/* Parse a signed PE binary * * Copyright (C) 2014 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public Licence * as published by the Free Software Foundation; either version * 2 of the Licence, or (at your option) any later version. */ #define pr_fmt(fmt) "PEFILE: "fmt #include #include #include #include #include #include #include #include #include "verify_pefile.h" /* * Parse a PE binary. */ static int pefile_parse_binary(const void *pebuf, unsigned int pelen, struct pefile_context *ctx) { const struct mz_hdr *mz = pebuf; const struct pe_hdr *pe; const struct pe32_opt_hdr *pe32; const struct pe32plus_opt_hdr *pe64; const struct data_directory *ddir; const struct data_dirent *dde; const struct section_header *secs, *sec; size_t cursor, datalen = pelen; kenter(""); #define chkaddr(base, x, s) \ do { \ if ((x) < base || (s) >= datalen || (x) > datalen - (s)) \ return -ELIBBAD; \ } while (0) chkaddr(0, 0, sizeof(*mz)); if (mz->magic != MZ_MAGIC) return -ELIBBAD; cursor = sizeof(*mz); chkaddr(cursor, mz->peaddr, sizeof(*pe)); pe = pebuf + mz->peaddr; if (pe->magic != PE_MAGIC) return -ELIBBAD; cursor = mz->peaddr + sizeof(*pe); chkaddr(0, cursor, sizeof(pe32->magic)); pe32 = pebuf + cursor; pe64 = pebuf + cursor; switch (pe32->magic) { case PE_OPT_MAGIC_PE32: chkaddr(0, cursor, sizeof(*pe32)); ctx->image_checksum_offset = (unsigned long)&pe32->csum - (unsigned long)pebuf; ctx->header_size = pe32->header_size; cursor += sizeof(*pe32); ctx->n_data_dirents = pe32->data_dirs; break; case PE_OPT_MAGIC_PE32PLUS: chkaddr(0, cursor, sizeof(*pe64)); ctx->image_checksum_offset = (unsigned long)&pe64->csum - (unsigned long)pebuf; ctx->header_size = pe64->header_size; cursor += sizeof(*pe64); ctx->n_data_dirents = pe64->data_dirs; break; default: pr_debug("Unknown PEOPT magic = %04hx\n", pe32->magic); return -ELIBBAD; } pr_debug("checksum @ %x\n", ctx->image_checksum_offset); pr_debug("header size = %x\n", ctx->header_size); if (cursor >= ctx->header_size || ctx->header_size >= datalen) return -ELIBBAD; if (ctx->n_data_dirents > (ctx->header_size - cursor) / sizeof(*dde)) return -ELIBBAD; ddir = pebuf + cursor; cursor += sizeof(*dde) * ctx->n_data_dirents; ctx->cert_dirent_offset = (unsigned long)&ddir->certs - (unsigned long)pebuf; ctx->certs_size = ddir->certs.size; if (!ddir->certs.virtual_address || !ddir->certs.size) { pr_debug("Unsigned PE binary\n"); return -EKEYREJECTED; } chkaddr(ctx->header_size, ddir->certs.virtual_address, ddir->certs.size); ctx->sig_offset = ddir->certs.virtual_address; ctx->sig_len = ddir->certs.size; pr_debug("cert = %x @%x [%*ph]\n", ctx->sig_len, ctx->sig_offset, ctx->sig_len, pebuf + ctx->sig_offset); ctx->n_sections = pe->sections; if (ctx->n_sections > (ctx->header_size - cursor) / sizeof(*sec)) return -ELIBBAD; ctx->secs = secs = pebuf + cursor; return 0; } /* * Check and strip the PE wrapper from around the signature and check that the * remnant looks something like PKCS#7. */ static int pefile_strip_sig_wrapper(const void *pebuf, struct pefile_context *ctx) { struct win_certificate wrapper; const u8 *pkcs7; unsigned len; if (ctx->sig_len < sizeof(wrapper)) { pr_debug("Signature wrapper too short\n"); return -ELIBBAD; } memcpy(&wrapper, pebuf + ctx->sig_offset, sizeof(wrapper)); pr_debug("sig wrapper = { %x, %x, %x }\n", wrapper.length, wrapper.revision, wrapper.cert_type); /* Both pesign and sbsign round up the length of certificate table * (in optional header data directories) to 8 byte alignment. */ if (round_up(wrapper.length, 8) != ctx->sig_len) { pr_debug("Signature wrapper len wrong\n"); return -ELIBBAD; } if (wrapper.revision != WIN_CERT_REVISION_2_0) { pr_debug("Signature is not revision 2.0\n"); return -ENOTSUPP; } if (wrapper.cert_type != WIN_CERT_TYPE_PKCS_SIGNED_DATA) { pr_debug("Signature certificate type is not PKCS\n"); return -ENOTSUPP; } /* It looks like the pkcs signature length in wrapper->length and the * size obtained from the data dir entries, which lists the total size * of certificate table, are both aligned to an octaword boundary, so * we may have to deal with some padding. */ ctx->sig_len = wrapper.length; ctx->sig_offset += sizeof(wrapper); ctx->sig_len -= sizeof(wrapper); if (ctx->sig_len < 4) { pr_debug("Signature data missing\n"); return -EKEYREJECTED; } /* What's left should be a PKCS#7 cert */ pkcs7 = pebuf + ctx->sig_offset; if (pkcs7[0] != (ASN1_CONS_BIT | ASN1_SEQ)) goto not_pkcs7; switch (pkcs7[1]) { case 0 ... 0x7f: len = pkcs7[1] + 2; goto check_len; case ASN1_INDEFINITE_LENGTH: return 0; case 0x81: len = pkcs7[2] + 3; goto check_len; case 0x82: len = ((pkcs7[2] << 8) | pkcs7[3]) + 4; goto check_len; case 0x83 ... 0xff: return -EMSGSIZE; default: goto not_pkcs7; } check_len: if (len <= ctx->sig_len) { /* There may be padding */ ctx->sig_len = len; return 0; } not_pkcs7: pr_debug("Signature data not PKCS#7\n"); return -ELIBBAD; } /* * Compare two sections for canonicalisation. */ static int pefile_compare_shdrs(const void *a, const void *b) { const struct section_header *shdra = a; const struct section_header *shdrb = b; int rc; if (shdra->data_addr > shdrb->data_addr) return 1; if (shdrb->data_addr > shdra->data_addr) return -1; if (shdra->virtual_address > shdrb->virtual_address) return 1; if (shdrb->virtual_address > shdra->virtual_address) return -1; rc = strcmp(shdra->name, shdrb->name); if (rc != 0) return rc; if (shdra->virtual_size > shdrb->virtual_size) return 1; if (shdrb->virtual_size > shdra->virtual_size) return -1; if (shdra->raw_data_size > shdrb->raw_data_size) return 1; if (shdrb->raw_data_size > shdra->raw_data_size) return -1; return 0; } /* * Load the contents of the PE binary into the digest, leaving out the image * checksum and the certificate data block. */ static int pefile_digest_pe_contents(const void *pebuf, unsigned int pelen, struct pefile_context *ctx, struct shash_desc *desc) { unsigned *canon, tmp, loop, i, hashed_bytes; int ret; /* Digest the header and data directory, but leave out the image * checksum and the data dirent for the signature. */ ret = crypto_shash_update(desc, pebuf, ctx->image_checksum_offset); if (ret < 0) return ret; tmp = ctx->image_checksum_offset + sizeof(uint32_t); ret = crypto_shash_update(desc, pebuf + tmp, ctx->cert_dirent_offset - tmp); if (ret < 0) return ret; tmp = ctx->cert_dirent_offset + sizeof(struct data_dirent); ret = crypto_shash_update(desc, pebuf + tmp, ctx->header_size - tmp); if (ret < 0) return ret; canon = kcalloc(ctx->n_sections, sizeof(unsigned), GFP_KERNEL); if (!canon) return -ENOMEM; /* We have to canonicalise the section table, so we perform an * insertion sort. */ canon[0] = 0; for (loop = 1; loop < ctx->n_sections; loop++) { for (i = 0; i < loop; i++) { if (pefile_compare_shdrs(&ctx->secs[canon[i]], &ctx->secs[loop]) > 0) { memmove(&canon[i + 1], &canon[i], (loop - i) * sizeof(canon[0])); break; } } canon[i] = loop; } hashed_bytes = ctx->header_size; for (loop = 0; loop < ctx->n_sections; loop++) { i = canon[loop]; if (ctx->secs[i].raw_data_size == 0) continue; ret = crypto_shash_update(desc, pebuf + ctx->secs[i].data_addr, ctx->secs[i].raw_data_size); if (ret < 0) { kfree(canon); return ret; } hashed_bytes += ctx->secs[i].raw_data_size; } kfree(canon); if (pelen > hashed_bytes) { tmp = hashed_bytes + ctx->certs_size; ret = crypto_shash_update(desc, pebuf + hashed_bytes, pelen - tmp); if (ret < 0) return ret; } return 0; } /* * Digest the contents of the PE binary, leaving out the image checksum and the * certificate data block. */ static int pefile_digest_pe(const void *pebuf, unsigned int pelen, struct pefile_context *ctx) { struct crypto_shash *tfm; struct shash_desc *desc; size_t digest_size, desc_size; void *digest; int ret; kenter(",%u", ctx->digest_algo); /* Allocate the hashing algorithm we're going to need and find out how * big the hash operational data will be. */ tfm = crypto_alloc_shash(hash_algo_name[ctx->digest_algo], 0, 0); if (IS_ERR(tfm)) return (PTR_ERR(tfm) == -ENOENT) ? -ENOPKG : PTR_ERR(tfm); desc_size = crypto_shash_descsize(tfm) + sizeof(*desc); digest_size = crypto_shash_digestsize(tfm); if (digest_size != ctx->digest_len) { pr_debug("Digest size mismatch (%zx != %x)\n", digest_size, ctx->digest_len); ret = -EBADMSG; goto error_no_desc; } pr_debug("Digest: desc=%zu size=%zu\n", desc_size, digest_size); ret = -ENOMEM; desc = kzalloc(desc_size + digest_size, GFP_KERNEL); if (!desc) goto error_no_desc; desc->tfm = tfm; desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; ret = crypto_shash_init(desc); if (ret < 0) goto error; ret = pefile_digest_pe_contents(pebuf, pelen, ctx, desc); if (ret < 0) goto error; digest = (void *)desc + desc_size; ret = crypto_shash_final(desc, digest); if (ret < 0) goto error; pr_debug("Digest calc = [%*ph]\n", ctx->digest_len, digest); /* Check that the PE file digest matches that in the MSCODE part of the * PKCS#7 certificate. */ if (memcmp(digest, ctx->digest, ctx->digest_len) != 0) { pr_debug("Digest mismatch\n"); ret = -EKEYREJECTED; } else { pr_debug("The digests match!\n"); } error: kfree(desc); error_no_desc: crypto_free_shash(tfm); kleave(" = %d", ret); return ret; } /** * verify_pefile_signature - Verify the signature on a PE binary image * @pebuf: Buffer containing the PE binary image * @pelen: Length of the binary image * @trust_keyring: Signing certificates to use as starting points * @_trusted: Set to true if trustworth, false otherwise * * Validate that the certificate chain inside the PKCS#7 message inside the PE * binary image intersects keys we already know and trust. * * Returns, in order of descending priority: * * (*) -ELIBBAD if the image cannot be parsed, or: * * (*) -EKEYREJECTED if a signature failed to match for which we have a valid * key, or: * * (*) 0 if at least one signature chain intersects with the keys in the trust * keyring, or: * * (*) -ENOPKG if a suitable crypto module couldn't be found for a check on a * chain. * * (*) -ENOKEY if we couldn't find a match for any of the signature chains in * the message. * * May also return -ENOMEM. */ int verify_pefile_signature(const void *pebuf, unsigned pelen, struct key *trusted_keyring, bool *_trusted) { struct pkcs7_message *pkcs7; struct pefile_context ctx; const void *data; size_t datalen; int ret; kenter(""); memset(&ctx, 0, sizeof(ctx)); ret = pefile_parse_binary(pebuf, pelen, &ctx); if (ret < 0) return ret; ret = pefile_strip_sig_wrapper(pebuf, &ctx); if (ret < 0) return ret; pkcs7 = pkcs7_parse_message(pebuf + ctx.sig_offset, ctx.sig_len); if (IS_ERR(pkcs7)) return PTR_ERR(pkcs7); ctx.pkcs7 = pkcs7; ret = pkcs7_get_content_data(ctx.pkcs7, &data, &datalen, false); if (ret < 0 || datalen == 0) { pr_devel("PKCS#7 message does not contain data\n"); ret = -EBADMSG; goto error; } ret = mscode_parse(&ctx); if (ret < 0) goto error; pr_debug("Digest: %u [%*ph]\n", ctx.digest_len, ctx.digest_len, ctx.digest); /* Generate the digest and check against the PKCS7 certificate * contents. */ ret = pefile_digest_pe(pebuf, pelen, &ctx); if (ret < 0) goto error; ret = pkcs7_verify(pkcs7); if (ret < 0) goto error; ret = pkcs7_validate_trust(pkcs7, trusted_keyring, _trusted); error: pkcs7_free_message(ctx.pkcs7); return ret; }