/* * arch/x86_64/lib/csum-partial.c * * This file contains network checksum routines that are better done * in an architecture-specific manner due to speed. */ #include #include #include #define __force_inline inline __attribute__((always_inline)) static inline unsigned short from32to16(unsigned a) { unsigned short b = a >> 16; asm("addw %w2,%w0\n\t" "adcw $0,%w0\n" : "=r" (b) : "0" (b), "r" (a)); return b; } /* * Do a 64-bit checksum on an arbitrary memory area. * Returns a 32bit checksum. * * This isn't as time critical as it used to be because many NICs * do hardware checksumming these days. * * Things tried and found to not make it faster: * Manual Prefetching * Unrolling to an 128 bytes inner loop. * Using interleaving with more registers to break the carry chains. */ static __force_inline unsigned do_csum(const unsigned char *buff, unsigned len) { unsigned odd, count; unsigned long result = 0; if (unlikely(len == 0)) return result; odd = 1 & (unsigned long) buff; if (unlikely(odd)) { result = *buff << 8; len--; buff++; } count = len >> 1; /* nr of 16-bit words.. */ if (count) { if (2 & (unsigned long) buff) { result += *(unsigned short *)buff; count--; len -= 2; buff += 2; } count >>= 1; /* nr of 32-bit words.. */ if (count) { unsigned long zero; unsigned count64; if (4 & (unsigned long) buff) { result += *(unsigned int *) buff; count--; len -= 4; buff += 4; } count >>= 1; /* nr of 64-bit words.. */ /* main loop using 64byte blocks */ zero = 0; count64 = count >> 3; while (count64) { asm("addq 0*8(%[src]),%[res]\n\t" "adcq 1*8(%[src]),%[res]\n\t" "adcq 2*8(%[src]),%[res]\n\t" "adcq 3*8(%[src]),%[res]\n\t" "adcq 4*8(%[src]),%[res]\n\t" "adcq 5*8(%[src]),%[res]\n\t" "adcq 6*8(%[src]),%[res]\n\t" "adcq 7*8(%[src]),%[res]\n\t" "adcq %[zero],%[res]" : [res] "=r" (result) : [src] "r" (buff), [zero] "r" (zero), "[res]" (result)); buff += 64; count64--; } /* last upto 7 8byte blocks */ count %= 8; while (count) { asm("addq %1,%0\n\t" "adcq %2,%0\n" : "=r" (result) : "m" (*(unsigned long *)buff), "r" (zero), "0" (result)); --count; buff += 8; } result = add32_with_carry(result>>32, result&0xffffffff); if (len & 4) { result += *(unsigned int *) buff; buff += 4; } } if (len & 2) { result += *(unsigned short *) buff; buff += 2; } } if (len & 1) result += *buff; result = add32_with_carry(result>>32, result & 0xffffffff); if (unlikely(odd)) { result = from32to16(result); result = ((result >> 8) & 0xff) | ((result & 0xff) << 8); } return result; } /* * computes the checksum of a memory block at buff, length len, * and adds in "sum" (32-bit) * * returns a 32-bit number suitable for feeding into itself * or csum_tcpudp_magic * * this function must be called with even lengths, except * for the last fragment, which may be odd * * it's best to have buff aligned on a 64-bit boundary */ unsigned csum_partial(const unsigned char *buff, unsigned len, unsigned sum) { return add32_with_carry(do_csum(buff, len), sum); } EXPORT_SYMBOL(csum_partial); /* * this routine is used for miscellaneous IP-like checksums, mainly * in icmp.c */ unsigned short ip_compute_csum(unsigned char * buff, int len) { return csum_fold(csum_partial(buff,len,0)); }