/* * Generic VM initialization for x86-64 NUMA setups. * Copyright 2002,2003 Andi Kleen, SuSE Labs. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct pglist_data *node_data[MAX_NUMNODES] __read_mostly; EXPORT_SYMBOL(node_data); struct memnode memnode; s16 apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = { [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE }; int numa_off __initdata; static unsigned long __initdata nodemap_addr; static unsigned long __initdata nodemap_size; DEFINE_PER_CPU(int, node_number) = 0; EXPORT_PER_CPU_SYMBOL(node_number); /* * Map cpu index to node index */ DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE); EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map); /* * Given a shift value, try to populate memnodemap[] * Returns : * 1 if OK * 0 if memnodmap[] too small (of shift too small) * -1 if node overlap or lost ram (shift too big) */ static int __init populate_memnodemap(const struct bootnode *nodes, int numnodes, int shift, int *nodeids) { unsigned long addr, end; int i, res = -1; memset(memnodemap, 0xff, sizeof(s16)*memnodemapsize); for (i = 0; i < numnodes; i++) { addr = nodes[i].start; end = nodes[i].end; if (addr >= end) continue; if ((end >> shift) >= memnodemapsize) return 0; do { if (memnodemap[addr >> shift] != NUMA_NO_NODE) return -1; if (!nodeids) memnodemap[addr >> shift] = i; else memnodemap[addr >> shift] = nodeids[i]; addr += (1UL << shift); } while (addr < end); res = 1; } return res; } static int __init allocate_cachealigned_memnodemap(void) { unsigned long addr; memnodemap = memnode.embedded_map; if (memnodemapsize <= ARRAY_SIZE(memnode.embedded_map)) return 0; addr = 0x8000; nodemap_size = roundup(sizeof(s16) * memnodemapsize, L1_CACHE_BYTES); nodemap_addr = find_e820_area(addr, max_pfn<= end) continue; bitfield |= start; nodes_used++; if (end > memtop) memtop = end; } if (nodes_used <= 1) i = 63; else i = find_first_bit(&bitfield, sizeof(unsigned long)*8); memnodemapsize = (memtop >> i)+1; return i; } int __init compute_hash_shift(struct bootnode *nodes, int numnodes, int *nodeids) { int shift; shift = extract_lsb_from_nodes(nodes, numnodes); if (allocate_cachealigned_memnodemap()) return -1; printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n", shift); if (populate_memnodemap(nodes, numnodes, shift, nodeids) != 1) { printk(KERN_INFO "Your memory is not aligned you need to " "rebuild your kernel with a bigger NODEMAPSIZE " "shift=%d\n", shift); return -1; } return shift; } int __meminit __early_pfn_to_nid(unsigned long pfn) { return phys_to_nid(pfn << PAGE_SHIFT); } static void * __init early_node_mem(int nodeid, unsigned long start, unsigned long end, unsigned long size, unsigned long align) { unsigned long mem = find_e820_area(start, end, size, align); void *ptr; if (mem != -1L) return __va(mem); ptr = __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS)); if (ptr == NULL) { printk(KERN_ERR "Cannot find %lu bytes in node %d\n", size, nodeid); return NULL; } return ptr; } /* Initialize bootmem allocator for a node */ void __init setup_node_bootmem(int nodeid, unsigned long start, unsigned long end) { unsigned long start_pfn, last_pfn, bootmap_pages, bootmap_size; const int pgdat_size = roundup(sizeof(pg_data_t), PAGE_SIZE); unsigned long bootmap_start, nodedata_phys; void *bootmap; int nid; if (!end) return; /* * Don't confuse VM with a node that doesn't have the * minimum amount of memory: */ if (end && (end - start) < NODE_MIN_SIZE) return; start = roundup(start, ZONE_ALIGN); printk(KERN_INFO "Bootmem setup node %d %016lx-%016lx\n", nodeid, start, end); start_pfn = start >> PAGE_SHIFT; last_pfn = end >> PAGE_SHIFT; node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size, SMP_CACHE_BYTES); if (node_data[nodeid] == NULL) return; nodedata_phys = __pa(node_data[nodeid]); printk(KERN_INFO " NODE_DATA [%016lx - %016lx]\n", nodedata_phys, nodedata_phys + pgdat_size - 1); memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t)); NODE_DATA(nodeid)->bdata = &bootmem_node_data[nodeid]; NODE_DATA(nodeid)->node_start_pfn = start_pfn; NODE_DATA(nodeid)->node_spanned_pages = last_pfn - start_pfn; /* * Find a place for the bootmem map * nodedata_phys could be on other nodes by alloc_bootmem, * so need to sure bootmap_start not to be small, otherwise * early_node_mem will get that with find_e820_area instead * of alloc_bootmem, that could clash with reserved range */ bootmap_pages = bootmem_bootmap_pages(last_pfn - start_pfn); nid = phys_to_nid(nodedata_phys); if (nid == nodeid) bootmap_start = roundup(nodedata_phys + pgdat_size, PAGE_SIZE); else bootmap_start = roundup(start, PAGE_SIZE); /* * SMP_CACHE_BYTES could be enough, but init_bootmem_node like * to use that to align to PAGE_SIZE */ bootmap = early_node_mem(nodeid, bootmap_start, end, bootmap_pages<= end) { /* * only need to free it if it is from other node * bootmem */ if (nid != nodeid) free_bootmem(nodedata_phys, pgdat_size); } node_data[nodeid] = NULL; return; } bootmap_start = __pa(bootmap); bootmap_size = init_bootmem_node(NODE_DATA(nodeid), bootmap_start >> PAGE_SHIFT, start_pfn, last_pfn); printk(KERN_INFO " bootmap [%016lx - %016lx] pages %lx\n", bootmap_start, bootmap_start + bootmap_size - 1, bootmap_pages); free_bootmem_with_active_regions(nodeid, end); /* * convert early reserve to bootmem reserve earlier * otherwise early_node_mem could use early reserved mem * on previous node */ early_res_to_bootmem(start, end); /* * in some case early_node_mem could use alloc_bootmem * to get range on other node, don't reserve that again */ if (nid != nodeid) printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nodeid, nid); else reserve_bootmem_node(NODE_DATA(nodeid), nodedata_phys, pgdat_size, BOOTMEM_DEFAULT); nid = phys_to_nid(bootmap_start); if (nid != nodeid) printk(KERN_INFO " bootmap(%d) on node %d\n", nodeid, nid); else reserve_bootmem_node(NODE_DATA(nodeid), bootmap_start, bootmap_pages<node * mapping. To avoid this fill in the mapping for all possible CPUs, * as the number of CPUs is not known yet. We round robin the existing * nodes. */ void __init numa_init_array(void) { int rr, i; rr = first_node(node_online_map); for (i = 0; i < nr_cpu_ids; i++) { if (early_cpu_to_node(i) != NUMA_NO_NODE) continue; numa_set_node(i, rr); rr = next_node(rr, node_online_map); if (rr == MAX_NUMNODES) rr = first_node(node_online_map); } } #ifdef CONFIG_NUMA_EMU /* Numa emulation */ static struct bootnode nodes[MAX_NUMNODES] __initdata; static struct bootnode physnodes[MAX_NUMNODES] __initdata; static char *cmdline __initdata; static int __init setup_physnodes(unsigned long start, unsigned long end, int acpi, int k8) { int nr_nodes = 0; int ret = 0; int i; #ifdef CONFIG_ACPI_NUMA if (acpi) nr_nodes = acpi_get_nodes(physnodes); #endif #ifdef CONFIG_K8_NUMA if (k8) nr_nodes = k8_get_nodes(physnodes); #endif /* * Basic sanity checking on the physical node map: there may be errors * if the SRAT or K8 incorrectly reported the topology or the mem= * kernel parameter is used. */ for (i = 0; i < nr_nodes; i++) { if (physnodes[i].start == physnodes[i].end) continue; if (physnodes[i].start > end) { physnodes[i].end = physnodes[i].start; continue; } if (physnodes[i].end < start) { physnodes[i].start = physnodes[i].end; continue; } if (physnodes[i].start < start) physnodes[i].start = start; if (physnodes[i].end > end) physnodes[i].end = end; } /* * Remove all nodes that have no memory or were truncated because of the * limited address range. */ for (i = 0; i < nr_nodes; i++) { if (physnodes[i].start == physnodes[i].end) continue; physnodes[ret].start = physnodes[i].start; physnodes[ret].end = physnodes[i].end; ret++; } /* * If no physical topology was detected, a single node is faked to cover * the entire address space. */ if (!ret) { physnodes[ret].start = start; physnodes[ret].end = end; ret = 1; } return ret; } /* * Setups up nid to range from addr to addr + size. If the end * boundary is greater than max_addr, then max_addr is used instead. * The return value is 0 if there is additional memory left for * allocation past addr and -1 otherwise. addr is adjusted to be at * the end of the node. */ static int __init setup_node_range(int nid, u64 *addr, u64 size, u64 max_addr) { int ret = 0; nodes[nid].start = *addr; *addr += size; if (*addr >= max_addr) { *addr = max_addr; ret = -1; } nodes[nid].end = *addr; node_set(nid, node_possible_map); printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid, nodes[nid].start, nodes[nid].end, (nodes[nid].end - nodes[nid].start) >> 20); return ret; } /* * Sets up nr_nodes fake nodes interleaved over physical nodes ranging from addr * to max_addr. The return value is the number of nodes allocated. */ static int __init split_nodes_interleave(u64 addr, u64 max_addr, int nr_phys_nodes, int nr_nodes) { nodemask_t physnode_mask = NODE_MASK_NONE; u64 size; int big; int ret = 0; int i; if (nr_nodes <= 0) return -1; if (nr_nodes > MAX_NUMNODES) { pr_info("numa=fake=%d too large, reducing to %d\n", nr_nodes, MAX_NUMNODES); nr_nodes = MAX_NUMNODES; } size = (max_addr - addr - e820_hole_size(addr, max_addr)) / nr_nodes; /* * Calculate the number of big nodes that can be allocated as a result * of consolidating the remainder. */ big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * nr_nodes) / FAKE_NODE_MIN_SIZE; size &= FAKE_NODE_MIN_HASH_MASK; if (!size) { pr_err("Not enough memory for each node. " "NUMA emulation disabled.\n"); return -1; } for (i = 0; i < nr_phys_nodes; i++) if (physnodes[i].start != physnodes[i].end) node_set(i, physnode_mask); /* * Continue to fill physical nodes with fake nodes until there is no * memory left on any of them. */ while (nodes_weight(physnode_mask)) { for_each_node_mask(i, physnode_mask) { u64 end = physnodes[i].start + size; u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN); if (ret < big) end += FAKE_NODE_MIN_SIZE; /* * Continue to add memory to this fake node if its * non-reserved memory is less than the per-node size. */ while (end - physnodes[i].start - e820_hole_size(physnodes[i].start, end) < size) { end += FAKE_NODE_MIN_SIZE; if (end > physnodes[i].end) { end = physnodes[i].end; break; } } /* * If there won't be at least FAKE_NODE_MIN_SIZE of * non-reserved memory in ZONE_DMA32 for the next node, * this one must extend to the boundary. */ if (end < dma32_end && dma32_end - end - e820_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE) end = dma32_end; /* * If there won't be enough non-reserved memory for the * next node, this one must extend to the end of the * physical node. */ if (physnodes[i].end - end - e820_hole_size(end, physnodes[i].end) < size) end = physnodes[i].end; /* * Avoid allocating more nodes than requested, which can * happen as a result of rounding down each node's size * to FAKE_NODE_MIN_SIZE. */ if (nodes_weight(physnode_mask) + ret >= nr_nodes) end = physnodes[i].end; if (setup_node_range(ret++, &physnodes[i].start, end - physnodes[i].start, physnodes[i].end) < 0) node_clear(i, physnode_mask); } } return ret; } /* * Returns the end address of a node so that there is at least `size' amount of * non-reserved memory or `max_addr' is reached. */ static u64 __init find_end_of_node(u64 start, u64 max_addr, u64 size) { u64 end = start + size; while (end - start - e820_hole_size(start, end) < size) { end += FAKE_NODE_MIN_SIZE; if (end > max_addr) { end = max_addr; break; } } return end; } /* * Sets up fake nodes of `size' interleaved over physical nodes ranging from * `addr' to `max_addr'. The return value is the number of nodes allocated. */ static int __init split_nodes_size_interleave(u64 addr, u64 max_addr, u64 size) { nodemask_t physnode_mask = NODE_MASK_NONE; u64 min_size; int ret = 0; int i; if (!size) return -1; /* * The limit on emulated nodes is MAX_NUMNODES, so the size per node is * increased accordingly if the requested size is too small. This * creates a uniform distribution of node sizes across the entire * machine (but not necessarily over physical nodes). */ min_size = (max_addr - addr - e820_hole_size(addr, max_addr)) / MAX_NUMNODES; min_size = max(min_size, FAKE_NODE_MIN_SIZE); if ((min_size & FAKE_NODE_MIN_HASH_MASK) < min_size) min_size = (min_size + FAKE_NODE_MIN_SIZE) & FAKE_NODE_MIN_HASH_MASK; if (size < min_size) { pr_err("Fake node size %LuMB too small, increasing to %LuMB\n", size >> 20, min_size >> 20); size = min_size; } size &= FAKE_NODE_MIN_HASH_MASK; for (i = 0; i < MAX_NUMNODES; i++) if (physnodes[i].start != physnodes[i].end) node_set(i, physnode_mask); /* * Fill physical nodes with fake nodes of size until there is no memory * left on any of them. */ while (nodes_weight(physnode_mask)) { for_each_node_mask(i, physnode_mask) { u64 dma32_end = MAX_DMA32_PFN << PAGE_SHIFT; u64 end; end = find_end_of_node(physnodes[i].start, physnodes[i].end, size); /* * If there won't be at least FAKE_NODE_MIN_SIZE of * non-reserved memory in ZONE_DMA32 for the next node, * this one must extend to the boundary. */ if (end < dma32_end && dma32_end - end - e820_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE) end = dma32_end; /* * If there won't be enough non-reserved memory for the * next node, this one must extend to the end of the * physical node. */ if (physnodes[i].end - end - e820_hole_size(end, physnodes[i].end) < size) end = physnodes[i].end; /* * Setup the fake node that will be allocated as bootmem * later. If setup_node_range() returns non-zero, there * is no more memory available on this physical node. */ if (setup_node_range(ret++, &physnodes[i].start, end - physnodes[i].start, physnodes[i].end) < 0) node_clear(i, physnode_mask); } } return ret; } /* * Splits num_nodes nodes up equally starting at node_start. The return value * is the number of nodes split up and addr is adjusted to be at the end of the * last node allocated. */ static int __init split_nodes_equally(u64 *addr, u64 max_addr, int node_start, int num_nodes) { unsigned int big; u64 size; int i; if (num_nodes <= 0) return -1; if (num_nodes > MAX_NUMNODES) num_nodes = MAX_NUMNODES; size = (max_addr - *addr - e820_hole_size(*addr, max_addr)) / num_nodes; /* * Calculate the number of big nodes that can be allocated as a result * of consolidating the leftovers. */ big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * num_nodes) / FAKE_NODE_MIN_SIZE; /* Round down to nearest FAKE_NODE_MIN_SIZE. */ size &= FAKE_NODE_MIN_HASH_MASK; if (!size) { printk(KERN_ERR "Not enough memory for each node. " "NUMA emulation disabled.\n"); return -1; } for (i = node_start; i < num_nodes + node_start; i++) { u64 end = *addr + size; if (i < big) end += FAKE_NODE_MIN_SIZE; /* * The final node can have the remaining system RAM. Other * nodes receive roughly the same amount of available pages. */ if (i == num_nodes + node_start - 1) end = max_addr; else end = find_end_of_node(*addr, max_addr, size); if (setup_node_range(i, addr, end - *addr, max_addr) < 0) break; } return i - node_start + 1; } /* * Splits the remaining system RAM into chunks of size. The remaining memory is * always assigned to a final node and can be asymmetric. Returns the number of * nodes split. */ static int __init split_nodes_by_size(u64 *addr, u64 max_addr, int node_start, u64 size) { int i = node_start; size = (size << 20) & FAKE_NODE_MIN_HASH_MASK; while (!setup_node_range(i++, addr, size, max_addr)) ; return i - node_start; } /* * Sets up the system RAM area from start_pfn to last_pfn according to the * numa=fake command-line option. */ static int __init numa_emulation(unsigned long start_pfn, unsigned long last_pfn, int acpi, int k8) { u64 size, addr = start_pfn << PAGE_SHIFT; u64 max_addr = last_pfn << PAGE_SHIFT; int num_nodes = 0, num = 0, coeff_flag, coeff = -1, i; int num_phys_nodes; num_phys_nodes = setup_physnodes(addr, max_addr, acpi, k8); /* * If the numa=fake command-line contains a 'M' or 'G', it represents * the fixed node size. */ if (strchr(cmdline, 'M') || strchr(cmdline, 'G')) { size = memparse(cmdline, &cmdline); num_nodes = split_nodes_size_interleave(addr, max_addr, size); if (num_nodes < 0) return num_nodes; goto out; } /* * If the numa=fake command-line is just a single number N, split the * system RAM into N fake nodes. */ if (!strchr(cmdline, '*') && !strchr(cmdline, ',')) { long n = simple_strtol(cmdline, NULL, 0); num_nodes = split_nodes_interleave(addr, max_addr, num_phys_nodes, n); if (num_nodes < 0) return num_nodes; goto out; } /* Parse the command line. */ for (coeff_flag = 0; ; cmdline++) { if (*cmdline && isdigit(*cmdline)) { num = num * 10 + *cmdline - '0'; continue; } if (*cmdline == '*') { if (num > 0) coeff = num; coeff_flag = 1; } if (!*cmdline || *cmdline == ',') { if (!coeff_flag) coeff = 1; /* * Round down to the nearest FAKE_NODE_MIN_SIZE. * Command-line coefficients are in megabytes. */ size = ((u64)num << 20) & FAKE_NODE_MIN_HASH_MASK; if (size) for (i = 0; i < coeff; i++, num_nodes++) if (setup_node_range(num_nodes, &addr, size, max_addr) < 0) goto done; if (!*cmdline) break; coeff_flag = 0; coeff = -1; } num = 0; } done: if (!num_nodes) return -1; /* Fill remainder of system RAM, if appropriate. */ if (addr < max_addr) { if (coeff_flag && coeff < 0) { /* Split remaining nodes into num-sized chunks */ num_nodes += split_nodes_by_size(&addr, max_addr, num_nodes, num); goto out; } switch (*(cmdline - 1)) { case '*': /* Split remaining nodes into coeff chunks */ if (coeff <= 0) break; num_nodes += split_nodes_equally(&addr, max_addr, num_nodes, coeff); break; case ',': /* Do not allocate remaining system RAM */ break; default: /* Give one final node */ setup_node_range(num_nodes, &addr, max_addr - addr, max_addr); num_nodes++; } } out: memnode_shift = compute_hash_shift(nodes, num_nodes, NULL); if (memnode_shift < 0) { memnode_shift = 0; printk(KERN_ERR "No NUMA hash function found. NUMA emulation " "disabled.\n"); return -1; } /* * We need to vacate all active ranges that may have been registered for * the e820 memory map. */ remove_all_active_ranges(); for_each_node_mask(i, node_possible_map) { e820_register_active_regions(i, nodes[i].start >> PAGE_SHIFT, nodes[i].end >> PAGE_SHIFT); setup_node_bootmem(i, nodes[i].start, nodes[i].end); } acpi_fake_nodes(nodes, num_nodes); numa_init_array(); return 0; } #endif /* CONFIG_NUMA_EMU */ void __init initmem_init(unsigned long start_pfn, unsigned long last_pfn, int acpi, int k8) { int i; nodes_clear(node_possible_map); nodes_clear(node_online_map); #ifdef CONFIG_NUMA_EMU if (cmdline && !numa_emulation(start_pfn, last_pfn, acpi, k8)) return; nodes_clear(node_possible_map); nodes_clear(node_online_map); #endif #ifdef CONFIG_ACPI_NUMA if (!numa_off && acpi && !acpi_scan_nodes(start_pfn << PAGE_SHIFT, last_pfn << PAGE_SHIFT)) return; nodes_clear(node_possible_map); nodes_clear(node_online_map); #endif #ifdef CONFIG_K8_NUMA if (!numa_off && k8 && !k8_scan_nodes()) return; nodes_clear(node_possible_map); nodes_clear(node_online_map); #endif printk(KERN_INFO "%s\n", numa_off ? "NUMA turned off" : "No NUMA configuration found"); printk(KERN_INFO "Faking a node at %016lx-%016lx\n", start_pfn << PAGE_SHIFT, last_pfn << PAGE_SHIFT); /* setup dummy node covering all memory */ memnode_shift = 63; memnodemap = memnode.embedded_map; memnodemap[0] = 0; node_set_online(0); node_set(0, node_possible_map); for (i = 0; i < nr_cpu_ids; i++) numa_set_node(i, 0); e820_register_active_regions(0, start_pfn, last_pfn); setup_node_bootmem(0, start_pfn << PAGE_SHIFT, last_pfn << PAGE_SHIFT); } unsigned long __init numa_free_all_bootmem(void) { unsigned long pages = 0; int i; for_each_online_node(i) pages += free_all_bootmem_node(NODE_DATA(i)); return pages; } static __init int numa_setup(char *opt) { if (!opt) return -EINVAL; if (!strncmp(opt, "off", 3)) numa_off = 1; #ifdef CONFIG_NUMA_EMU if (!strncmp(opt, "fake=", 5)) cmdline = opt + 5; #endif #ifdef CONFIG_ACPI_NUMA if (!strncmp(opt, "noacpi", 6)) acpi_numa = -1; #endif return 0; } early_param("numa", numa_setup); #ifdef CONFIG_NUMA static __init int find_near_online_node(int node) { int n, val; int min_val = INT_MAX; int best_node = -1; for_each_online_node(n) { val = node_distance(node, n); if (val < min_val) { min_val = val; best_node = n; } } return best_node; } /* * Setup early cpu_to_node. * * Populate cpu_to_node[] only if x86_cpu_to_apicid[], * and apicid_to_node[] tables have valid entries for a CPU. * This means we skip cpu_to_node[] initialisation for NUMA * emulation and faking node case (when running a kernel compiled * for NUMA on a non NUMA box), which is OK as cpu_to_node[] * is already initialized in a round robin manner at numa_init_array, * prior to this call, and this initialization is good enough * for the fake NUMA cases. * * Called before the per_cpu areas are setup. */ void __init init_cpu_to_node(void) { int cpu; u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid); BUG_ON(cpu_to_apicid == NULL); for_each_possible_cpu(cpu) { int node; u16 apicid = cpu_to_apicid[cpu]; if (apicid == BAD_APICID) continue; node = apicid_to_node[apicid]; if (node == NUMA_NO_NODE) continue; if (!node_online(node)) node = find_near_online_node(node); numa_set_node(cpu, node); } } #endif void __cpuinit numa_set_node(int cpu, int node) { int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map); /* early setting, no percpu area yet */ if (cpu_to_node_map) { cpu_to_node_map[cpu] = node; return; } #ifdef CONFIG_DEBUG_PER_CPU_MAPS if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) { printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu); dump_stack(); return; } #endif per_cpu(x86_cpu_to_node_map, cpu) = node; if (node != NUMA_NO_NODE) per_cpu(node_number, cpu) = node; } void __cpuinit numa_clear_node(int cpu) { numa_set_node(cpu, NUMA_NO_NODE); } #ifndef CONFIG_DEBUG_PER_CPU_MAPS void __cpuinit numa_add_cpu(int cpu) { cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); } void __cpuinit numa_remove_cpu(int cpu) { cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); } #else /* CONFIG_DEBUG_PER_CPU_MAPS */ /* * --------- debug versions of the numa functions --------- */ static void __cpuinit numa_set_cpumask(int cpu, int enable) { int node = early_cpu_to_node(cpu); struct cpumask *mask; char buf[64]; mask = node_to_cpumask_map[node]; if (mask == NULL) { printk(KERN_ERR "node_to_cpumask_map[%i] NULL\n", node); dump_stack(); return; } if (enable) cpumask_set_cpu(cpu, mask); else cpumask_clear_cpu(cpu, mask); cpulist_scnprintf(buf, sizeof(buf), mask); printk(KERN_DEBUG "%s cpu %d node %d: mask now %s\n", enable ? "numa_add_cpu" : "numa_remove_cpu", cpu, node, buf); } void __cpuinit numa_add_cpu(int cpu) { numa_set_cpumask(cpu, 1); } void __cpuinit numa_remove_cpu(int cpu) { numa_set_cpumask(cpu, 0); } int cpu_to_node(int cpu) { if (early_per_cpu_ptr(x86_cpu_to_node_map)) { printk(KERN_WARNING "cpu_to_node(%d): usage too early!\n", cpu); dump_stack(); return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; } return per_cpu(x86_cpu_to_node_map, cpu); } EXPORT_SYMBOL(cpu_to_node); /* * Same function as cpu_to_node() but used if called before the * per_cpu areas are setup. */ int early_cpu_to_node(int cpu) { if (early_per_cpu_ptr(x86_cpu_to_node_map)) return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; if (!cpu_possible(cpu)) { printk(KERN_WARNING "early_cpu_to_node(%d): no per_cpu area!\n", cpu); dump_stack(); return NUMA_NO_NODE; } return per_cpu(x86_cpu_to_node_map, cpu); } /* * --------- end of debug versions of the numa functions --------- */ #endif /* CONFIG_DEBUG_PER_CPU_MAPS */