/* * Handle the memory map. * The functions here do the job until bootmem takes over. * * Getting sanitize_e820_map() in sync with i386 version by applying change: * - Provisions for empty E820 memory regions (reported by certain BIOSes). * Alex Achenbach , December 2002. * Venkatesh Pallipadi * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * The e820 map is the map that gets modified e.g. with command line parameters * and that is also registered with modifications in the kernel resource tree * with the iomem_resource as parent. * * The e820_saved is directly saved after the BIOS-provided memory map is * copied. It doesn't get modified afterwards. It's registered for the * /sys/firmware/memmap interface. * * That memory map is not modified and is used as base for kexec. The kexec'd * kernel should get the same memory map as the firmware provides. Then the * user can e.g. boot the original kernel with mem=1G while still booting the * next kernel with full memory. */ struct e820map e820; struct e820map e820_saved; /* For PCI or other memory-mapped resources */ unsigned long pci_mem_start = 0xaeedbabe; #ifdef CONFIG_PCI EXPORT_SYMBOL(pci_mem_start); #endif /* * This function checks if any part of the range is mapped * with type. */ int e820_any_mapped(u64 start, u64 end, unsigned type) { int i; for (i = 0; i < e820.nr_map; i++) { struct e820entry *ei = &e820.map[i]; if (type && ei->type != type) continue; if (ei->addr >= end || ei->addr + ei->size <= start) continue; return 1; } return 0; } EXPORT_SYMBOL_GPL(e820_any_mapped); /* * This function checks if the entire range is mapped with type. * * Note: this function only works correct if the e820 table is sorted and * not-overlapping, which is the case */ int __init e820_all_mapped(u64 start, u64 end, unsigned type) { int i; for (i = 0; i < e820.nr_map; i++) { struct e820entry *ei = &e820.map[i]; if (type && ei->type != type) continue; /* is the region (part) in overlap with the current region ?*/ if (ei->addr >= end || ei->addr + ei->size <= start) continue; /* if the region is at the beginning of we move * start to the end of the region since it's ok until there */ if (ei->addr <= start) start = ei->addr + ei->size; /* * if start is now at or beyond end, we're done, full * coverage */ if (start >= end) return 1; } return 0; } /* * Add a memory region to the kernel e820 map. */ static void __init __e820_add_region(struct e820map *e820x, u64 start, u64 size, int type) { int x = e820x->nr_map; if (x >= ARRAY_SIZE(e820x->map)) { printk(KERN_ERR "e820: too many entries; ignoring [mem %#010llx-%#010llx]\n", (unsigned long long) start, (unsigned long long) (start + size - 1)); return; } e820x->map[x].addr = start; e820x->map[x].size = size; e820x->map[x].type = type; e820x->nr_map++; } void __init e820_add_region(u64 start, u64 size, int type) { __e820_add_region(&e820, start, size, type); } static void __init e820_print_type(u32 type) { switch (type) { case E820_RAM: case E820_RESERVED_KERN: printk(KERN_CONT "usable"); break; case E820_RESERVED: printk(KERN_CONT "reserved"); break; case E820_ACPI: printk(KERN_CONT "ACPI data"); break; case E820_NVS: printk(KERN_CONT "ACPI NVS"); break; case E820_UNUSABLE: printk(KERN_CONT "unusable"); break; default: printk(KERN_CONT "type %u", type); break; } } void __init e820_print_map(char *who) { int i; for (i = 0; i < e820.nr_map; i++) { printk(KERN_INFO "%s: [mem %#018Lx-%#018Lx] ", who, (unsigned long long) e820.map[i].addr, (unsigned long long) (e820.map[i].addr + e820.map[i].size - 1)); e820_print_type(e820.map[i].type); printk(KERN_CONT "\n"); } } /* * Sanitize the BIOS e820 map. * * Some e820 responses include overlapping entries. The following * replaces the original e820 map with a new one, removing overlaps, * and resolving conflicting memory types in favor of highest * numbered type. * * The input parameter biosmap points to an array of 'struct * e820entry' which on entry has elements in the range [0, *pnr_map) * valid, and which has space for up to max_nr_map entries. * On return, the resulting sanitized e820 map entries will be in * overwritten in the same location, starting at biosmap. * * The integer pointed to by pnr_map must be valid on entry (the * current number of valid entries located at biosmap). If the * sanitizing succeeds the *pnr_map will be updated with the new * number of valid entries (something no more than max_nr_map). * * The return value from sanitize_e820_map() is zero if it * successfully 'sanitized' the map entries passed in, and is -1 * if it did nothing, which can happen if either of (1) it was * only passed one map entry, or (2) any of the input map entries * were invalid (start + size < start, meaning that the size was * so big the described memory range wrapped around through zero.) * * Visually we're performing the following * (1,2,3,4 = memory types)... * * Sample memory map (w/overlaps): * ____22__________________ * ______________________4_ * ____1111________________ * _44_____________________ * 11111111________________ * ____________________33__ * ___________44___________ * __________33333_________ * ______________22________ * ___________________2222_ * _________111111111______ * _____________________11_ * _________________4______ * * Sanitized equivalent (no overlap): * 1_______________________ * _44_____________________ * ___1____________________ * ____22__________________ * ______11________________ * _________1______________ * __________3_____________ * ___________44___________ * _____________33_________ * _______________2________ * ________________1_______ * _________________4______ * ___________________2____ * ____________________33__ * ______________________4_ */ struct change_member { struct e820entry *pbios; /* pointer to original bios entry */ unsigned long long addr; /* address for this change point */ }; static int __init cpcompare(const void *a, const void *b) { struct change_member * const *app = a, * const *bpp = b; const struct change_member *ap = *app, *bp = *bpp; /* * Inputs are pointers to two elements of change_point[]. If their * addresses are unequal, their difference dominates. If the addresses * are equal, then consider one that represents the end of its region * to be greater than one that does not. */ if (ap->addr != bp->addr) return ap->addr > bp->addr ? 1 : -1; return (ap->addr != ap->pbios->addr) - (bp->addr != bp->pbios->addr); } int __init sanitize_e820_map(struct e820entry *biosmap, int max_nr_map, u32 *pnr_map) { static struct change_member change_point_list[2*E820_X_MAX] __initdata; static struct change_member *change_point[2*E820_X_MAX] __initdata; static struct e820entry *overlap_list[E820_X_MAX] __initdata; static struct e820entry new_bios[E820_X_MAX] __initdata; unsigned long current_type, last_type; unsigned long long last_addr; int chgidx; int overlap_entries; int new_bios_entry; int old_nr, new_nr, chg_nr; int i; /* if there's only one memory region, don't bother */ if (*pnr_map < 2) return -1; old_nr = *pnr_map; BUG_ON(old_nr > max_nr_map); /* bail out if we find any unreasonable addresses in bios map */ for (i = 0; i < old_nr; i++) if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr) return -1; /* create pointers for initial change-point information (for sorting) */ for (i = 0; i < 2 * old_nr; i++) change_point[i] = &change_point_list[i]; /* record all known change-points (starting and ending addresses), omitting those that are for empty memory regions */ chgidx = 0; for (i = 0; i < old_nr; i++) { if (biosmap[i].size != 0) { change_point[chgidx]->addr = biosmap[i].addr; change_point[chgidx++]->pbios = &biosmap[i]; change_point[chgidx]->addr = biosmap[i].addr + biosmap[i].size; change_point[chgidx++]->pbios = &biosmap[i]; } } chg_nr = chgidx; /* sort change-point list by memory addresses (low -> high) */ sort(change_point, chg_nr, sizeof *change_point, cpcompare, NULL); /* create a new bios memory map, removing overlaps */ overlap_entries = 0; /* number of entries in the overlap table */ new_bios_entry = 0; /* index for creating new bios map entries */ last_type = 0; /* start with undefined memory type */ last_addr = 0; /* start with 0 as last starting address */ /* loop through change-points, determining affect on the new bios map */ for (chgidx = 0; chgidx < chg_nr; chgidx++) { /* keep track of all overlapping bios entries */ if (change_point[chgidx]->addr == change_point[chgidx]->pbios->addr) { /* * add map entry to overlap list (> 1 entry * implies an overlap) */ overlap_list[overlap_entries++] = change_point[chgidx]->pbios; } else { /* * remove entry from list (order independent, * so swap with last) */ for (i = 0; i < overlap_entries; i++) { if (overlap_list[i] == change_point[chgidx]->pbios) overlap_list[i] = overlap_list[overlap_entries-1]; } overlap_entries--; } /* * if there are overlapping entries, decide which * "type" to use (larger value takes precedence -- * 1=usable, 2,3,4,4+=unusable) */ current_type = 0; for (i = 0; i < overlap_entries; i++) if (overlap_list[i]->type > current_type) current_type = overlap_list[i]->type; /* * continue building up new bios map based on this * information */ if (current_type != last_type) { if (last_type != 0) { new_bios[new_bios_entry].size = change_point[chgidx]->addr - last_addr; /* * move forward only if the new size * was non-zero */ if (new_bios[new_bios_entry].size != 0) /* * no more space left for new * bios entries ? */ if (++new_bios_entry >= max_nr_map) break; } if (current_type != 0) { new_bios[new_bios_entry].addr = change_point[chgidx]->addr; new_bios[new_bios_entry].type = current_type; last_addr = change_point[chgidx]->addr; } last_type = current_type; } } /* retain count for new bios entries */ new_nr = new_bios_entry; /* copy new bios mapping into original location */ memcpy(biosmap, new_bios, new_nr * sizeof(struct e820entry)); *pnr_map = new_nr; return 0; } static int __init __append_e820_map(struct e820entry *biosmap, int nr_map) { while (nr_map) { u64 start = biosmap->addr; u64 size = biosmap->size; u64 end = start + size; u32 type = biosmap->type; /* Overflow in 64 bits? Ignore the memory map. */ if (start > end) return -1; e820_add_region(start, size, type); biosmap++; nr_map--; } return 0; } /* * Copy the BIOS e820 map into a safe place. * * Sanity-check it while we're at it.. * * If we're lucky and live on a modern system, the setup code * will have given us a memory map that we can use to properly * set up memory. If we aren't, we'll fake a memory map. */ static int __init append_e820_map(struct e820entry *biosmap, int nr_map) { /* Only one memory region (or negative)? Ignore it */ if (nr_map < 2) return -1; return __append_e820_map(biosmap, nr_map); } static u64 __init __e820_update_range(struct e820map *e820x, u64 start, u64 size, unsigned old_type, unsigned new_type) { u64 end; unsigned int i; u64 real_updated_size = 0; BUG_ON(old_type == new_type); if (size > (ULLONG_MAX - start)) size = ULLONG_MAX - start; end = start + size; printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ", (unsigned long long) start, (unsigned long long) (end - 1)); e820_print_type(old_type); printk(KERN_CONT " ==> "); e820_print_type(new_type); printk(KERN_CONT "\n"); for (i = 0; i < e820x->nr_map; i++) { struct e820entry *ei = &e820x->map[i]; u64 final_start, final_end; u64 ei_end; if (ei->type != old_type) continue; ei_end = ei->addr + ei->size; /* totally covered by new range? */ if (ei->addr >= start && ei_end <= end) { ei->type = new_type; real_updated_size += ei->size; continue; } /* new range is totally covered? */ if (ei->addr < start && ei_end > end) { __e820_add_region(e820x, start, size, new_type); __e820_add_region(e820x, end, ei_end - end, ei->type); ei->size = start - ei->addr; real_updated_size += size; continue; } /* partially covered */ final_start = max(start, ei->addr); final_end = min(end, ei_end); if (final_start >= final_end) continue; __e820_add_region(e820x, final_start, final_end - final_start, new_type); real_updated_size += final_end - final_start; /* * left range could be head or tail, so need to update * size at first. */ ei->size -= final_end - final_start; if (ei->addr < final_start) continue; ei->addr = final_end; } return real_updated_size; } u64 __init e820_update_range(u64 start, u64 size, unsigned old_type, unsigned new_type) { return __e820_update_range(&e820, start, size, old_type, new_type); } static u64 __init e820_update_range_saved(u64 start, u64 size, unsigned old_type, unsigned new_type) { return __e820_update_range(&e820_saved, start, size, old_type, new_type); } /* make e820 not cover the range */ u64 __init e820_remove_range(u64 start, u64 size, unsigned old_type, int checktype) { int i; u64 end; u64 real_removed_size = 0; if (size > (ULLONG_MAX - start)) size = ULLONG_MAX - start; end = start + size; printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ", (unsigned long long) start, (unsigned long long) (end - 1)); if (checktype) e820_print_type(old_type); printk(KERN_CONT "\n"); for (i = 0; i < e820.nr_map; i++) { struct e820entry *ei = &e820.map[i]; u64 final_start, final_end; u64 ei_end; if (checktype && ei->type != old_type) continue; ei_end = ei->addr + ei->size; /* totally covered? */ if (ei->addr >= start && ei_end <= end) { real_removed_size += ei->size; memset(ei, 0, sizeof(struct e820entry)); continue; } /* new range is totally covered? */ if (ei->addr < start && ei_end > end) { e820_add_region(end, ei_end - end, ei->type); ei->size = start - ei->addr; real_removed_size += size; continue; } /* partially covered */ final_start = max(start, ei->addr); final_end = min(end, ei_end); if (final_start >= final_end) continue; real_removed_size += final_end - final_start; /* * left range could be head or tail, so need to update * size at first. */ ei->size -= final_end - final_start; if (ei->addr < final_start) continue; ei->addr = final_end; } return real_removed_size; } void __init update_e820(void) { if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map)) return; printk(KERN_INFO "e820: modified physical RAM map:\n"); e820_print_map("modified"); } static void __init update_e820_saved(void) { sanitize_e820_map(e820_saved.map, ARRAY_SIZE(e820_saved.map), &e820_saved.nr_map); } #define MAX_GAP_END 0x100000000ull /* * Search for a gap in the e820 memory space from start_addr to end_addr. */ __init int e820_search_gap(unsigned long *gapstart, unsigned long *gapsize, unsigned long start_addr, unsigned long long end_addr) { unsigned long long last; int i = e820.nr_map; int found = 0; last = (end_addr && end_addr < MAX_GAP_END) ? end_addr : MAX_GAP_END; while (--i >= 0) { unsigned long long start = e820.map[i].addr; unsigned long long end = start + e820.map[i].size; if (end < start_addr) continue; /* * Since "last" is at most 4GB, we know we'll * fit in 32 bits if this condition is true */ if (last > end) { unsigned long gap = last - end; if (gap >= *gapsize) { *gapsize = gap; *gapstart = end; found = 1; } } if (start < last) last = start; } return found; } /* * Search for the biggest gap in the low 32 bits of the e820 * memory space. We pass this space to PCI to assign MMIO resources * for hotplug or unconfigured devices in. * Hopefully the BIOS let enough space left. */ __init void e820_setup_gap(void) { unsigned long gapstart, gapsize; int found; gapstart = 0x10000000; gapsize = 0x400000; found = e820_search_gap(&gapstart, &gapsize, 0, MAX_GAP_END); #ifdef CONFIG_X86_64 if (!found) { gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024; printk(KERN_ERR "e820: cannot find a gap in the 32bit address range\n" "e820: PCI devices with unassigned 32bit BARs may break!\n"); } #endif /* * e820_reserve_resources_late protect stolen RAM already */ pci_mem_start = gapstart; printk(KERN_INFO "e820: [mem %#010lx-%#010lx] available for PCI devices\n", gapstart, gapstart + gapsize - 1); } /** * Because of the size limitation of struct boot_params, only first * 128 E820 memory entries are passed to kernel via * boot_params.e820_map, others are passed via SETUP_E820_EXT node of * linked list of struct setup_data, which is parsed here. */ void __init parse_e820_ext(u64 phys_addr, u32 data_len) { int entries; struct e820entry *extmap; struct setup_data *sdata; sdata = early_memremap(phys_addr, data_len); entries = sdata->len / sizeof(struct e820entry); extmap = (struct e820entry *)(sdata->data); __append_e820_map(extmap, entries); sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map); early_iounmap(sdata, data_len); printk(KERN_INFO "e820: extended physical RAM map:\n"); e820_print_map("extended"); } #if defined(CONFIG_X86_64) || \ (defined(CONFIG_X86_32) && defined(CONFIG_HIBERNATION)) /** * Find the ranges of physical addresses that do not correspond to * e820 RAM areas and mark the corresponding pages as nosave for * hibernation (32 bit) or software suspend and suspend to RAM (64 bit). * * This function requires the e820 map to be sorted and without any * overlapping entries. */ void __init e820_mark_nosave_regions(unsigned long limit_pfn) { int i; unsigned long pfn = 0; for (i = 0; i < e820.nr_map; i++) { struct e820entry *ei = &e820.map[i]; if (pfn < PFN_UP(ei->addr)) register_nosave_region(pfn, PFN_UP(ei->addr)); pfn = PFN_DOWN(ei->addr + ei->size); if (ei->type != E820_RAM && ei->type != E820_RESERVED_KERN) register_nosave_region(PFN_UP(ei->addr), pfn); if (pfn >= limit_pfn) break; } } #endif #ifdef CONFIG_ACPI /** * Mark ACPI NVS memory region, so that we can save/restore it during * hibernation and the subsequent resume. */ static int __init e820_mark_nvs_memory(void) { int i; for (i = 0; i < e820.nr_map; i++) { struct e820entry *ei = &e820.map[i]; if (ei->type == E820_NVS) acpi_nvs_register(ei->addr, ei->size); } return 0; } core_initcall(e820_mark_nvs_memory); #endif /* * pre allocated 4k and reserved it in memblock and e820_saved */ u64 __init early_reserve_e820(u64 size, u64 align) { u64 addr; addr = __memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); if (addr) { e820_update_range_saved(addr, size, E820_RAM, E820_RESERVED); printk(KERN_INFO "e820: update e820_saved for early_reserve_e820\n"); update_e820_saved(); } return addr; } #ifdef CONFIG_X86_32 # ifdef CONFIG_X86_PAE # define MAX_ARCH_PFN (1ULL<<(36-PAGE_SHIFT)) # else # define MAX_ARCH_PFN (1ULL<<(32-PAGE_SHIFT)) # endif #else /* CONFIG_X86_32 */ # define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT #endif /* * Find the highest page frame number we have available */ static unsigned long __init e820_end_pfn(unsigned long limit_pfn, unsigned type) { int i; unsigned long last_pfn = 0; unsigned long max_arch_pfn = MAX_ARCH_PFN; for (i = 0; i < e820.nr_map; i++) { struct e820entry *ei = &e820.map[i]; unsigned long start_pfn; unsigned long end_pfn; if (ei->type != type) continue; start_pfn = ei->addr >> PAGE_SHIFT; end_pfn = (ei->addr + ei->size) >> PAGE_SHIFT; if (start_pfn >= limit_pfn) continue; if (end_pfn > limit_pfn) { last_pfn = limit_pfn; break; } if (end_pfn > last_pfn) last_pfn = end_pfn; } if (last_pfn > max_arch_pfn) last_pfn = max_arch_pfn; printk(KERN_INFO "e820: last_pfn = %#lx max_arch_pfn = %#lx\n", last_pfn, max_arch_pfn); return last_pfn; } unsigned long __init e820_end_of_ram_pfn(void) { return e820_end_pfn(MAX_ARCH_PFN, E820_RAM); } unsigned long __init e820_end_of_low_ram_pfn(void) { return e820_end_pfn(1UL<<(32 - PAGE_SHIFT), E820_RAM); } static void early_panic(char *msg) { early_printk(msg); panic(msg); } static int userdef __initdata; /* "mem=nopentium" disables the 4MB page tables. */ static int __init parse_memopt(char *p) { u64 mem_size; if (!p) return -EINVAL; if (!strcmp(p, "nopentium")) { #ifdef CONFIG_X86_32 setup_clear_cpu_cap(X86_FEATURE_PSE); return 0; #else printk(KERN_WARNING "mem=nopentium ignored! (only supported on x86_32)\n"); return -EINVAL; #endif } userdef = 1; mem_size = memparse(p, &p); /* don't remove all of memory when handling "mem={invalid}" param */ if (mem_size == 0) return -EINVAL; e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1); return 0; } early_param("mem", parse_memopt); static int __init parse_memmap_one(char *p) { char *oldp; u64 start_at, mem_size; if (!p) return -EINVAL; if (!strncmp(p, "exactmap", 8)) { #ifdef CONFIG_CRASH_DUMP /* * If we are doing a crash dump, we still need to know * the real mem size before original memory map is * reset. */ saved_max_pfn = e820_end_of_ram_pfn(); #endif e820.nr_map = 0; userdef = 1; return 0; } oldp = p; mem_size = memparse(p, &p); if (p == oldp) return -EINVAL; userdef = 1; if (*p == '@') { start_at = memparse(p+1, &p); e820_add_region(start_at, mem_size, E820_RAM); } else if (*p == '#') { start_at = memparse(p+1, &p); e820_add_region(start_at, mem_size, E820_ACPI); } else if (*p == '$') { start_at = memparse(p+1, &p); e820_add_region(start_at, mem_size, E820_RESERVED); } else e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1); return *p == '\0' ? 0 : -EINVAL; } static int __init parse_memmap_opt(char *str) { while (str) { char *k = strchr(str, ','); if (k) *k++ = 0; parse_memmap_one(str); str = k; } return 0; } early_param("memmap", parse_memmap_opt); void __init finish_e820_parsing(void) { if (userdef) { if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map) < 0) early_panic("Invalid user supplied memory map"); printk(KERN_INFO "e820: user-defined physical RAM map:\n"); e820_print_map("user"); } } static inline const char *e820_type_to_string(int e820_type) { switch (e820_type) { case E820_RESERVED_KERN: case E820_RAM: return "System RAM"; case E820_ACPI: return "ACPI Tables"; case E820_NVS: return "ACPI Non-volatile Storage"; case E820_UNUSABLE: return "Unusable memory"; default: return "reserved"; } } /* * Mark e820 reserved areas as busy for the resource manager. */ static struct resource __initdata *e820_res; void __init e820_reserve_resources(void) { int i; struct resource *res; u64 end; res = alloc_bootmem(sizeof(struct resource) * e820.nr_map); e820_res = res; for (i = 0; i < e820.nr_map; i++) { end = e820.map[i].addr + e820.map[i].size - 1; if (end != (resource_size_t)end) { res++; continue; } res->name = e820_type_to_string(e820.map[i].type); res->start = e820.map[i].addr; res->end = end; res->flags = IORESOURCE_MEM; /* * don't register the region that could be conflicted with * pci device BAR resource and insert them later in * pcibios_resource_survey() */ if (e820.map[i].type != E820_RESERVED || res->start < (1ULL<<20)) { res->flags |= IORESOURCE_BUSY; insert_resource(&iomem_resource, res); } res++; } for (i = 0; i < e820_saved.nr_map; i++) { struct e820entry *entry = &e820_saved.map[i]; firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry->type)); } } /* How much should we pad RAM ending depending on where it is? */ static unsigned long ram_alignment(resource_size_t pos) { unsigned long mb = pos >> 20; /* To 64kB in the first megabyte */ if (!mb) return 64*1024; /* To 1MB in the first 16MB */ if (mb < 16) return 1024*1024; /* To 64MB for anything above that */ return 64*1024*1024; } #define MAX_RESOURCE_SIZE ((resource_size_t)-1) void __init e820_reserve_resources_late(void) { int i; struct resource *res; res = e820_res; for (i = 0; i < e820.nr_map; i++) { if (!res->parent && res->end) insert_resource_expand_to_fit(&iomem_resource, res); res++; } /* * Try to bump up RAM regions to reasonable boundaries to * avoid stolen RAM: */ for (i = 0; i < e820.nr_map; i++) { struct e820entry *entry = &e820.map[i]; u64 start, end; if (entry->type != E820_RAM) continue; start = entry->addr + entry->size; end = round_up(start, ram_alignment(start)) - 1; if (end > MAX_RESOURCE_SIZE) end = MAX_RESOURCE_SIZE; if (start >= end) continue; printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start, end); reserve_region_with_split(&iomem_resource, start, end, "RAM buffer"); } } char *__init default_machine_specific_memory_setup(void) { char *who = "BIOS-e820"; u32 new_nr; /* * Try to copy the BIOS-supplied E820-map. * * Otherwise fake a memory map; one section from 0k->640k, * the next section from 1mb->appropriate_mem_k */ new_nr = boot_params.e820_entries; sanitize_e820_map(boot_params.e820_map, ARRAY_SIZE(boot_params.e820_map), &new_nr); boot_params.e820_entries = new_nr; if (append_e820_map(boot_params.e820_map, boot_params.e820_entries) < 0) { u64 mem_size; /* compare results from other methods and take the greater */ if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) { mem_size = boot_params.screen_info.ext_mem_k; who = "BIOS-88"; } else { mem_size = boot_params.alt_mem_k; who = "BIOS-e801"; } e820.nr_map = 0; e820_add_region(0, LOWMEMSIZE(), E820_RAM); e820_add_region(HIGH_MEMORY, mem_size << 10, E820_RAM); } /* In case someone cares... */ return who; } void __init setup_memory_map(void) { char *who; who = x86_init.resources.memory_setup(); memcpy(&e820_saved, &e820, sizeof(struct e820map)); printk(KERN_INFO "e820: BIOS-provided physical RAM map:\n"); e820_print_map(who); } void __init memblock_x86_fill(void) { int i; u64 end; /* * EFI may have more than 128 entries * We are safe to enable resizing, beause memblock_x86_fill() * is rather later for x86 */ memblock_allow_resize(); for (i = 0; i < e820.nr_map; i++) { struct e820entry *ei = &e820.map[i]; end = ei->addr + ei->size; if (end != (resource_size_t)end) continue; if (ei->type != E820_RAM && ei->type != E820_RESERVED_KERN) continue; memblock_add(ei->addr, ei->size); } /* throw away partial pages */ memblock_trim_memory(PAGE_SIZE); memblock_dump_all(); } void __init memblock_find_dma_reserve(void) { #ifdef CONFIG_X86_64 u64 nr_pages = 0, nr_free_pages = 0; unsigned long start_pfn, end_pfn; phys_addr_t start, end; int i; u64 u; /* * need to find out used area below MAX_DMA_PFN * need to use memblock to get free size in [0, MAX_DMA_PFN] * at first, and assume boot_mem will not take below MAX_DMA_PFN */ for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) { start_pfn = min(start_pfn, MAX_DMA_PFN); end_pfn = min(end_pfn, MAX_DMA_PFN); nr_pages += end_pfn - start_pfn; } for_each_free_mem_range(u, NUMA_NO_NODE, &start, &end, NULL) { start_pfn = min_t(unsigned long, PFN_UP(start), MAX_DMA_PFN); end_pfn = min_t(unsigned long, PFN_DOWN(end), MAX_DMA_PFN); if (start_pfn < end_pfn) nr_free_pages += end_pfn - start_pfn; } set_dma_reserve(nr_pages - nr_free_pages); #endif }