified by the board-structure // pointer pB. Uses a 16-bit operation. Is called indirectly through // pB->i2eReadWord. // //****************************************************************************** static unsigned short iiReadWord16(i2eBordStrPtr pB) { return (unsigned short)( INW(pB->i2eData) ); } //****************************************************************************** // Function: iiReadWord8(pB) // Parameters: pB - pointer to board structure // // Returns: True if everything appears copacetic. // False if there is any error: the pB->i2eError field has the error // // Description: // // Returns the word read from the data fifo specified by the board-structure // pointer pB. Uses two 8-bit operations. Bytes are assumed to be LSB first. Is // called indirectly through pB->i2eReadWord. // //****************************************************************************** static unsigned short iiReadWord8(i2eBordStrPtr pB) { unsigned short urs; urs = INB ( pB->i2eData ); return ( ( INB ( pB->i2eData ) << 8 ) | urs ); } //****************************************************************************** // Function: iiWriteWord16(pB, value) // Parameters: pB - pointer to board structure // value - data to write // // Returns: True if everything appears copacetic. // False if there is any error: the pB->i2eError field has the error // // Description: // // Writes the word 'value' to the data fifo specified by the board-structure // pointer pB. Uses 16-bit operation. Is called indirectly through // pB->i2eWriteWord. // //****************************************************************************** static void iiWriteWord16(i2eBordStrPtr pB, unsigned short value) { WORD_TO(pB, (int)value); } //****************************************************************************** // Function: iiWriteWord8(pB, value) // Parameters: pB - pointer to board structure // value - data to write // // Returns: True if everything appears copacetic. // False if there is any error: the pB->i2eError field has the error // // Description: // // Writes the word 'value' to the data fifo specified by the board-structure // pointer pB. Uses two 8-bit operations (writes LSB first). Is called // indirectly through pB->i2eWriteWord. // //****************************************************************************** static void iiWriteWord8(i2eBordStrPtr pB, unsigned short value) { BYTE_TO(pB, (char)value); BYTE_TO(pB, (char)(value >> 8) ); } //****************************************************************************** // Function: iiWaitForTxEmptyII(pB, mSdelay) // Parameters: pB - pointer to board structure // mSdelay - period to wait before returning // // Returns: True if the FIFO is empty. // False if it not empty in the required time: the pB->i2eError // field has the error. // // Description: // // Waits up to "mSdelay" milliseconds for the outgoing FIFO to become empty; if // not empty by the required time, returns false and error in pB->i2eError, // otherwise returns true. // // mSdelay == 0 is taken to mean must be empty on the first test. // // This version operates on IntelliPort-II - style FIFO's // // Note this routine is organized so that if status is ok there is no delay at // all called either before or after the test. Is called indirectly through // pB->i2eWaitForTxEmpty. // //****************************************************************************** static int iiWaitForTxEmptyII(i2eBordStrPtr pB, int mSdelay) { unsigned long flags; int itemp; for (;;) { // This routine hinges on being able to see the "other" status register // (as seen by the local processor). His incoming fifo is our outgoing // FIFO. // // By the nature of this routine, you would be using this as part of a // larger atomic context: i.e., you would use this routine to ensure the // fifo empty, then act on this information. Between these two halves, // you will generally not want to service interrupts or in any way // disrupt the assumptions implicit in the larger context. // // Even worse, however, this routine "shifts" the status register to // point to the local status register which is not the usual situation. // Therefore for extra safety, we force the critical section to be // completely atomic, and pick up after ourselves before allowing any // interrupts of any kind. WRITE_LOCK_IRQSAVE(&Dl_spinlock,flags) OUTB(pB->i2ePointer, SEL_COMMAND); OUTB(pB->i2ePointer, SEL_CMD_SH); itemp = INB(pB->i2eStatus); OUTB(pB->i2ePointer, SEL_COMMAND); OUTB(pB->i2ePointer, SEL_CMD_UNSH); if (itemp & ST_IN_EMPTY) { UPDATE_FIFO_ROOM(pB); WRITE_UNLOCK_IRQRESTORE(&Dl_spinlock,flags) COMPLETE(pB, I2EE_GOOD); } WRITE_UNLOCK_IRQRESTORE(&Dl_spinlock,flags) if (mSdelay-- == 0) break; iiDelay(pB, 1); /* 1 mS granularity on checking condition */ } COMPLETE(pB, I2EE_TXE_TIME); } //****************************************************************************** // Function: iiWaitForTxEmptyIIEX(pB, mSdelay) // Parameters: pB - pointer to board structure // mSdelay - period to wait before returning // // Returns: True if the FIFO is empty. // False if it not empty in the required time: the pB->i2eError // field has the error. // // Description: // // Waits up to "mSdelay" milliseconds for the outgoing FIFO to become empty; if // not empty by the required time, returns false and error in pB->i2eError, // otherwise returns true. // // mSdelay == 0 is taken to mean must be empty on the first test. // // This version operates on IntelliPort-IIEX - style FIFO's // // Note this routine is organized so that if status is ok there is no delay at // all called either before or after the test. Is called indirectly through // pB->i2eWaitForTxEmpty. // //****************************************************************************** static int iiWaitForTxEmptyIIEX(i2eBordStrPtr pB, int mSdelay) { unsigned long flags; for (;;) { // By the nature of this routine, you would be using this as part of a // larger atomic context: i.e., you would use this routine to ensure the // fifo empty, then act on this information. Between these two halves, // you will generally not want to service interrupts or in any way // disrupt the assumptions implicit in the larger context. WRITE_LOCK_IRQSAVE(&Dl_spinlock,flags) if (INB(pB->i2eStatus) & STE_OUT_MT) { UPDATE_FIFO_ROOM(pB); WRITE_UNLOCK_IRQRESTORE(&Dl_spinlock,flags) COMPLETE(pB, I2EE_GOOD); } WRITE_UNLOCK_IRQRESTORE(&Dl_spinlock,flags) if (mSdelay-- == 0) break; iiDelay(pB, 1); // 1 mS granularity on checking condition } COMPLETE(pB, I2EE_TXE_TIME); } //****************************************************************************** // Function: iiTxMailEmptyII(pB) // Parameters: pB - pointer to board structure // // Returns: True if the transmit mailbox is empty. // False if it not empty. // // Description: // // Returns true or false according to whether the transmit mailbox is empty (and // therefore able to accept more mail) // // This version operates on IntelliPort-II - style FIFO's // //****************************************************************************** static int iiTxMailEmptyII(i2eBordStrPtr pB) { int port = pB->i2ePointer; OUTB ( port, SEL_OUTMAIL ); return ( INB(port) == 0 ); } //****************************************************************************** // Function: iiTxMailEmptyIIEX(pB) // Parameters: pB - pointer to board structure // // Returns: True if the transmit mailbox is empty. // False if it not empty. // // Description: // // Returns true or false according to whether the transmit mailbox is empty (and // therefore able to accept more mail) // // This version operates on IntelliPort-IIEX - style FIFO's // //****************************************************************************** static int iiTxMailEmptyIIEX(i2eBordStrPtr pB) { return !(INB(pB->i2eStatus) & STE_OUT_MAIL); } //****************************************************************************** // Function: iiTrySendMailII(pB,mail) // Parameters: pB - pointer to board structure // mail - value to write to mailbox // // Returns: True if the transmit mailbox is empty, and mail is sent. // False if it not empty. // // Description: // // If outgoing mailbox is empty, sends mail and returns true. If outgoing // mailbox is not empty, returns false. // // This version operates on IntelliPort-II - style FIFO's // //****************************************************************************** static int iiTrySendMailII(i2eBordStrPtr pB, unsigned char mail) { int port = pB->i2ePointer; OUTB(port, SEL_OUTMAIL); if (INB(port) == 0) { OUTB(port, SEL_OUTMAIL); OUTB(port, mail); return 1; } return 0; } //****************************************************************************** // Function: iiTrySendMailIIEX(pB,mail) // Parameters: pB - pointer to board structure // mail - value to write to mailbox // // Returns: True if the transmit mailbox is empty, and mail is sent. // False if it not empty. // // Description: // // If outgoing mailbox is empty, sends mail and returns true. If outgoing // mailbox is not empty, returns false. // // This version operates on IntelliPort-IIEX - style FIFO's // //****************************************************************************** static int iiTrySendMailIIEX(i2eBordStrPtr pB, unsigned char mail) { if(INB(pB->i2eStatus) & STE_OUT_MAIL) { return 0; } OUTB(pB->i2eXMail, mail); return 1; } //****************************************************************************** // Function: iiGetMailII(pB,mail) // Parameters: pB - pointer to board structure // // Returns: Mailbox data or NO_MAIL_HERE. // // Description: // // If no mail available, returns NO_MAIL_HERE otherwise returns the data from // the mailbox, which is guaranteed != NO_MAIL_HERE. // // This version operates on IntelliPort-II - style FIFO's // //****************************************************************************** static unsigned short iiGetMailII(i2eBordStrPtr pB) { if (HAS_MAIL(pB)) { OUTB(pB->i2ePointer, SEL_INMAIL); return INB(pB->i2ePointer); } else { return NO_MAIL_HERE; } } //****************************************************************************** // Function: iiGetMailIIEX(pB,mail) // Parameters: pB - pointer to board structure // // Returns: Mailbox data or NO_MAIL_HERE. // // Description: // // If no mail available, returns NO_MAIL_HERE otherwise returns the data from // the mailbox, which is guaranteed != NO_MAIL_HERE. // // This version operates on IntelliPort-IIEX - style FIFO's // //****************************************************************************** static unsigned short iiGetMailIIEX(i2eBordStrPtr pB) { if (HAS_MAIL(pB)) { return INB(pB->i2eXMail); } else { return NO_MAIL_HERE; } } //****************************************************************************** // Function: iiEnableMailIrqII(pB) // Parameters: pB - pointer to board structure // // Returns: Nothing // // Description: // // Enables board to interrupt host (only) by writing to host's in-bound mailbox. // // This version operates on IntelliPort-II - style FIFO's // //****************************************************************************** static void iiEnableMailIrqII(i2eBordStrPtr pB) { OUTB(pB->i2ePointer, SEL_MASK); OUTB(pB->i2ePointer, ST_IN_MAIL); } //****************************************************************************** // Function: iiEnableMailIrqIIEX(pB) // Parameters: pB - pointer to board structure // // Returns: Nothing // // Description: // // Enables board to interrupt host (only) by writing to host's in-bound mailbox. // // This version operates on IntelliPort-IIEX - style FIFO's // //****************************************************************************** static void iiEnableMailIrqIIEX(i2eBordStrPtr pB) { OUTB(pB->i2eXMask, MX_IN_MAIL); } //****************************************************************************** // Function: iiWriteMaskII(pB) // Parameters: pB - pointer to board structure // // Returns: Nothing // // Description: // // Writes arbitrary value to the mask register. // // This version operates on IntelliPort-II - style FIFO's // //****************************************************************************** static void iiWriteMaskII(i2eBordStrPtr pB, unsigned char value) { OUTB(pB->i2ePointer, SEL_MASK); OUTB(pB->i2ePointer, value); } //****************************************************************************** // Function: iiWriteMaskIIEX(pB) // Parameters: pB - pointer to board structure // // Returns: Nothing // // Description: // // Writes arbitrary value to the mask register. // // This version operates on IntelliPort-IIEX - style FIFO's // //****************************************************************************** static void iiWriteMaskIIEX(i2eBordStrPtr pB, unsigned char value) { OUTB(pB->i2eXMask, value); } //****************************************************************************** // Function: iiDownloadBlock(pB, pSource, isStandard) // Parameters: pB - pointer to board structure // pSource - loadware block to download // isStandard - True if "standard" loadware, else false. // // Returns: Success or Failure // // Description: // // Downloads a single block (at pSource)to the board referenced by pB. Caller // sets isStandard to true/false according to whether the "standard" loadware is // what's being loaded. The normal process, then, is to perform an iiInitialize // to the board, then perform some number of iiDownloadBlocks using the returned // state to determine when download is complete. // // Possible return values: (see I2ELLIS.H) // II_DOWN_BADVALID // II_DOWN_BADFILE // II_DOWN_CONTINUING // II_DOWN_GOOD // II_DOWN_BAD // II_DOWN_BADSTATE // II_DOWN_TIMEOUT // // Uses the i2eState and i2eToLoad fields (initialized at iiInitialize) to // determine whether this is the first block, whether to check for magic // numbers, how many blocks there are to go... // //****************************************************************************** static int iiDownloadBlock ( i2eBordStrPtr pB, loadHdrStrPtr pSource, int isStandard) { int itemp; int loadedFirst; if (pB->i2eValid != I2E_MAGIC) return II_DOWN_BADVALID; switch(pB->i2eState) { case II_STATE_READY: // Loading the first block after reset. Must check the magic number of the // loadfile, store the number of blocks we expect to load. if (pSource->e.loadMagic != MAGIC_LOADFILE) { return II_DOWN_BADFILE; } // Next we store the total number of blocks to load, including this one. pB->i2eToLoad = 1 + pSource->e.loadBlocksMore; // Set the state, store the version numbers. ('Cause this may have come // from a file - we might want to report these versions and revisions in // case of an error! pB->i2eState = II_STATE_LOADING; pB->i2eLVersion = pSource->e.loadVersion; pB->i2eLRevision = pSource->e.loadRevision; pB->i2eLSub = pSource->e.loadSubRevision; // The time and date of compilation is also available but don't bother // storing it for normal purposes. loadedFirst = 1; break; case II_STATE_LOADING: loadedFirst = 0; break; default: return II_DOWN_BADSTATE; } // Now we must be in the II_STATE_LOADING state, and we assume i2eToLoad // must be positive still, because otherwise we would have cleaned up last // time and set the state to II_STATE_LOADED. if (!iiWaitForTxEmpty(pB, MAX_DLOAD_READ_TIME)) { return II_DOWN_TIMEOUT; } if (!iiWriteBuf(pB, pSource->c, LOADWARE_BLOCK_SIZE)) { return II_DOWN_BADVALID; } // If we just loaded the first block, wait for the fifo to empty an extra // long time to allow for any special startup code in the firmware, like // sending status messages to the LCD's. if (loadedFirst) { if (!iiWaitForTxEmpty(pB, MAX_DLOAD_START_TIME)) { return II_DOWN_TIMEOUT; } } // Determine whether this was our last block! if (--(pB->i2eToLoad)) { return II_DOWN_CONTINUING; // more to come... } // It WAS our last block: Clean up operations... // ...Wait for last buffer to drain from the board... if (!iiWaitForTxEmpty(pB, MAX_DLOAD_READ_TIME)) { return II_DOWN_TIMEOUT; } // If there were only a single block written, this would come back // immediately and be harmless, though not strictly necessary. itemp = MAX_DLOAD_ACK_TIME/10; while (--itemp) { if (HAS_INPUT(pB)) { switch(BYTE_FROM(pB)) { case LOADWARE_OK: pB->i2eState = isStandard ? II_STATE_STDLOADED :II_STATE_LOADED; // Some revisions of the bootstrap firmware (e.g. ISA-8 1.0.2) // will, // if there is a debug port attached, require some // time to send information to the debug port now. It will do // this before // executing any of the code we just downloaded. // It may take up to 700 milliseconds. if (pB->i2ePom.e.porDiag2 & POR_DEBUG_PORT) { iiDelay(pB, 700); } return II_DOWN_GOOD; case LOADWARE_BAD: default: return II_DOWN_BAD; } } iiDelay(pB, 10); // 10 mS granularity on checking condition } // Drop-through --> timed out waiting for firmware confirmation pB->i2eState = II_STATE_BADLOAD; return II_DOWN_TIMEOUT; } //****************************************************************************** // Function: iiDownloadAll(pB, pSource, isStandard, size) // Parameters: pB - pointer to board structure // pSource - loadware block to download // isStandard - True if "standard" loadware, else false. // size - size of data to download (in bytes) // // Returns: Success or Failure // // Description: // // Given a pointer to a board structure, a pointer to the beginning of some // loadware, whether it is considered the "standard loadware", and the size of // the array in bytes loads the entire array to the board as loadware. // // Assumes the board has been freshly reset and the power-up reset message read. // (i.e., in II_STATE_READY). Complains if state is bad, or if there seems to be // too much or too little data to load, or if iiDownloadBlock complains. //****************************************************************************** static int iiDownloadAll(i2eBordStrPtr pB, loadHdrStrPtr pSource, int isStandard, int size) { int status; // We know (from context) board should be ready for the first block of // download. Complain if not. if (pB->i2eState != II_STATE_READY) return II_DOWN_BADSTATE; while (size > 0) { size -= LOADWARE_BLOCK_SIZE; // How much data should there be left to // load after the following operation ? // Note we just bump pSource by "one", because its size is actually that // of an entire block, same as LOADWARE_BLOCK_SIZE. status = iiDownloadBlock(pB, pSource++, isStandard); switch(status) { case II_DOWN_GOOD: return ( (size > 0) ? II_DOWN_OVER : II_DOWN_GOOD); case II_DOWN_CONTINUING: break; default: return status; } } // We shouldn't drop out: it means "while" caught us with nothing left to // download, yet the previous DownloadBlock did not return complete. Ergo, // not enough data to match the size byte in the header. return II_DOWN_UNDER; }