/** * \file drm_memory_debug.h * Memory management wrappers for DRM. * * \author Rickard E. (Rik) Faith * \author Gareth Hughes */ /* * Copyright 1999 Precision Insight, Inc., Cedar Park, Texas. * Copyright 2000 VA Linux Systems, Inc., Sunnyvale, California. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include #include "drmP.h" typedef struct drm_mem_stats { const char *name; int succeed_count; int free_count; int fail_count; unsigned long bytes_allocated; unsigned long bytes_freed; } drm_mem_stats_t; static spinlock_t drm_mem_lock = SPIN_LOCK_UNLOCKED; static unsigned long drm_ram_available = 0; /* In pages */ static unsigned long drm_ram_used = 0; static drm_mem_stats_t drm_mem_stats[] = { [DRM_MEM_DMA] = {"dmabufs"}, [DRM_MEM_SAREA] = {"sareas"}, [DRM_MEM_DRIVER] = {"driver"}, [DRM_MEM_MAGIC] = {"magic"}, [DRM_MEM_IOCTLS] = {"ioctltab"}, [DRM_MEM_MAPS] = {"maplist"}, [DRM_MEM_VMAS] = {"vmalist"}, [DRM_MEM_BUFS] = {"buflist"}, [DRM_MEM_SEGS] = {"seglist"}, [DRM_MEM_PAGES] = {"pagelist"}, [DRM_MEM_FILES] = {"files"}, [DRM_MEM_QUEUES] = {"queues"}, [DRM_MEM_CMDS] = {"commands"}, [DRM_MEM_MAPPINGS] = {"mappings"}, [DRM_MEM_BUFLISTS] = {"buflists"}, [DRM_MEM_AGPLISTS] = {"agplist"}, [DRM_MEM_SGLISTS] = {"sglist"}, [DRM_MEM_TOTALAGP] = {"totalagp"}, [DRM_MEM_BOUNDAGP] = {"boundagp"}, [DRM_MEM_CTXBITMAP] = {"ctxbitmap"}, [DRM_MEM_CTXLIST] = {"ctxlist"}, [DRM_MEM_STUB] = {"stub"}, {NULL, 0,} /* Last entry must be null */ }; void drm_mem_init (void) { drm_mem_stats_t *mem; struct sysinfo si; for (mem = drm_mem_stats; mem->name; ++mem) { mem->succeed_count = 0; mem->free_count = 0; mem->fail_count = 0; mem->bytes_allocated = 0; mem->bytes_freed = 0; } si_meminfo(&si); drm_ram_available = si.totalram; drm_ram_used = 0; } /* drm_mem_info is called whenever a process reads /dev/drm/mem. */ static int drm__mem_info (char *buf, char **start, off_t offset, int request, int *eof, void *data) { drm_mem_stats_t *pt; int len = 0; if (offset > DRM_PROC_LIMIT) { *eof = 1; return 0; } *eof = 0; *start = &buf[offset]; DRM_PROC_PRINT(" total counts " " | outstanding \n"); DRM_PROC_PRINT("type alloc freed fail bytes freed" " | allocs bytes\n\n"); DRM_PROC_PRINT("%-9.9s %5d %5d %4d %10lu kB |\n", "system", 0, 0, 0, drm_ram_available << (PAGE_SHIFT - 10)); DRM_PROC_PRINT("%-9.9s %5d %5d %4d %10lu kB |\n", "locked", 0, 0, 0, drm_ram_used >> 10); DRM_PROC_PRINT("\n"); for (pt = drm_mem_stats; pt->name; pt++) { DRM_PROC_PRINT("%-9.9s %5d %5d %4d %10lu %10lu | %6d %10ld\n", pt->name, pt->succeed_count, pt->free_count, pt->fail_count, pt->bytes_allocated, pt->bytes_freed, pt->succeed_count - pt->free_count, (long)pt->bytes_allocated - (long)pt->bytes_freed); } if (len > request + offset) return request; *eof = 1; return len - offset; } int drm_mem_info (char *buf, char **start, off_t offset, int len, int *eof, void *data) { int ret; spin_lock(&drm_mem_lock); ret = drm__mem_info (buf, start, offset, len, eof, data); spin_unlock(&drm_mem_lock); return ret; } void *drm_alloc (size_t size, int area) { void *pt; if (!size) { DRM_MEM_ERROR(area, "Allocating 0 bytes\n"); return NULL; } if (!(pt = kmalloc(size, GFP_KERNEL))) { spin_lock(&drm_mem_lock); ++drm_mem_stats[area].fail_count; spin_unlock(&drm_mem_lock); return NULL; } spin_lock(&drm_mem_lock); ++drm_mem_stats[area].succeed_count; drm_mem_stats[area].bytes_allocated += size; spin_unlock(&drm_mem_lock); return pt; } void *drm_calloc (size_t nmemb, size_t size, int area) { void *addr; addr = drm_alloc (nmemb * size, area); if (addr != NULL) memset((void *)addr, 0, size * nmemb); return addr; } void *drm_realloc (void *oldpt, size_t oldsize, size_t size, int area) { void *pt; if (!(pt = drm_alloc (size, area))) return NULL; if (oldpt && oldsize) { memcpy(pt, oldpt, oldsize); drm_free (oldpt, oldsize, area); } return pt; } void drm_free (void *pt, size_t size, int area) { int alloc_count; int free_count; if (!pt) DRM_MEM_ERROR(area, "Attempt to free NULL pointer\n"); else kfree(pt); spin_lock(&drm_mem_lock); drm_mem_stats[area].bytes_freed += size; free_count = ++drm_mem_stats[area].free_count; alloc_count = drm_mem_stats[area].succeed_count; spin_unlock(&drm_mem_lock); if (free_count > alloc_count) { DRM_MEM_ERROR(area, "Excess frees: %d frees, %d allocs\n", free_count, alloc_count); } } void *drm_ioremap (unsigned long offset, unsigned long size, drm_device_t * dev) { void *pt; if (!size) { DRM_MEM_ERROR(DRM_MEM_MAPPINGS, "Mapping 0 bytes at 0x%08lx\n", offset); return NULL; } if (!(pt = drm_ioremap(offset, size, dev))) { spin_lock(&drm_mem_lock); ++drm_mem_stats[DRM_MEM_MAPPINGS].fail_count; spin_unlock(&drm_mem_lock); return NULL; } spin_lock(&drm_mem_lock); ++drm_mem_stats[DRM_MEM_MAPPINGS].succeed_count; drm_mem_stats[DRM_MEM_MAPPINGS].bytes_allocated += size; spin_unlock(&drm_mem_lock); return pt; } #if 0 void *drm_ioremap_nocache (unsigned long offset, unsigned long size, drm_device_t * dev) { void *pt; if (!size) { DRM_MEM_ERROR(DRM_MEM_MAPPINGS, "Mapping 0 bytes at 0x%08lx\n", offset); return NULL; } if (!(pt = drm_ioremap_nocache(offset, size, dev))) { spin_lock(&drm_mem_lock); ++drm_mem_stats[DRM_MEM_MAPPINGS].fail_count; spin_unlock(&drm_mem_lock); return NULL; } spin_lock(&drm_mem_lock); ++drm_mem_stats[DRM_MEM_MAPPINGS].succeed_count; drm_mem_stats[DRM_MEM_MAPPINGS].bytes_allocated += size; spin_unlock(&drm_mem_lock); return pt; } #endif /* 0 */ void drm_ioremapfree (void *pt, unsigned long size, drm_device_t * dev) { int alloc_count; int free_count; if (!pt) DRM_MEM_ERROR(DRM_MEM_MAPPINGS, "Attempt to free NULL pointer\n"); else drm_ioremapfree(pt, size, dev); spin_lock(&drm_mem_lock); drm_mem_stats[DRM_MEM_MAPPINGS].bytes_freed += size; free_count = ++drm_mem_stats[DRM_MEM_MAPPINGS].free_count; alloc_count = drm_mem_stats[DRM_MEM_MAPPINGS].succeed_count; spin_unlock(&drm_mem_lock); if (free_count > alloc_count) { DRM_MEM_ERROR(DRM_MEM_MAPPINGS, "Excess frees: %d frees, %d allocs\n", free_count, alloc_count); } } #if __OS_HAS_AGP DRM_AGP_MEM *drm_alloc_agp (drm_device_t *dev, int pages, u32 type) { DRM_AGP_MEM *handle; if (!pages) { DRM_MEM_ERROR(DRM_MEM_TOTALAGP, "Allocating 0 pages\n"); return NULL; } if ((handle = drm_agp_allocate_memory (pages, type))) { spin_lock(&drm_mem_lock); ++drm_mem_stats[DRM_MEM_TOTALAGP].succeed_count; drm_mem_stats[DRM_MEM_TOTALAGP].bytes_allocated += pages << PAGE_SHIFT; spin_unlock(&drm_mem_lock); return handle; } spin_lock(&drm_mem_lock); ++drm_mem_stats[DRM_MEM_TOTALAGP].fail_count; spin_unlock(&drm_mem_lock); return NULL; } int drm_free_agp (DRM_AGP_MEM * handle, int pages) { int alloc_count; int free_count; int retval = -EINVAL; if (!handle) { DRM_MEM_ERROR(DRM_MEM_TOTALAGP, "Attempt to free NULL AGP handle\n"); return retval; } if (drm_agp_free_memory (handle)) { spin_lock(&drm_mem_lock); free_count = ++drm_mem_stats[DRM_MEM_TOTALAGP].free_count; alloc_count = drm_mem_stats[DRM_MEM_TOTALAGP].succeed_count; drm_mem_stats[DRM_MEM_TOTALAGP].bytes_freed += pages << PAGE_SHIFT; spin_unlock(&drm_mem_lock); if (free_count > alloc_count) { DRM_MEM_ERROR(DRM_MEM_TOTALAGP, "Excess frees: %d frees, %d allocs\n", free_count, alloc_count); } return 0; } return retval; } int drm_bind_agp (DRM_AGP_MEM * handle, unsigned int start) { int retcode = -EINVAL; if (!handle) { DRM_MEM_ERROR(DRM_MEM_BOUNDAGP, "Attempt to bind NULL AGP handle\n"); return retcode; } if (!(retcode = drm_agp_bind_memory (handle, start))) { spin_lock(&drm_mem_lock); ++drm_mem_stats[DRM_MEM_BOUNDAGP].succeed_count; drm_mem_stats[DRM_MEM_BOUNDAGP].bytes_allocated += handle->page_count << PAGE_SHIFT; spin_unlock(&drm_mem_lock); return retcode; } spin_lock(&drm_mem_lock); ++drm_mem_stats[DRM_MEM_BOUNDAGP].fail_count; spin_unlock(&drm_mem_lock); return retcode; } int drm_unbind_agp (DRM_AGP_MEM * handle) { int alloc_count; int free_count; int retcode = -EINVAL; if (!handle) { DRM_MEM_ERROR(DRM_MEM_BOUNDAGP, "Attempt to unbind NULL AGP handle\n"); return retcode; } if ((retcode = drm_agp_unbind_memory (handle))) return retcode; spin_lock(&drm_mem_lock); free_count = ++drm_mem_stats[DRM_MEM_BOUNDAGP].free_count; alloc_count = drm_mem_stats[DRM_MEM_BOUNDAGP].succeed_count; drm_mem_stats[DRM_MEM_BOUNDAGP].bytes_freed += handle->page_count << PAGE_SHIFT; spin_unlock(&drm_mem_lock); if (free_count > alloc_count) { DRM_MEM_ERROR(DRM_MEM_BOUNDAGP, "Excess frees: %d frees, %d allocs\n", free_count, alloc_count); } return retcode; } #endif