/*---------------------------------------------------------------------------+ | poly_tan.c | | | | Compute the tan of a FPU_REG, using a polynomial approximation. | | | | Copyright (C) 1992,1993,1994,1997,1999 | | W. Metzenthen, 22 Parker St, Ormond, Vic 3163, | | Australia. E-mail billm@melbpc.org.au | | | | | +---------------------------------------------------------------------------*/ #include "exception.h" #include "reg_constant.h" #include "fpu_emu.h" #include "fpu_system.h" #include "control_w.h" #include "poly.h" #define HiPOWERop 3 /* odd poly, positive terms */ static const unsigned long long oddplterm[HiPOWERop] = { 0x0000000000000000LL, 0x0051a1cf08fca228LL, 0x0000000071284ff7LL }; #define HiPOWERon 2 /* odd poly, negative terms */ static const unsigned long long oddnegterm[HiPOWERon] = { 0x1291a9a184244e80LL, 0x0000583245819c21LL }; #define HiPOWERep 2 /* even poly, positive terms */ static const unsigned long long evenplterm[HiPOWERep] = { 0x0e848884b539e888LL, 0x00003c7f18b887daLL }; #define HiPOWERen 2 /* even poly, negative terms */ static const unsigned long long evennegterm[HiPOWERen] = { 0xf1f0200fd51569ccLL, 0x003afb46105c4432LL }; static const unsigned long long twothirds = 0xaaaaaaaaaaaaaaabLL; /*--- poly_tan() ------------------------------------------------------------+ | | +---------------------------------------------------------------------------*/ void poly_tan(FPU_REG * st0_ptr) { long int exponent; int invert; Xsig argSq, argSqSq, accumulatoro, accumulatore, accum, argSignif, fix_up; unsigned long adj; exponent = exponent(st0_ptr); #ifdef PARANOID if (signnegative(st0_ptr)) { /* Can't hack a number < 0.0 */ arith_invalid(0); return; } /* Need a positive number */ #endif /* PARANOID */ /* Split the problem into two domains, smaller and larger than pi/4 */ if ((exponent == 0) || ((exponent == -1) && (st0_ptr->sigh > 0xc90fdaa2))) { /* The argument is greater than (approx) pi/4 */ invert = 1; accum.lsw = 0; XSIG_LL(accum) = significand(st0_ptr); if (exponent == 0) { /* The argument is >= 1.0 */ /* Put the binary point at the left. */ XSIG_LL(accum) <<= 1; } /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */ XSIG_LL(accum) = 0x921fb54442d18469LL - XSIG_LL(accum); /* This is a special case which arises due to rounding. */ if (XSIG_LL(accum) == 0xffffffffffffffffLL) { FPU_settag0(TAG_Valid); significand(st0_ptr) = 0x8a51e04daabda360LL; setexponent16(st0_ptr, (0x41 + EXTENDED_Ebias) | SIGN_Negative); return; } argSignif.lsw = accum.lsw; XSIG_LL(argSignif) = XSIG_LL(accum); exponent = -1 + norm_Xsig(&argSignif); } else { invert = 0; argSignif.lsw = 0; XSIG_LL(accum) = XSIG_LL(argSignif) = significand(st0_ptr); if (exponent < -1) { /* shift the argument right by the required places */ if (FPU_shrx(&XSIG_LL(accum), -1 - exponent) >= 0x80000000U) XSIG_LL(accum)++; /* round up */ } } XSIG_LL(argSq) = XSIG_LL(accum); argSq.lsw = accum.lsw; mul_Xsig_Xsig(&argSq, &argSq); XSIG_LL(argSqSq) = XSIG_LL(argSq); argSqSq.lsw = argSq.lsw; mul_Xsig_Xsig(&argSqSq, &argSqSq); /* Compute the negative terms for the numerator polynomial */ accumulatoro.msw = accumulatoro.midw = accumulatoro.lsw = 0; polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddnegterm, HiPOWERon - 1); mul_Xsig_Xsig(&accumulatoro, &argSq); negate_Xsig(&accumulatoro); /* Add the positive terms */ polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddplterm, HiPOWERop - 1); /* Compute the positive terms for the denominator polynomial */ accumulatore.msw = accumulatore.midw = accumulatore.lsw = 0; polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evenplterm, HiPOWERep - 1); mul_Xsig_Xsig(&accumulatore, &argSq); negate_Xsig(&accumulatore); /* Add the negative terms */ polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evennegterm, HiPOWERen - 1); /* Multiply by arg^2 */ mul64_Xsig(&accumulatore, &XSIG_LL(argSignif)); mul64_Xsig(&accumulatore, &XSIG_LL(argSignif)); /* de-normalize and divide by 2 */ shr_Xsig(&accumulatore, -2 * (1 + exponent) + 1); negate_Xsig(&accumulatore); /* This does 1 - accumulator */ /* Now find the ratio. */ if (accumulatore.msw == 0) { /* accumulatoro must contain 1.0 here, (actually, 0) but it really doesn't matter what value we use because it will have negligible effect in later calculations */ XSIG_LL(accum) = 0x8000000000000000LL; accum.lsw = 0; } else { div_Xsig(&accumulatoro, &accumulatore, &accum); } /* Multiply by 1/3 * arg^3 */ mul64_Xsig(&accum, &XSIG_LL(argSignif)); mul64_Xsig(&accum, &XSIG_LL(argSignif)); mul64_Xsig(&accum, &XSIG_LL(argSignif)); mul64_Xsig(&accum, &twothirds); shr_Xsig(&accum, -2 * (exponent + 1)); /* tan(arg) = arg + accum */ add_two_Xsig(&accum, &argSignif, &exponent); if (invert) { /* We now have the value of tan(pi_2 - arg) where pi_2 is an approximation for pi/2 */ /* The next step is to fix the answer to compensate for the error due to the approximation used for pi/2 */ /* This is (approx) delta, the error in our approx for pi/2 (see above). It has an exponent of -65 */ XSIG_LL(fix_up) = 0x898cc51701b839a2LL; fix_up.lsw = 0; if (exponent == 0) adj = 0xffffffff; /* We want approx 1.0 here, but this is close enough. */ else if (exponent > -30) { adj = accum.msw >> -(exponent + 1); /* tan */ adj = mul_32_32(adj, adj); /* tan^2 */ } else adj = 0; adj = mul_32_32(0x898cc517, adj); /* delta * tan^2 */ fix_up.msw += adj; if (!(fix_up.msw & 0x80000000)) { /* did fix_up overflow ? */ /* Yes, we need to add an msb */ shr_Xsig(&fix_up, 1); fix_up.msw |= 0x80000000; shr_Xsig(&fix_up, 64 + exponent); } else shr_Xsig(&fix_up, 65 + exponent); add_two_Xsig(&accum, &fix_up, &exponent); /* accum now contains tan(pi/2 - arg). Use tan(arg) = 1.0 / tan(pi/2 - arg) */ accumulatoro.lsw = accumulatoro.midw = 0; accumulatoro.msw = 0x80000000; div_Xsig(&accumulatoro, &accum, &accum); exponent = -exponent - 1; } /* Transfer the result */ round_Xsig(&accum); FPU_settag0(TAG_Valid); significand(st0_ptr) = XSIG_LL(accum); setexponent16(st0_ptr, exponent + EXTENDED_Ebias); /* Result is positive. */ }