#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_DEBUG_PER_CPU_MAPS # define DBG(x...) printk(KERN_DEBUG x) #else # define DBG(x...) #endif DEFINE_PER_CPU(int, cpu_number); EXPORT_PER_CPU_SYMBOL(cpu_number); #ifdef CONFIG_X86_64 #define BOOT_PERCPU_OFFSET ((unsigned long)__per_cpu_load) #else #define BOOT_PERCPU_OFFSET 0 #endif DEFINE_PER_CPU(unsigned long, this_cpu_off) = BOOT_PERCPU_OFFSET; EXPORT_PER_CPU_SYMBOL(this_cpu_off); unsigned long __per_cpu_offset[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BOOT_PERCPU_OFFSET, }; EXPORT_SYMBOL(__per_cpu_offset); /* * On x86_64 symbols referenced from code should be reachable using * 32bit relocations. Reserve space for static percpu variables in * modules so that they are always served from the first chunk which * is located at the percpu segment base. On x86_32, anything can * address anywhere. No need to reserve space in the first chunk. */ #ifdef CONFIG_X86_64 #define PERCPU_FIRST_CHUNK_RESERVE PERCPU_MODULE_RESERVE #else #define PERCPU_FIRST_CHUNK_RESERVE 0 #endif /** * pcpu_need_numa - determine percpu allocation needs to consider NUMA * * If NUMA is not configured or there is only one NUMA node available, * there is no reason to consider NUMA. This function determines * whether percpu allocation should consider NUMA or not. * * RETURNS: * true if NUMA should be considered; otherwise, false. */ static bool __init pcpu_need_numa(void) { #ifdef CONFIG_NEED_MULTIPLE_NODES pg_data_t *last = NULL; unsigned int cpu; for_each_possible_cpu(cpu) { int node = early_cpu_to_node(cpu); if (node_online(node) && NODE_DATA(node) && last && last != NODE_DATA(node)) return true; last = NODE_DATA(node); } #endif return false; } /** * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu * @cpu: cpu to allocate for * @size: size allocation in bytes * @align: alignment * * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper * does the right thing for NUMA regardless of the current * configuration. * * RETURNS: * Pointer to the allocated area on success, NULL on failure. */ static void * __init pcpu_alloc_bootmem(unsigned int cpu, unsigned long size, unsigned long align) { const unsigned long goal = __pa(MAX_DMA_ADDRESS); #ifdef CONFIG_NEED_MULTIPLE_NODES int node = early_cpu_to_node(cpu); void *ptr; if (!node_online(node) || !NODE_DATA(node)) { ptr = __alloc_bootmem_nopanic(size, align, goal); pr_info("cpu %d has no node %d or node-local memory\n", cpu, node); pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n", cpu, size, __pa(ptr)); } else { ptr = __alloc_bootmem_node_nopanic(NODE_DATA(node), size, align, goal); pr_debug("per cpu data for cpu%d %lu bytes on node%d at " "%016lx\n", cpu, size, node, __pa(ptr)); } return ptr; #else return __alloc_bootmem_nopanic(size, align, goal); #endif } /* * Large page remap allocator * * This allocator uses PMD page as unit. A PMD page is allocated for * each cpu and each is remapped into vmalloc area using PMD mapping. * As PMD page is quite large, only part of it is used for the first * chunk. Unused part is returned to the bootmem allocator. * * So, the PMD pages are mapped twice - once to the physical mapping * and to the vmalloc area for the first percpu chunk. The double * mapping does add one more PMD TLB entry pressure but still is much * better than only using 4k mappings while still being NUMA friendly. */ #ifdef CONFIG_NEED_MULTIPLE_NODES struct pcpul_ent { unsigned int cpu; void *ptr; }; static size_t pcpul_size; static struct pcpul_ent *pcpul_map; static struct vm_struct pcpul_vm; static struct page * __init pcpul_get_page(unsigned int cpu, int pageno) { size_t off = (size_t)pageno << PAGE_SHIFT; if (off >= pcpul_size) return NULL; return virt_to_page(pcpul_map[cpu].ptr + off); } static ssize_t __init setup_pcpu_lpage(size_t static_size, bool chosen) { size_t map_size, dyn_size; unsigned int cpu; int i, j; ssize_t ret; /* on non-NUMA, embedding is better */ if (!chosen && !pcpu_need_numa()) return -EINVAL; /* need PSE */ if (!cpu_has_pse) { pr_warning("PERCPU: lpage allocator requires PSE\n"); return -EINVAL; } /* * Currently supports only single page. Supporting multiple * pages won't be too difficult if it ever becomes necessary. */ pcpul_size = PFN_ALIGN(static_size + PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE); if (pcpul_size > PMD_SIZE) { pr_warning("PERCPU: static data is larger than large page, " "can't use large page\n"); return -EINVAL; } dyn_size = pcpul_size - static_size - PERCPU_FIRST_CHUNK_RESERVE; /* allocate pointer array and alloc large pages */ map_size = PFN_ALIGN(num_possible_cpus() * sizeof(pcpul_map[0])); pcpul_map = alloc_bootmem(map_size); for_each_possible_cpu(cpu) { pcpul_map[cpu].cpu = cpu; pcpul_map[cpu].ptr = pcpu_alloc_bootmem(cpu, PMD_SIZE, PMD_SIZE); if (!pcpul_map[cpu].ptr) { pr_warning("PERCPU: failed to allocate large page " "for cpu%u\n", cpu); goto enomem; } /* * Only use pcpul_size bytes and give back the rest. * * Ingo: The 2MB up-rounding bootmem is needed to make * sure the partial 2MB page is still fully RAM - it's * not well-specified to have a PAT-incompatible area * (unmapped RAM, device memory, etc.) in that hole. */ free_bootmem(__pa(pcpul_map[cpu].ptr + pcpul_size), PMD_SIZE - pcpul_size); memcpy(pcpul_map[cpu].ptr, __per_cpu_load, static_size); } /* allocate address and map */ pcpul_vm.flags = VM_ALLOC; pcpul_vm.size = num_possible_cpus() * PMD_SIZE; vm_area_register_early(&pcpul_vm, PMD_SIZE); for_each_possible_cpu(cpu) { pmd_t *pmd, pmd_v; pmd = populate_extra_pmd((unsigned long)pcpul_vm.addr + cpu * PMD_SIZE); pmd_v = pfn_pmd(page_to_pfn(virt_to_page(pcpul_map[cpu].ptr)), PAGE_KERNEL_LARGE); set_pmd(pmd, pmd_v); } /* we're ready, commit */ pr_info("PERCPU: Remapped at %p with large pages, static data " "%zu bytes\n", pcpul_vm.addr, static_size); ret = pcpu_setup_first_chunk(pcpul_get_page, static_size, PERCPU_FIRST_CHUNK_RESERVE, dyn_size, PMD_SIZE, pcpul_vm.addr, NULL); /* sort pcpul_map array for pcpu_lpage_remapped() */ for (i = 0; i < num_possible_cpus() - 1; i++) for (j = i + 1; j < num_possible_cpus(); j++) if (pcpul_map[i].ptr > pcpul_map[j].ptr) { struct pcpul_ent tmp = pcpul_map[i]; pcpul_map[i] = pcpul_map[j]; pcpul_map[j] = tmp; } return ret; enomem: for_each_possible_cpu(cpu) if (pcpul_map[cpu].ptr) free_bootmem(__pa(pcpul_map[cpu].ptr), pcpul_size); free_bootmem(__pa(pcpul_map), map_size); return -ENOMEM; } /** * pcpu_lpage_remapped - determine whether a kaddr is in pcpul recycled area * @kaddr: the kernel address in question * * Determine whether @kaddr falls in the pcpul recycled area. This is * used by pageattr to detect VM aliases and break up the pcpu PMD * mapping such that the same physical page is not mapped under * different attributes. * * The recycled area is always at the tail of a partially used PMD * page. * * RETURNS: * Address of corresponding remapped pcpu address if match is found; * otherwise, NULL. */ void *pcpu_lpage_remapped(void *kaddr) { void *pmd_addr = (void *)((unsigned long)kaddr & PMD_MASK); unsigned long offset = (unsigned long)kaddr & ~PMD_MASK; int left = 0, right = num_possible_cpus() - 1; int pos; /* pcpul in use at all? */ if (!pcpul_map) return NULL; /* okay, perform binary search */ while (left <= right) { pos = (left + right) / 2; if (pcpul_map[pos].ptr < pmd_addr) left = pos + 1; else if (pcpul_map[pos].ptr > pmd_addr) right = pos - 1; else { /* it shouldn't be in the area for the first chunk */ WARN_ON(offset < pcpul_size); return pcpul_vm.addr + pcpul_map[pos].cpu * PMD_SIZE + offset; } } return NULL; } #else static ssize_t __init setup_pcpu_lpage(size_t static_size, bool chosen) { return -EINVAL; } #endif /* * Embedding allocator * * The first chunk is sized to just contain the static area plus * module and dynamic reserves and embedded into linear physical * mapping so that it can use PMD mapping without additional TLB * pressure. */ static ssize_t __init setup_pcpu_embed(size_t static_size, bool chosen) { size_t reserve = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE; /* * If large page isn't supported, there's no benefit in doing * this. Also, embedding allocation doesn't play well with * NUMA. */ if (!chosen && (!cpu_has_pse || pcpu_need_numa())) return -EINVAL; return pcpu_embed_first_chunk(static_size, PERCPU_FIRST_CHUNK_RESERVE, reserve - PERCPU_FIRST_CHUNK_RESERVE, -1); } /* * 4k page allocator * * This is the basic allocator. Static percpu area is allocated * page-by-page and most of initialization is done by the generic * setup function. */ static struct page **pcpu4k_pages __initdata; static int pcpu4k_nr_static_pages __initdata; static struct page * __init pcpu4k_get_page(unsigned int cpu, int pageno) { if (pageno < pcpu4k_nr_static_pages) return pcpu4k_pages[cpu * pcpu4k_nr_static_pages + pageno]; return NULL; } static void __init pcpu4k_populate_pte(unsigned long addr) { populate_extra_pte(addr); } static ssize_t __init setup_pcpu_4k(size_t static_size) { size_t pages_size; unsigned int cpu; int i, j; ssize_t ret; pcpu4k_nr_static_pages = PFN_UP(static_size); /* unaligned allocations can't be freed, round up to page size */ pages_size = PFN_ALIGN(pcpu4k_nr_static_pages * num_possible_cpus() * sizeof(pcpu4k_pages[0])); pcpu4k_pages = alloc_bootmem(pages_size); /* allocate and copy */ j = 0; for_each_possible_cpu(cpu) for (i = 0; i < pcpu4k_nr_static_pages; i++) { void *ptr; ptr = pcpu_alloc_bootmem(cpu, PAGE_SIZE, PAGE_SIZE); if (!ptr) { pr_warning("PERCPU: failed to allocate " "4k page for cpu%u\n", cpu); goto enomem; } memcpy(ptr, __per_cpu_load + i * PAGE_SIZE, PAGE_SIZE); pcpu4k_pages[j++] = virt_to_page(ptr); } /* we're ready, commit */ pr_info("PERCPU: Allocated %d 4k pages, static data %zu bytes\n", pcpu4k_nr_static_pages, static_size); ret = pcpu_setup_first_chunk(pcpu4k_get_page, static_size, PERCPU_FIRST_CHUNK_RESERVE, -1, -1, NULL, pcpu4k_populate_pte); goto out_free_ar; enomem: while (--j >= 0) free_bootmem(__pa(page_address(pcpu4k_pages[j])), PAGE_SIZE); ret = -ENOMEM; out_free_ar: free_bootmem(__pa(pcpu4k_pages), pages_size); return ret; } /* for explicit first chunk allocator selection */ static char pcpu_chosen_alloc[16] __initdata; static int __init percpu_alloc_setup(char *str) { strncpy(pcpu_chosen_alloc, str, sizeof(pcpu_chosen_alloc) - 1); return 0; } early_param("percpu_alloc", percpu_alloc_setup); static inline void setup_percpu_segment(int cpu) { #ifdef CONFIG_X86_32 struct desc_struct gdt; pack_descriptor(&gdt, per_cpu_offset(cpu), 0xFFFFF, 0x2 | DESCTYPE_S, 0x8); gdt.s = 1; write_gdt_entry(get_cpu_gdt_table(cpu), GDT_ENTRY_PERCPU, &gdt, DESCTYPE_S); #endif } void __init setup_per_cpu_areas(void) { size_t static_size = __per_cpu_end - __per_cpu_start; unsigned int cpu; unsigned long delta; size_t pcpu_unit_size; ssize_t ret; pr_info("NR_CPUS:%d nr_cpumask_bits:%d nr_cpu_ids:%d nr_node_ids:%d\n", NR_CPUS, nr_cpumask_bits, nr_cpu_ids, nr_node_ids); /* * Allocate percpu area. If PSE is supported, try to make use * of large page mappings. Please read comments on top of * each allocator for details. */ ret = -EINVAL; if (strlen(pcpu_chosen_alloc)) { if (strcmp(pcpu_chosen_alloc, "4k")) { if (!strcmp(pcpu_chosen_alloc, "lpage")) ret = setup_pcpu_lpage(static_size, true); else if (!strcmp(pcpu_chosen_alloc, "embed")) ret = setup_pcpu_embed(static_size, true); else pr_warning("PERCPU: unknown allocator %s " "specified\n", pcpu_chosen_alloc); if (ret < 0) pr_warning("PERCPU: %s allocator failed (%zd), " "falling back to 4k\n", pcpu_chosen_alloc, ret); } } else { ret = setup_pcpu_lpage(static_size, false); if (ret < 0) ret = setup_pcpu_embed(static_size, false); } if (ret < 0) ret = setup_pcpu_4k(static_size); if (ret < 0) panic("cannot allocate static percpu area (%zu bytes, err=%zd)", static_size, ret); pcpu_unit_size = ret; /* alrighty, percpu areas up and running */ delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; for_each_possible_cpu(cpu) { per_cpu_offset(cpu) = delta + cpu * pcpu_unit_size; per_cpu(this_cpu_off, cpu) = per_cpu_offset(cpu); per_cpu(cpu_number, cpu) = cpu; setup_percpu_segment(cpu); setup_stack_canary_segment(cpu); /* * Copy data used in early init routines from the * initial arrays to the per cpu data areas. These * arrays then become expendable and the *_early_ptr's * are zeroed indicating that the static arrays are * gone. */ #ifdef CONFIG_X86_LOCAL_APIC per_cpu(x86_cpu_to_apicid, cpu) = early_per_cpu_map(x86_cpu_to_apicid, cpu); per_cpu(x86_bios_cpu_apicid, cpu) = early_per_cpu_map(x86_bios_cpu_apicid, cpu); #endif #ifdef CONFIG_X86_64 per_cpu(irq_stack_ptr, cpu) = per_cpu(irq_stack_union.irq_stack, cpu) + IRQ_STACK_SIZE - 64; #ifdef CONFIG_NUMA per_cpu(x86_cpu_to_node_map, cpu) = early_per_cpu_map(x86_cpu_to_node_map, cpu); #endif #endif /* * Up to this point, the boot CPU has been using .data.init * area. Reload any changed state for the boot CPU. */ if (cpu == boot_cpu_id) switch_to_new_gdt(cpu); } /* indicate the early static arrays will soon be gone */ #ifdef CONFIG_X86_LOCAL_APIC early_per_cpu_ptr(x86_cpu_to_apicid) = NULL; early_per_cpu_ptr(x86_bios_cpu_apicid) = NULL; #endif #if defined(CONFIG_X86_64) && defined(CONFIG_NUMA) early_per_cpu_ptr(x86_cpu_to_node_map) = NULL; #endif #if defined(CONFIG_X86_64) && defined(CONFIG_NUMA) /* * make sure boot cpu node_number is right, when boot cpu is on the * node that doesn't have mem installed */ per_cpu(node_number, boot_cpu_id) = cpu_to_node(boot_cpu_id); #endif /* Setup node to cpumask map */ setup_node_to_cpumask_map(); /* Setup cpu initialized, callin, callout masks */ setup_cpu_local_masks(); }