#include "perf_event_intel_uncore.h" static struct intel_uncore_type *empty_uncore[] = { NULL, }; static struct intel_uncore_type **msr_uncores = empty_uncore; /* mask of cpus that collect uncore events */ static cpumask_t uncore_cpu_mask; /* constraint for the fixed counter */ static struct event_constraint constraint_fixed = EVENT_CONSTRAINT(~0ULL, 1 << UNCORE_PMC_IDX_FIXED, ~0ULL); DEFINE_UNCORE_FORMAT_ATTR(event, event, "config:0-7"); DEFINE_UNCORE_FORMAT_ATTR(umask, umask, "config:8-15"); DEFINE_UNCORE_FORMAT_ATTR(edge, edge, "config:18"); DEFINE_UNCORE_FORMAT_ATTR(inv, inv, "config:23"); DEFINE_UNCORE_FORMAT_ATTR(cmask5, cmask, "config:24-28"); DEFINE_UNCORE_FORMAT_ATTR(cmask8, cmask, "config:24-31"); /* Sandy Bridge uncore support */ static void snb_uncore_msr_enable_event(struct intel_uncore_box *box, struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; if (hwc->idx < UNCORE_PMC_IDX_FIXED) wrmsrl(hwc->config_base, hwc->config | SNB_UNC_CTL_EN); else wrmsrl(hwc->config_base, SNB_UNC_CTL_EN); } static void snb_uncore_msr_disable_event(struct intel_uncore_box *box, struct perf_event *event) { wrmsrl(event->hw.config_base, 0); } static u64 snb_uncore_msr_read_counter(struct intel_uncore_box *box, struct perf_event *event) { u64 count; rdmsrl(event->hw.event_base, count); return count; } static void snb_uncore_msr_init_box(struct intel_uncore_box *box) { if (box->pmu->pmu_idx == 0) { wrmsrl(SNB_UNC_PERF_GLOBAL_CTL, SNB_UNC_GLOBAL_CTL_EN | SNB_UNC_GLOBAL_CTL_CORE_ALL); } } static struct attribute *snb_uncore_formats_attr[] = { &format_attr_event.attr, &format_attr_umask.attr, &format_attr_edge.attr, &format_attr_inv.attr, &format_attr_cmask5.attr, NULL, }; static struct attribute_group snb_uncore_format_group = { .name = "format", .attrs = snb_uncore_formats_attr, }; static struct intel_uncore_ops snb_uncore_msr_ops = { .init_box = snb_uncore_msr_init_box, .disable_event = snb_uncore_msr_disable_event, .enable_event = snb_uncore_msr_enable_event, .read_counter = snb_uncore_msr_read_counter, }; static struct event_constraint snb_uncore_cbox_constraints[] = { UNCORE_EVENT_CONSTRAINT(0x80, 0x1), UNCORE_EVENT_CONSTRAINT(0x83, 0x1), EVENT_CONSTRAINT_END }; static struct intel_uncore_type snb_uncore_cbox = { .name = "cbox", .num_counters = 2, .num_boxes = 4, .perf_ctr_bits = 44, .fixed_ctr_bits = 48, .perf_ctr = SNB_UNC_CBO_0_PER_CTR0, .event_ctl = SNB_UNC_CBO_0_PERFEVTSEL0, .fixed_ctr = SNB_UNC_FIXED_CTR, .fixed_ctl = SNB_UNC_FIXED_CTR_CTRL, .single_fixed = 1, .event_mask = SNB_UNC_RAW_EVENT_MASK, .msr_offset = SNB_UNC_CBO_MSR_OFFSET, .constraints = snb_uncore_cbox_constraints, .ops = &snb_uncore_msr_ops, .format_group = &snb_uncore_format_group, }; static struct intel_uncore_type *snb_msr_uncores[] = { &snb_uncore_cbox, NULL, }; /* end of Sandy Bridge uncore support */ /* Nehalem uncore support */ static void nhm_uncore_msr_disable_box(struct intel_uncore_box *box) { wrmsrl(NHM_UNC_PERF_GLOBAL_CTL, 0); } static void nhm_uncore_msr_enable_box(struct intel_uncore_box *box) { wrmsrl(NHM_UNC_PERF_GLOBAL_CTL, NHM_UNC_GLOBAL_CTL_EN_PC_ALL | NHM_UNC_GLOBAL_CTL_EN_FC); } static void nhm_uncore_msr_enable_event(struct intel_uncore_box *box, struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; if (hwc->idx < UNCORE_PMC_IDX_FIXED) wrmsrl(hwc->config_base, hwc->config | SNB_UNC_CTL_EN); else wrmsrl(hwc->config_base, NHM_UNC_FIXED_CTR_CTL_EN); } static struct attribute *nhm_uncore_formats_attr[] = { &format_attr_event.attr, &format_attr_umask.attr, &format_attr_edge.attr, &format_attr_inv.attr, &format_attr_cmask8.attr, NULL, }; static struct attribute_group nhm_uncore_format_group = { .name = "format", .attrs = nhm_uncore_formats_attr, }; static struct uncore_event_desc nhm_uncore_events[] = { INTEL_UNCORE_EVENT_DESC(CLOCKTICKS, "config=0xffff"), /* full cache line writes to DRAM */ INTEL_UNCORE_EVENT_DESC(QMC_WRITES_FULL_ANY, "event=0x2f,umask=0xf"), /* Quickpath Memory Controller normal priority read requests */ INTEL_UNCORE_EVENT_DESC(QMC_NORMAL_READS_ANY, "event=0x2c,umask=0xf"), /* Quickpath Home Logic read requests from the IOH */ INTEL_UNCORE_EVENT_DESC(QHL_REQUEST_IOH_READS, "event=0x20,umask=0x1"), /* Quickpath Home Logic write requests from the IOH */ INTEL_UNCORE_EVENT_DESC(QHL_REQUEST_IOH_WRITES, "event=0x20,umask=0x2"), /* Quickpath Home Logic read requests from a remote socket */ INTEL_UNCORE_EVENT_DESC(QHL_REQUEST_REMOTE_READS, "event=0x20,umask=0x4"), /* Quickpath Home Logic write requests from a remote socket */ INTEL_UNCORE_EVENT_DESC(QHL_REQUEST_REMOTE_WRITES, "event=0x20,umask=0x8"), /* Quickpath Home Logic read requests from the local socket */ INTEL_UNCORE_EVENT_DESC(QHL_REQUEST_LOCAL_READS, "event=0x20,umask=0x10"), /* Quickpath Home Logic write requests from the local socket */ INTEL_UNCORE_EVENT_DESC(QHL_REQUEST_LOCAL_WRITES, "event=0x20,umask=0x20"), { /* end: all zeroes */ }, }; static struct intel_uncore_ops nhm_uncore_msr_ops = { .disable_box = nhm_uncore_msr_disable_box, .enable_box = nhm_uncore_msr_enable_box, .disable_event = snb_uncore_msr_disable_event, .enable_event = nhm_uncore_msr_enable_event, .read_counter = snb_uncore_msr_read_counter, }; static struct intel_uncore_type nhm_uncore = { .name = "", .num_counters = 8, .num_boxes = 1, .perf_ctr_bits = 48, .fixed_ctr_bits = 48, .event_ctl = NHM_UNC_PERFEVTSEL0, .perf_ctr = NHM_UNC_UNCORE_PMC0, .fixed_ctr = NHM_UNC_FIXED_CTR, .fixed_ctl = NHM_UNC_FIXED_CTR_CTRL, .event_mask = NHM_UNC_RAW_EVENT_MASK, .event_descs = nhm_uncore_events, .ops = &nhm_uncore_msr_ops, .format_group = &nhm_uncore_format_group, }; static struct intel_uncore_type *nhm_msr_uncores[] = { &nhm_uncore, NULL, }; /* end of Nehalem uncore support */ static void uncore_assign_hw_event(struct intel_uncore_box *box, struct perf_event *event, int idx) { struct hw_perf_event *hwc = &event->hw; hwc->idx = idx; hwc->last_tag = ++box->tags[idx]; if (hwc->idx == UNCORE_PMC_IDX_FIXED) { hwc->event_base = uncore_msr_fixed_ctr(box); hwc->config_base = uncore_msr_fixed_ctl(box); return; } hwc->config_base = uncore_msr_event_ctl(box, hwc->idx); hwc->event_base = uncore_msr_perf_ctr(box, hwc->idx); } static void uncore_perf_event_update(struct intel_uncore_box *box, struct perf_event *event) { u64 prev_count, new_count, delta; int shift; if (event->hw.idx >= UNCORE_PMC_IDX_FIXED) shift = 64 - uncore_fixed_ctr_bits(box); else shift = 64 - uncore_perf_ctr_bits(box); /* the hrtimer might modify the previous event value */ again: prev_count = local64_read(&event->hw.prev_count); new_count = uncore_read_counter(box, event); if (local64_xchg(&event->hw.prev_count, new_count) != prev_count) goto again; delta = (new_count << shift) - (prev_count << shift); delta >>= shift; local64_add(delta, &event->count); } /* * The overflow interrupt is unavailable for SandyBridge-EP, is broken * for SandyBridge. So we use hrtimer to periodically poll the counter * to avoid overflow. */ static enum hrtimer_restart uncore_pmu_hrtimer(struct hrtimer *hrtimer) { struct intel_uncore_box *box; unsigned long flags; int bit; box = container_of(hrtimer, struct intel_uncore_box, hrtimer); if (!box->n_active || box->cpu != smp_processor_id()) return HRTIMER_NORESTART; /* * disable local interrupt to prevent uncore_pmu_event_start/stop * to interrupt the update process */ local_irq_save(flags); for_each_set_bit(bit, box->active_mask, UNCORE_PMC_IDX_MAX) uncore_perf_event_update(box, box->events[bit]); local_irq_restore(flags); hrtimer_forward_now(hrtimer, ns_to_ktime(UNCORE_PMU_HRTIMER_INTERVAL)); return HRTIMER_RESTART; } static void uncore_pmu_start_hrtimer(struct intel_uncore_box *box) { __hrtimer_start_range_ns(&box->hrtimer, ns_to_ktime(UNCORE_PMU_HRTIMER_INTERVAL), 0, HRTIMER_MODE_REL_PINNED, 0); } static void uncore_pmu_cancel_hrtimer(struct intel_uncore_box *box) { hrtimer_cancel(&box->hrtimer); } static void uncore_pmu_init_hrtimer(struct intel_uncore_box *box) { hrtimer_init(&box->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); box->hrtimer.function = uncore_pmu_hrtimer; } struct intel_uncore_box *uncore_alloc_box(int cpu) { struct intel_uncore_box *box; box = kmalloc_node(sizeof(*box), GFP_KERNEL | __GFP_ZERO, cpu_to_node(cpu)); if (!box) return NULL; uncore_pmu_init_hrtimer(box); atomic_set(&box->refcnt, 1); box->cpu = -1; box->phys_id = -1; return box; } static struct intel_uncore_box * uncore_pmu_to_box(struct intel_uncore_pmu *pmu, int cpu) { return *per_cpu_ptr(pmu->box, cpu); } static struct intel_uncore_pmu *uncore_event_to_pmu(struct perf_event *event) { return container_of(event->pmu, struct intel_uncore_pmu, pmu); } static struct intel_uncore_box *uncore_event_to_box(struct perf_event *event) { /* * perf core schedules event on the basis of cpu, uncore events are * collected by one of the cpus inside a physical package. */ return uncore_pmu_to_box(uncore_event_to_pmu(event), smp_processor_id()); } static int uncore_collect_events(struct intel_uncore_box *box, struct perf_event *leader, bool dogrp) { struct perf_event *event; int n, max_count; max_count = box->pmu->type->num_counters; if (box->pmu->type->fixed_ctl) max_count++; if (box->n_events >= max_count) return -EINVAL; n = box->n_events; box->event_list[n] = leader; n++; if (!dogrp) return n; list_for_each_entry(event, &leader->sibling_list, group_entry) { if (event->state <= PERF_EVENT_STATE_OFF) continue; if (n >= max_count) return -EINVAL; box->event_list[n] = event; n++; } return n; } static struct event_constraint * uncore_event_constraint(struct intel_uncore_type *type, struct perf_event *event) { struct event_constraint *c; if (event->hw.config == ~0ULL) return &constraint_fixed; if (type->constraints) { for_each_event_constraint(c, type->constraints) { if ((event->hw.config & c->cmask) == c->code) return c; } } return &type->unconstrainted; } static int uncore_assign_events(struct intel_uncore_box *box, int assign[], int n) { unsigned long used_mask[BITS_TO_LONGS(UNCORE_PMC_IDX_MAX)]; struct event_constraint *c, *constraints[UNCORE_PMC_IDX_MAX]; int i, ret, wmin, wmax; struct hw_perf_event *hwc; bitmap_zero(used_mask, UNCORE_PMC_IDX_MAX); for (i = 0, wmin = UNCORE_PMC_IDX_MAX, wmax = 0; i < n; i++) { c = uncore_event_constraint(box->pmu->type, box->event_list[i]); constraints[i] = c; wmin = min(wmin, c->weight); wmax = max(wmax, c->weight); } /* fastpath, try to reuse previous register */ for (i = 0; i < n; i++) { hwc = &box->event_list[i]->hw; c = constraints[i]; /* never assigned */ if (hwc->idx == -1) break; /* constraint still honored */ if (!test_bit(hwc->idx, c->idxmsk)) break; /* not already used */ if (test_bit(hwc->idx, used_mask)) break; __set_bit(hwc->idx, used_mask); assign[i] = hwc->idx; } if (i == n) return 0; /* slow path */ ret = perf_assign_events(constraints, n, wmin, wmax, assign); return ret ? -EINVAL : 0; } static void uncore_pmu_event_start(struct perf_event *event, int flags) { struct intel_uncore_box *box = uncore_event_to_box(event); int idx = event->hw.idx; if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED))) return; if (WARN_ON_ONCE(idx == -1 || idx >= UNCORE_PMC_IDX_MAX)) return; event->hw.state = 0; box->events[idx] = event; box->n_active++; __set_bit(idx, box->active_mask); local64_set(&event->hw.prev_count, uncore_read_counter(box, event)); uncore_enable_event(box, event); if (box->n_active == 1) { uncore_enable_box(box); uncore_pmu_start_hrtimer(box); } } static void uncore_pmu_event_stop(struct perf_event *event, int flags) { struct intel_uncore_box *box = uncore_event_to_box(event); struct hw_perf_event *hwc = &event->hw; if (__test_and_clear_bit(hwc->idx, box->active_mask)) { uncore_disable_event(box, event); box->n_active--; box->events[hwc->idx] = NULL; WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED); hwc->state |= PERF_HES_STOPPED; if (box->n_active == 0) { uncore_disable_box(box); uncore_pmu_cancel_hrtimer(box); } } if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) { /* * Drain the remaining delta count out of a event * that we are disabling: */ uncore_perf_event_update(box, event); hwc->state |= PERF_HES_UPTODATE; } } static int uncore_pmu_event_add(struct perf_event *event, int flags) { struct intel_uncore_box *box = uncore_event_to_box(event); struct hw_perf_event *hwc = &event->hw; int assign[UNCORE_PMC_IDX_MAX]; int i, n, ret; if (!box) return -ENODEV; ret = n = uncore_collect_events(box, event, false); if (ret < 0) return ret; hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED; if (!(flags & PERF_EF_START)) hwc->state |= PERF_HES_ARCH; ret = uncore_assign_events(box, assign, n); if (ret) return ret; /* save events moving to new counters */ for (i = 0; i < box->n_events; i++) { event = box->event_list[i]; hwc = &event->hw; if (hwc->idx == assign[i] && hwc->last_tag == box->tags[assign[i]]) continue; /* * Ensure we don't accidentally enable a stopped * counter simply because we rescheduled. */ if (hwc->state & PERF_HES_STOPPED) hwc->state |= PERF_HES_ARCH; uncore_pmu_event_stop(event, PERF_EF_UPDATE); } /* reprogram moved events into new counters */ for (i = 0; i < n; i++) { event = box->event_list[i]; hwc = &event->hw; if (hwc->idx != assign[i] || hwc->last_tag != box->tags[assign[i]]) uncore_assign_hw_event(box, event, assign[i]); else if (i < box->n_events) continue; if (hwc->state & PERF_HES_ARCH) continue; uncore_pmu_event_start(event, 0); } box->n_events = n; return 0; } static void uncore_pmu_event_del(struct perf_event *event, int flags) { struct intel_uncore_box *box = uncore_event_to_box(event); int i; uncore_pmu_event_stop(event, PERF_EF_UPDATE); for (i = 0; i < box->n_events; i++) { if (event == box->event_list[i]) { while (++i < box->n_events) box->event_list[i - 1] = box->event_list[i]; --box->n_events; break; } } event->hw.idx = -1; event->hw.last_tag = ~0ULL; } static void uncore_pmu_event_read(struct perf_event *event) { struct intel_uncore_box *box = uncore_event_to_box(event); uncore_perf_event_update(box, event); } /* * validation ensures the group can be loaded onto the * PMU if it was the only group available. */ static int uncore_validate_group(struct intel_uncore_pmu *pmu, struct perf_event *event) { struct perf_event *leader = event->group_leader; struct intel_uncore_box *fake_box; int assign[UNCORE_PMC_IDX_MAX]; int ret = -EINVAL, n; fake_box = uncore_alloc_box(smp_processor_id()); if (!fake_box) return -ENOMEM; fake_box->pmu = pmu; /* * the event is not yet connected with its * siblings therefore we must first collect * existing siblings, then add the new event * before we can simulate the scheduling */ n = uncore_collect_events(fake_box, leader, true); if (n < 0) goto out; fake_box->n_events = n; n = uncore_collect_events(fake_box, event, false); if (n < 0) goto out; fake_box->n_events = n; ret = uncore_assign_events(fake_box, assign, n); out: kfree(fake_box); return ret; } int uncore_pmu_event_init(struct perf_event *event) { struct intel_uncore_pmu *pmu; struct intel_uncore_box *box; struct hw_perf_event *hwc = &event->hw; int ret; if (event->attr.type != event->pmu->type) return -ENOENT; pmu = uncore_event_to_pmu(event); /* no device found for this pmu */ if (pmu->func_id < 0) return -ENOENT; /* * Uncore PMU does measure at all privilege level all the time. * So it doesn't make sense to specify any exclude bits. */ if (event->attr.exclude_user || event->attr.exclude_kernel || event->attr.exclude_hv || event->attr.exclude_idle) return -EINVAL; /* Sampling not supported yet */ if (hwc->sample_period) return -EINVAL; /* * Place all uncore events for a particular physical package * onto a single cpu */ if (event->cpu < 0) return -EINVAL; box = uncore_pmu_to_box(pmu, event->cpu); if (!box || box->cpu < 0) return -EINVAL; event->cpu = box->cpu; if (event->attr.config == UNCORE_FIXED_EVENT) { /* no fixed counter */ if (!pmu->type->fixed_ctl) return -EINVAL; /* * if there is only one fixed counter, only the first pmu * can access the fixed counter */ if (pmu->type->single_fixed && pmu->pmu_idx > 0) return -EINVAL; hwc->config = ~0ULL; } else { hwc->config = event->attr.config & pmu->type->event_mask; } event->hw.idx = -1; event->hw.last_tag = ~0ULL; if (event->group_leader != event) ret = uncore_validate_group(pmu, event); else ret = 0; return ret; } static int __init uncore_pmu_register(struct intel_uncore_pmu *pmu) { int ret; pmu->pmu = (struct pmu) { .attr_groups = pmu->type->attr_groups, .task_ctx_nr = perf_invalid_context, .event_init = uncore_pmu_event_init, .add = uncore_pmu_event_add, .del = uncore_pmu_event_del, .start = uncore_pmu_event_start, .stop = uncore_pmu_event_stop, .read = uncore_pmu_event_read, }; if (pmu->type->num_boxes == 1) { if (strlen(pmu->type->name) > 0) sprintf(pmu->name, "uncore_%s", pmu->type->name); else sprintf(pmu->name, "uncore"); } else { sprintf(pmu->name, "uncore_%s_%d", pmu->type->name, pmu->pmu_idx); } ret = perf_pmu_register(&pmu->pmu, pmu->name, -1); return ret; } static void __init uncore_type_exit(struct intel_uncore_type *type) { int i; for (i = 0; i < type->num_boxes; i++) free_percpu(type->pmus[i].box); kfree(type->pmus); type->pmus = NULL; kfree(type->attr_groups[1]); type->attr_groups[1] = NULL; } static int __init uncore_type_init(struct intel_uncore_type *type) { struct intel_uncore_pmu *pmus; struct attribute_group *events_group; struct attribute **attrs; int i, j; pmus = kzalloc(sizeof(*pmus) * type->num_boxes, GFP_KERNEL); if (!pmus) return -ENOMEM; type->unconstrainted = (struct event_constraint) __EVENT_CONSTRAINT(0, (1ULL << type->num_counters) - 1, 0, type->num_counters, 0); for (i = 0; i < type->num_boxes; i++) { pmus[i].func_id = -1; pmus[i].pmu_idx = i; pmus[i].type = type; pmus[i].box = alloc_percpu(struct intel_uncore_box *); if (!pmus[i].box) goto fail; } if (type->event_descs) { i = 0; while (type->event_descs[i].attr.attr.name) i++; events_group = kzalloc(sizeof(struct attribute *) * (i + 1) + sizeof(*events_group), GFP_KERNEL); if (!events_group) goto fail; attrs = (struct attribute **)(events_group + 1); events_group->name = "events"; events_group->attrs = attrs; for (j = 0; j < i; j++) attrs[j] = &type->event_descs[j].attr.attr; type->attr_groups[1] = events_group; } type->pmus = pmus; return 0; fail: uncore_type_exit(type); return -ENOMEM; } static int __init uncore_types_init(struct intel_uncore_type **types) { int i, ret; for (i = 0; types[i]; i++) { ret = uncore_type_init(types[i]); if (ret) goto fail; } return 0; fail: while (--i >= 0) uncore_type_exit(types[i]); return ret; } static void __cpuinit uncore_cpu_dying(int cpu) { struct intel_uncore_type *type; struct intel_uncore_pmu *pmu; struct intel_uncore_box *box; int i, j; for (i = 0; msr_uncores[i]; i++) { type = msr_uncores[i]; for (j = 0; j < type->num_boxes; j++) { pmu = &type->pmus[j]; box = *per_cpu_ptr(pmu->box, cpu); *per_cpu_ptr(pmu->box, cpu) = NULL; if (box && atomic_dec_and_test(&box->refcnt)) kfree(box); } } } static int __cpuinit uncore_cpu_starting(int cpu) { struct intel_uncore_type *type; struct intel_uncore_pmu *pmu; struct intel_uncore_box *box, *exist; int i, j, k, phys_id; phys_id = topology_physical_package_id(cpu); for (i = 0; msr_uncores[i]; i++) { type = msr_uncores[i]; for (j = 0; j < type->num_boxes; j++) { pmu = &type->pmus[j]; box = *per_cpu_ptr(pmu->box, cpu); /* called by uncore_cpu_init? */ if (box && box->phys_id >= 0) { uncore_box_init(box); continue; } for_each_online_cpu(k) { exist = *per_cpu_ptr(pmu->box, k); if (exist && exist->phys_id == phys_id) { atomic_inc(&exist->refcnt); *per_cpu_ptr(pmu->box, cpu) = exist; kfree(box); box = NULL; break; } } if (box) { box->phys_id = phys_id; uncore_box_init(box); } } } return 0; } static int __cpuinit uncore_cpu_prepare(int cpu, int phys_id) { struct intel_uncore_type *type; struct intel_uncore_pmu *pmu; struct intel_uncore_box *box; int i, j; for (i = 0; msr_uncores[i]; i++) { type = msr_uncores[i]; for (j = 0; j < type->num_boxes; j++) { pmu = &type->pmus[j]; if (pmu->func_id < 0) pmu->func_id = j; box = uncore_alloc_box(cpu); if (!box) return -ENOMEM; box->pmu = pmu; box->phys_id = phys_id; *per_cpu_ptr(pmu->box, cpu) = box; } } return 0; } static void __cpuinit uncore_change_context(struct intel_uncore_type **uncores, int old_cpu, int new_cpu) { struct intel_uncore_type *type; struct intel_uncore_pmu *pmu; struct intel_uncore_box *box; int i, j; for (i = 0; uncores[i]; i++) { type = uncores[i]; for (j = 0; j < type->num_boxes; j++) { pmu = &type->pmus[j]; if (old_cpu < 0) box = uncore_pmu_to_box(pmu, new_cpu); else box = uncore_pmu_to_box(pmu, old_cpu); if (!box) continue; if (old_cpu < 0) { WARN_ON_ONCE(box->cpu != -1); box->cpu = new_cpu; continue; } WARN_ON_ONCE(box->cpu != old_cpu); if (new_cpu >= 0) { uncore_pmu_cancel_hrtimer(box); perf_pmu_migrate_context(&pmu->pmu, old_cpu, new_cpu); box->cpu = new_cpu; } else { box->cpu = -1; } } } } static void __cpuinit uncore_event_exit_cpu(int cpu) { int i, phys_id, target; /* if exiting cpu is used for collecting uncore events */ if (!cpumask_test_and_clear_cpu(cpu, &uncore_cpu_mask)) return; /* find a new cpu to collect uncore events */ phys_id = topology_physical_package_id(cpu); target = -1; for_each_online_cpu(i) { if (i == cpu) continue; if (phys_id == topology_physical_package_id(i)) { target = i; break; } } /* migrate uncore events to the new cpu */ if (target >= 0) cpumask_set_cpu(target, &uncore_cpu_mask); uncore_change_context(msr_uncores, cpu, target); } static void __cpuinit uncore_event_init_cpu(int cpu) { int i, phys_id; phys_id = topology_physical_package_id(cpu); for_each_cpu(i, &uncore_cpu_mask) { if (phys_id == topology_physical_package_id(i)) return; } cpumask_set_cpu(cpu, &uncore_cpu_mask); uncore_change_context(msr_uncores, -1, cpu); } static int __cpuinit uncore_cpu_notifier(struct notifier_block *self, unsigned long action, void *hcpu) { unsigned int cpu = (long)hcpu; /* allocate/free data structure for uncore box */ switch (action & ~CPU_TASKS_FROZEN) { case CPU_UP_PREPARE: uncore_cpu_prepare(cpu, -1); break; case CPU_STARTING: uncore_cpu_starting(cpu); break; case CPU_UP_CANCELED: case CPU_DYING: uncore_cpu_dying(cpu); break; default: break; } /* select the cpu that collects uncore events */ switch (action & ~CPU_TASKS_FROZEN) { case CPU_DOWN_FAILED: case CPU_STARTING: uncore_event_init_cpu(cpu); break; case CPU_DOWN_PREPARE: uncore_event_exit_cpu(cpu); break; default: break; } return NOTIFY_OK; } static struct notifier_block uncore_cpu_nb __cpuinitdata = { .notifier_call = uncore_cpu_notifier, /* * to migrate uncore events, our notifier should be executed * before perf core's notifier. */ .priority = CPU_PRI_PERF + 1, }; static void __init uncore_cpu_setup(void *dummy) { uncore_cpu_starting(smp_processor_id()); } static int __init uncore_cpu_init(void) { int ret, cpu; switch (boot_cpu_data.x86_model) { case 26: /* Nehalem */ case 30: case 37: /* Westmere */ case 44: msr_uncores = nhm_msr_uncores; break; case 42: /* Sandy Bridge */ msr_uncores = snb_msr_uncores; break; default: return 0; } ret = uncore_types_init(msr_uncores); if (ret) return ret; get_online_cpus(); for_each_online_cpu(cpu) { int i, phys_id = topology_physical_package_id(cpu); for_each_cpu(i, &uncore_cpu_mask) { if (phys_id == topology_physical_package_id(i)) { phys_id = -1; break; } } if (phys_id < 0) continue; uncore_cpu_prepare(cpu, phys_id); uncore_event_init_cpu(cpu); } on_each_cpu(uncore_cpu_setup, NULL, 1); register_cpu_notifier(&uncore_cpu_nb); put_online_cpus(); return 0; } static int __init uncore_pmus_register(void) { struct intel_uncore_pmu *pmu; struct intel_uncore_type *type; int i, j; for (i = 0; msr_uncores[i]; i++) { type = msr_uncores[i]; for (j = 0; j < type->num_boxes; j++) { pmu = &type->pmus[j]; uncore_pmu_register(pmu); } } return 0; } static int __init intel_uncore_init(void) { int ret; if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) return -ENODEV; ret = uncore_cpu_init(); if (ret) goto fail; uncore_pmus_register(); return 0; fail: return ret; } device_initcall(intel_uncore_init);