/* * acpi_power.c - ACPI Bus Power Management ($Revision: 39 $) * * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ /* * ACPI power-managed devices may be controlled in two ways: * 1. via "Device Specific (D-State) Control" * 2. via "Power Resource Control". * This module is used to manage devices relying on Power Resource Control. * * An ACPI "power resource object" describes a software controllable power * plane, clock plane, or other resource used by a power managed device. * A device may rely on multiple power resources, and a power resource * may be shared by multiple devices. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/pm_runtime.h> #include <acpi/acpi_bus.h> #include <acpi/acpi_drivers.h> #include "sleep.h" #include "internal.h" #define PREFIX "ACPI: " #define _COMPONENT ACPI_POWER_COMPONENT ACPI_MODULE_NAME("power"); #define ACPI_POWER_CLASS "power_resource" #define ACPI_POWER_DEVICE_NAME "Power Resource" #define ACPI_POWER_FILE_INFO "info" #define ACPI_POWER_FILE_STATUS "state" #define ACPI_POWER_RESOURCE_STATE_OFF 0x00 #define ACPI_POWER_RESOURCE_STATE_ON 0x01 #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF static int acpi_power_add(struct acpi_device *device); static int acpi_power_remove(struct acpi_device *device, int type); static int acpi_power_resume(struct acpi_device *device); static const struct acpi_device_id power_device_ids[] = { {ACPI_POWER_HID, 0}, {"", 0}, }; MODULE_DEVICE_TABLE(acpi, power_device_ids); static struct acpi_driver acpi_power_driver = { .name = "power", .class = ACPI_POWER_CLASS, .ids = power_device_ids, .ops = { .add = acpi_power_add, .remove = acpi_power_remove, .resume = acpi_power_resume, }, }; /* * A power managed device * A device may rely on multiple power resources. * */ struct acpi_power_managed_device { struct device *dev; /* The physical device */ acpi_handle *handle; }; struct acpi_power_resource_device { struct acpi_power_managed_device *device; struct acpi_power_resource_device *next; }; struct acpi_power_resource { struct acpi_device * device; acpi_bus_id name; u32 system_level; u32 order; unsigned int ref_count; struct mutex resource_lock; /* List of devices relying on this power resource */ struct acpi_power_resource_device *devices; }; static struct list_head acpi_power_resource_list; /* -------------------------------------------------------------------------- Power Resource Management -------------------------------------------------------------------------- */ static int acpi_power_get_context(acpi_handle handle, struct acpi_power_resource **resource) { int result = 0; struct acpi_device *device = NULL; if (!resource) return -ENODEV; result = acpi_bus_get_device(handle, &device); if (result) { printk(KERN_WARNING PREFIX "Getting context [%p]\n", handle); return result; } *resource = acpi_driver_data(device); if (!*resource) return -ENODEV; return 0; } static int acpi_power_get_state(acpi_handle handle, int *state) { acpi_status status = AE_OK; unsigned long long sta = 0; char node_name[5]; struct acpi_buffer buffer = { sizeof(node_name), node_name }; if (!handle || !state) return -EINVAL; status = acpi_evaluate_integer(handle, "_STA", NULL, &sta); if (ACPI_FAILURE(status)) return -ENODEV; *state = (sta & 0x01)?ACPI_POWER_RESOURCE_STATE_ON: ACPI_POWER_RESOURCE_STATE_OFF; acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer); ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource [%s] is %s\n", node_name, *state ? "on" : "off")); return 0; } static int acpi_power_get_list_state(struct acpi_handle_list *list, int *state) { int cur_state; int i = 0; if (!list || !state) return -EINVAL; /* The state of the list is 'on' IFF all resources are 'on'. */ for (i = 0; i < list->count; i++) { struct acpi_power_resource *resource; acpi_handle handle = list->handles[i]; int result; result = acpi_power_get_context(handle, &resource); if (result) return result; mutex_lock(&resource->resource_lock); result = acpi_power_get_state(handle, &cur_state); mutex_unlock(&resource->resource_lock); if (result) return result; if (cur_state != ACPI_POWER_RESOURCE_STATE_ON) break; } ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource list is %s\n", cur_state ? "on" : "off")); *state = cur_state; return 0; } /* Resume the device when all power resources in _PR0 are on */ static void acpi_power_on_device(struct acpi_power_managed_device *device) { struct acpi_device *acpi_dev; acpi_handle handle = device->handle; int state; if (acpi_bus_get_device(handle, &acpi_dev)) return; if(acpi_power_get_inferred_state(acpi_dev, &state)) return; if (state == ACPI_STATE_D0 && pm_runtime_suspended(device->dev)) pm_request_resume(device->dev); } static int __acpi_power_on(struct acpi_power_resource *resource) { struct acpi_power_resource_device *device_list = resource->devices; acpi_status status = AE_OK; status = acpi_evaluate_object(resource->device->handle, "_ON", NULL, NULL); if (ACPI_FAILURE(status)) return -ENODEV; /* Update the power resource's _device_ power state */ resource->device->power.state = ACPI_STATE_D0; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned on\n", resource->name)); while (device_list) { acpi_power_on_device(device_list->device); device_list = device_list->next; } return 0; } static int acpi_power_on(acpi_handle handle) { int result = 0; struct acpi_power_resource *resource = NULL; result = acpi_power_get_context(handle, &resource); if (result) return result; mutex_lock(&resource->resource_lock); if (resource->ref_count++) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] already on", resource->name)); } else { result = __acpi_power_on(resource); if (result) resource->ref_count--; } mutex_unlock(&resource->resource_lock); return result; } static int acpi_power_off(acpi_handle handle) { int result = 0; acpi_status status = AE_OK; struct acpi_power_resource *resource = NULL; result = acpi_power_get_context(handle, &resource); if (result) return result; mutex_lock(&resource->resource_lock); if (!resource->ref_count) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] already off", resource->name)); goto unlock; } if (--resource->ref_count) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] still in use\n", resource->name)); goto unlock; } status = acpi_evaluate_object(resource->device->handle, "_OFF", NULL, NULL); if (ACPI_FAILURE(status)) { result = -ENODEV; } else { /* Update the power resource's _device_ power state */ resource->device->power.state = ACPI_STATE_D3; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned off\n", resource->name)); } unlock: mutex_unlock(&resource->resource_lock); return result; } static void __acpi_power_off_list(struct acpi_handle_list *list, int num_res) { int i; for (i = num_res - 1; i >= 0 ; i--) acpi_power_off(list->handles[i]); } static void acpi_power_off_list(struct acpi_handle_list *list) { __acpi_power_off_list(list, list->count); } static int acpi_power_on_list(struct acpi_handle_list *list) { int result = 0; int i; for (i = 0; i < list->count; i++) { result = acpi_power_on(list->handles[i]); if (result) { __acpi_power_off_list(list, i); break; } } return result; } static void __acpi_power_resource_unregister_device(struct device *dev, acpi_handle res_handle) { struct acpi_power_resource *resource = NULL; struct acpi_power_resource_device *prev, *curr; if (acpi_power_get_context(res_handle, &resource)) return; mutex_lock(&resource->resource_lock); prev = NULL; curr = resource->devices; while (curr) { if (curr->device->dev == dev) { if (!prev) resource->devices = curr->next; else prev->next = curr->next; kfree(curr); break; } prev = curr; curr = curr->next; } mutex_unlock(&resource->resource_lock); } /* Unlink dev from all power resources in _PR0 */ void acpi_power_resource_unregister_device(struct device *dev, acpi_handle handle) { struct acpi_device *acpi_dev; struct acpi_handle_list *list; int i; if (!dev || !handle) return; if (acpi_bus_get_device(handle, &acpi_dev)) return; list = &acpi_dev->power.states[ACPI_STATE_D0].resources; for (i = 0; i < list->count; i++) __acpi_power_resource_unregister_device(dev, list->handles[i]); } static int __acpi_power_resource_register_device( struct acpi_power_managed_device *powered_device, acpi_handle handle) { struct acpi_power_resource *resource = NULL; struct acpi_power_resource_device *power_resource_device; int result; result = acpi_power_get_context(handle, &resource); if (result) return result; power_resource_device = kzalloc( sizeof(*power_resource_device), GFP_KERNEL); if (!power_resource_device) return -ENOMEM; power_resource_device->device = powered_device; mutex_lock(&resource->resource_lock); power_resource_device->next = resource->devices; resource->devices = power_resource_device; mutex_unlock(&resource->resource_lock); return 0; } /* Link dev to all power resources in _PR0 */ int acpi_power_resource_register_device(struct device *dev, acpi_handle handle) { struct acpi_device *acpi_dev; struct acpi_handle_list *list; struct acpi_power_managed_device *powered_device; int i, ret; if (!dev || !handle) return -ENODEV; ret = acpi_bus_get_device(handle, &acpi_dev); if (ret) goto no_power_resource; if (!acpi_dev->power.flags.power_resources) goto no_power_resource; powered_device = kzalloc(sizeof(*powered_device), GFP_KERNEL); if (!powered_device) return -ENOMEM; powered_device->dev = dev; powered_device->handle = handle; list = &acpi_dev->power.states[ACPI_STATE_D0].resources; for (i = 0; i < list->count; i++) { ret = __acpi_power_resource_register_device(powered_device, list->handles[i]); if (ret) { acpi_power_resource_unregister_device(dev, handle); break; } } return ret; no_power_resource: printk(KERN_WARNING PREFIX "Invalid Power Resource to register!"); return -ENODEV; } /** * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in * ACPI 3.0) _PSW (Power State Wake) * @dev: Device to handle. * @enable: 0 - disable, 1 - enable the wake capabilities of the device. * @sleep_state: Target sleep state of the system. * @dev_state: Target power state of the device. * * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power * State Wake) for the device, if present. On failure reset the device's * wakeup.flags.valid flag. * * RETURN VALUE: * 0 if either _DSW or _PSW has been successfully executed * 0 if neither _DSW nor _PSW has been found * -ENODEV if the execution of either _DSW or _PSW has failed */ int acpi_device_sleep_wake(struct acpi_device *dev, int enable, int sleep_state, int dev_state) { union acpi_object in_arg[3]; struct acpi_object_list arg_list = { 3, in_arg }; acpi_status status = AE_OK; /* * Try to execute _DSW first. * * Three agruments are needed for the _DSW object: * Argument 0: enable/disable the wake capabilities * Argument 1: target system state * Argument 2: target device state * When _DSW object is called to disable the wake capabilities, maybe * the first argument is filled. The values of the other two agruments * are meaningless. */ in_arg[0].type = ACPI_TYPE_INTEGER; in_arg[0].integer.value = enable; in_arg[1].type = ACPI_TYPE_INTEGER; in_arg[1].integer.value = sleep_state; in_arg[2].type = ACPI_TYPE_INTEGER; in_arg[2].integer.value = dev_state; status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL); if (ACPI_SUCCESS(status)) { return 0; } else if (status != AE_NOT_FOUND) { printk(KERN_ERR PREFIX "_DSW execution failed\n"); dev->wakeup.flags.valid = 0; return -ENODEV; } /* Execute _PSW */ arg_list.count = 1; in_arg[0].integer.value = enable; status = acpi_evaluate_object(dev->handle, "_PSW", &arg_list, NULL); if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) { printk(KERN_ERR PREFIX "_PSW execution failed\n"); dev->wakeup.flags.valid = 0; return -ENODEV; } return 0; } /* * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229): * 1. Power on the power resources required for the wakeup device * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power * State Wake) for the device, if present */ int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state) { int i, err = 0; if (!dev || !dev->wakeup.flags.valid) return -EINVAL; mutex_lock(&acpi_device_lock); if (dev->wakeup.prepare_count++) goto out; /* Open power resource */ for (i = 0; i < dev->wakeup.resources.count; i++) { int ret = acpi_power_on(dev->wakeup.resources.handles[i]); if (ret) { printk(KERN_ERR PREFIX "Transition power state\n"); dev->wakeup.flags.valid = 0; err = -ENODEV; goto err_out; } } /* * Passing 3 as the third argument below means the device may be placed * in arbitrary power state afterwards. */ err = acpi_device_sleep_wake(dev, 1, sleep_state, 3); err_out: if (err) dev->wakeup.prepare_count = 0; out: mutex_unlock(&acpi_device_lock); return err; } /* * Shutdown a wakeup device, counterpart of above method * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power * State Wake) for the device, if present * 2. Shutdown down the power resources */ int acpi_disable_wakeup_device_power(struct acpi_device *dev) { int i, err = 0; if (!dev || !dev->wakeup.flags.valid) return -EINVAL; mutex_lock(&acpi_device_lock); if (--dev->wakeup.prepare_count > 0) goto out; /* * Executing the code below even if prepare_count is already zero when * the function is called may be useful, for example for initialisation. */ if (dev->wakeup.prepare_count < 0) dev->wakeup.prepare_count = 0; err = acpi_device_sleep_wake(dev, 0, 0, 0); if (err) goto out; /* Close power resource */ for (i = 0; i < dev->wakeup.resources.count; i++) { int ret = acpi_power_off(dev->wakeup.resources.handles[i]); if (ret) { printk(KERN_ERR PREFIX "Transition power state\n"); dev->wakeup.flags.valid = 0; err = -ENODEV; goto out; } } out: mutex_unlock(&acpi_device_lock); return err; } /* -------------------------------------------------------------------------- Device Power Management -------------------------------------------------------------------------- */ int acpi_power_get_inferred_state(struct acpi_device *device, int *state) { int result = 0; struct acpi_handle_list *list = NULL; int list_state = 0; int i = 0; if (!device || !state) return -EINVAL; /* * We know a device's inferred power state when all the resources * required for a given D-state are 'on'. */ for (i = ACPI_STATE_D0; i < ACPI_STATE_D3; i++) { list = &device->power.states[i].resources; if (list->count < 1) continue; result = acpi_power_get_list_state(list, &list_state); if (result) return result; if (list_state == ACPI_POWER_RESOURCE_STATE_ON) { *state = i; return 0; } } *state = ACPI_STATE_D3; return 0; } int acpi_power_on_resources(struct acpi_device *device, int state) { if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3) return -EINVAL; return acpi_power_on_list(&device->power.states[state].resources); } int acpi_power_transition(struct acpi_device *device, int state) { int result; if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD)) return -EINVAL; if (device->power.state == state) return 0; if ((device->power.state < ACPI_STATE_D0) || (device->power.state > ACPI_STATE_D3_COLD)) return -ENODEV; /* TBD: Resources must be ordered. */ /* * First we reference all power resources required in the target list * (e.g. so the device doesn't lose power while transitioning). Then, * we dereference all power resources used in the current list. */ result = acpi_power_on_list(&device->power.states[state].resources); if (!result) acpi_power_off_list( &device->power.states[device->power.state].resources); /* We shouldn't change the state unless the above operations succeed. */ device->power.state = result ? ACPI_STATE_UNKNOWN : state; return result; } /* -------------------------------------------------------------------------- Driver Interface -------------------------------------------------------------------------- */ static int acpi_power_add(struct acpi_device *device) { int result = 0, state; acpi_status status = AE_OK; struct acpi_power_resource *resource = NULL; union acpi_object acpi_object; struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object }; if (!device) return -EINVAL; resource = kzalloc(sizeof(struct acpi_power_resource), GFP_KERNEL); if (!resource) return -ENOMEM; resource->device = device; mutex_init(&resource->resource_lock); strcpy(resource->name, device->pnp.bus_id); strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME); strcpy(acpi_device_class(device), ACPI_POWER_CLASS); device->driver_data = resource; /* Evalute the object to get the system level and resource order. */ status = acpi_evaluate_object(device->handle, NULL, NULL, &buffer); if (ACPI_FAILURE(status)) { result = -ENODEV; goto end; } resource->system_level = acpi_object.power_resource.system_level; resource->order = acpi_object.power_resource.resource_order; result = acpi_power_get_state(device->handle, &state); if (result) goto end; switch (state) { case ACPI_POWER_RESOURCE_STATE_ON: device->power.state = ACPI_STATE_D0; break; case ACPI_POWER_RESOURCE_STATE_OFF: device->power.state = ACPI_STATE_D3; break; default: device->power.state = ACPI_STATE_UNKNOWN; break; } printk(KERN_INFO PREFIX "%s [%s] (%s)\n", acpi_device_name(device), acpi_device_bid(device), state ? "on" : "off"); end: if (result) kfree(resource); return result; } static int acpi_power_remove(struct acpi_device *device, int type) { struct acpi_power_resource *resource; if (!device) return -EINVAL; resource = acpi_driver_data(device); if (!resource) return -EINVAL; kfree(resource); return 0; } static int acpi_power_resume(struct acpi_device *device) { int result = 0, state; struct acpi_power_resource *resource; if (!device) return -EINVAL; resource = acpi_driver_data(device); if (!resource) return -EINVAL; mutex_lock(&resource->resource_lock); result = acpi_power_get_state(device->handle, &state); if (result) goto unlock; if (state == ACPI_POWER_RESOURCE_STATE_OFF && resource->ref_count) result = __acpi_power_on(resource); unlock: mutex_unlock(&resource->resource_lock); return result; } int __init acpi_power_init(void) { INIT_LIST_HEAD(&acpi_power_resource_list); return acpi_bus_register_driver(&acpi_power_driver); }